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Machine learning the screening factor in the soft bond
valence approach for rapid crystal structure estimation

Rapid pre-screening of functional ceramics is needed for
multiple applications. The soft bond valence (SoftBV)
approach is attractive for this purpose, but its accuracy
is limited for both structure and property predictions. We
address the issue of structure prediction with SoftBV by
machine learning the screening factor - an independent
parameter in SoftBV - as function of composition. The
recently proposed GPR-NN method, a hybrid between
neural network and kernel regression, showed substantial
improvement over off-the-shelf ML methods, enabling
the prediction of structural parameters with accuracy on
the order of 1%.

¥® ROYAL SOCIETY
PN OF CHEMISTRY

As featured in:

Digital
Discovery

See Kameda et al.,
Digital Discovery, 2024, 3,1967.

AU J

rsc.li/digitaldiscovery

Registered charity number: 207890



Open Access Article. Published on 16 August 2024. Downloaded on 1/20/2026 3:19:58 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Digital
Discovery

#® ROYAL SOCIETY
PPN OF CHEMISTRY

View Article Online

View Journal | View Issue

i '.) Check for updates ‘

Cite this: Digital Discovery, 2024, 3,
1967

Received 13th June 2024
Accepted 15th August 2024

DOI: 10.1039/d4dd00152d

rsc.li/digitaldiscovery

1 Introduction

Machine learning the screening factor in the soft
bond valence approach for rapid crystal structure
estimationt

Keisuke Kameda, © * Takaaki Ariga, Kazuma Ito, Manabu Ihara @ *
and Sergei Manzhos & *

The development of novel functional ceramics is critically important for several applications, including the
design of better electrochemical batteries and fuel cells, in particular solid oxide fuel cells. Computational
prescreening and selection of such materials can help discover novel materials but is also challenging due to
the high cost of electronic structure calculations which would be needed to compute the structures and
properties of interest such as the material's stability and ion diffusion properties. The soft bond valence
(SoftBV) approach is attractive for rapid prescreening among multiple compositions and structures, but
the simplicity of the approximation can make the results inaccurate. In this study, we explore the
possibility of enhancing the accuracy of the SoftBV approach when estimating crystal structures by
adapting the parameters of the approximation to the chemical composition. Specifically, on the
examples of perovskite- and spinel-type oxides that have been proposed as promising solid-state ionic
conductors, the screening factor — an independent parameter of the SoftBV approximation — is modeled
using linear and non-linear methods as a function of descriptors of the chemical composition. We find
that making the screening factor a function of composition can noticeably improve the ability of the
SoftBV approximation to correctly model structures, in particular new, putative crystal structures whose
structural parameters are yet unknown. We also analyze the relative importance of nonlinearity and
coupling in improving the model and find that while the quality of the model is improved by including
nonlinearity, coupling is relatively unimportant. While using a neural network showed practically no
improvement over linear regression, the recently proposed GPR-NN method that is a hybrid between
a single hidden layer neural network and kernel regression showed substantial improvement, enabling
the prediction of structural parameters of new ceramics with accuracy on the order of 1%.

use.®*® This includes functional oxides for solid-state ionic
applications: solid-state metal-ion batteries (SSB)**** and solid

In the development of novel materials for various applications,
computation-guided design has been acquiring increasing
importance. The availability of methods to compute properties
and the availability of significant and growing CPU resources in
principle permit in silico discovery of new promising materials
before more expensive experimental work is engaged.'”®
Computation-guided design is particularly important for func-
tional ceramics needed in technologies such as electrochemical
batteries, fuel cells, electrolysis cells, and other technologies
important for sustainable energy generation, storage, and
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oxide fuel cells/electrolysis cells (SOFC/SOEC),** where the
development of novel solid-state ionic conductors for various
ions (alkali and alkali earth metal ions for SSB, protons and
oxide ions for SOFC/SOEC) is still needed that would possess
sufficient ionic conductivity as well as thermodynamic and
redox stability and sufficiently low cost.***” All these applica-
tions have much in common: for all types of conducted ions,
there is a similarity of conceptual frameworks that can be
employed for their understanding and design, a similarity of
promising types of materials for them, and a similarity of
modeling methods that can be used to produce mechanistic
insight and to computationally pre-screen and guide the
experimental development of new materials. There are also
differences due to different mechanisms of ion-host interac-
tions with different conducted ions. There is a vast design
space, in particular, for mixed and doped oxides, which likely
contain efficient solid electrolytes. The challenge is getting to
the right material in that space. Computational prescreening
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and mechanistic insight-directed search are ways to achieve
this.

Density functional theory (DFT)*** is in principle sufficiently
accurate to ascertain the required properties of a ceramic
material with a putative composition and (crystal) structure. It
can provide mechanistic insights, control, and resolution not
easily achievable experimentally, but the relatively high
computational cost of DFT calculations makes prescreening of
all conceivable structures, let alone all ionic conduction paths,
in a wide range of candidate materials too tedious. Such pre-
screening can in principle be done at the force field level if
a force field framework is available that can be used for a wide
range of ceramics and provide sufficient accuracy without
requiring refitting of the force field for every new composition
and structure. Most promising material candidates can then be
subject to more detailed analysis with DFT and ultimately
experimental verification.

The soft bond valence approximation (SoftBV) developed by
Adams and co-workers provides such a framework.>*?* It is
a type of two-body force-field approximation that incorporates
assumptions about the physics of bonding interactions. It is
based on the bond valence approximation® and the inclusion of
screened coulombic interactions, which is appropriate for
sufficiently ionic bonding. In this approach, one introduces
a Bond Valence Site Energy (BVSE) which is a sum of contri-
butions from all cations ****

M
EBVSE = § EBVSE.i
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where the sum over j is the sum over anions,

Rojj — Rjj

s;(Ryj) = exp( - ) is bond valence at the interatomic
i

distance of R;; between i and j ions, Smin;j = s,—ﬂRv:Rmin‘u is the
value of s; at the “equilibrium” geometry described by inter-
atomic distances Ruin - Do, Ro,ij» by, and screening factor (sf)
are parameters. 7; are ionic radii. g; are effective charges of the
ions. Here and in the following, we use indices i for cations and j
for anions unless stated otherwise. The sum in eqn (1) is taken
over ion's N; nearest neighbors (typically first coordination
sphere defined by a cutoff radius Reyosr,; Which is another
parameter) and all cations whose number is M. The choice of
summation as a function of the atomic environment gives it
a flavor of a reactive force field. Coulombic interactions,
contrary to common force fields, are only explicitly included for
repulsion between effective charges g; (see below) and are
screened (controlled by sf). In eqn (1), strictly speaking, only sf
is an unconstrained free parameter. Relations have been
established among the other parameters. The parameters b;; can
be expressed via ionic softness (inverse of hardness®) o of the
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5 N
anion A and cation C, b; = ,;)ai(‘ff(‘A) _ UEC))
coefficients fitted based on empirical HSAB (hard and soft acids
and bases) concept.”* A consistent set of relations between
parameters has been developed***?**® by making the SoftBV
force field agree with known structures and other known force
fields such as the universal force field (UFF).*” According to
those works, the bond breaking energy D, ; is related to b; and

the oxidation state V;; as:*"**

where a; are

b (Vi)'

Dy =« 12 (2)
Roin (nin;) "

where « is a coefficient (k = 14.4 eV A™" if these units are used), ¢
is related to the maximum angular momentum of the valence
shell of the cation (¢ = 1 for s- and p-block elements, and 2 for d-
and f-block elements), and n;, n; are the principal quantum
numbers of the cation and anion.*"*® R, ;; can be thought of as
the bond length resulting between the anion and cation when
the cation contributes one valence to the anion;?® it is related to
other parameters as*>>*¢

V.
Rmin,ij = (’Yl =+ ’Yz}(f,' — Uj‘)RO,ij - bij In (N_l) [3)
C

where v, , are coefficients and N¢ is the coordination number.
When matching to UFF, there is also a relationship between
Do i, Ro i, and b:**

1

c
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1
Ruinj (nim;)?
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D()‘,'j = K R()J'j (4)

The effective charges g; and g; of anions and cations in eqn
(1) are typically calculated as>">*

1

=

ZV‘/N‘./ 2 UL
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This ensures, in particular, the overall charge neutrality. A
relationship between Rcuwfr,; and other parameters has also
been proposed:**

Si/’ (Rcutoff,-,)
Rcu10ﬂ“,‘j = RO,ij — b,-j In T [6)
where k is an empirical coefficient. Ionic radii are typically
preset to agree with the literature;*»° their sum in eqn (1) is
fully correlated with sf.
The SoftBV approach provides a measure of material's
stability via the Global Instability Index (GII)**

1/2

1 ’
Gll= |+ ; (Zs/ - V,-) (7)
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where V; are the formal oxidation states and N is the number of
cations. It also provides the ability to quickly prescreen ion
conduction properties as eqn (1) provides a potential energy
map. In particular, the availability of a Bond Valence Path
Analyzer (BVPA), that analyses the topology of Egysg as a func-
tion of transiting ion's position,*® makes it easy to rapidly
compute all conduction paths for a given ion in a material,
which is instrumental for understanding the nature of the
diffusion (1D, 2D, 3D) and rate-limiting diffusion events. The
method has been shown to be efficient for the prescreening of
conductors for cations such as Li*,*'"** Na*,3>% Mg***” and Zn**
(ref. 38) for SSB. The approximations made to achieve high-
throughput screening inevitably limit the quantitative accu-
racy compared to DFT. For example, for metal cations con-
ducted ions, while trends in diffusion barriers agree well with
DFT, their values can differ on the order of 1 €V.?® Protons and
oxide ions (of interest to SOFC/SOEC) are more challenging, in
particular, as their interactions with the host are less ionic, and
the two-body approximation and the simple expression of eqn
(1) are less reliable.*

SoftBV is often used for fixed crystal structures. Comparisons
of properties (site energies, diffusion paths, etc.) at any level of
theory are only meaningful if the structure is known with
sufficient accuracy. For materials with new, putative composi-
tions, optimal structures are unknown. It is desirable to have
sufficient force field accuracy to find the correct structure
directly with SoftBV without engaging in much more expensive
DFT calculations or experiments. The ability to predict the
structure would facilitate using more accurate methods (such as
DFT) for energetic analysis, as the cost of optimization is then
saved. It is in principle possible to improve the accuracy of the
SoftBV approximation by adjusting its parameters, for example
by making them depend on the composition or chemical envi-
ronment of the atom. While by, Dqj, Ry, Reutot OF N, and
charges still can be treated as tunable parameters and made
depend on the chemical environment (see e.g. ref. 40), it would
be at a cost of tempering with the basis of SoftBV ideology
unless restrictions are imposed enforcing interrelations
between the parameters such as those indicated above. This
issue does not arise when tuning or parameterizing sf. When
the structure of a material is known, sf can be automatically set
to minimize the pressure, thus effectively tuning sf to the
structure (lattice constants).?* This value will in the following be
called sf, . When prescreening for new materials with putative
compositions where the optimal (correct) structure is not
known, this approach in principle results in a non-optimal
value of sf (i.e. in a sf,,, value optimal for a wrong structure).

In this study, we therefore aim to determine an optimal value
of the screening factor when the structure is not known, as
a function of composition. We use linear and neural network
(NN) models and show, on the examples of perovskite-**** and
spinel-type oxides** which have been proposed as promising
solid-state ionic conductors, that this can noticeably improve
the ability of the SoftBV approximation to model structures, in
particular new, putative crystal structures whose structural
parameters are yet unknown. We show that due to the smallness
of the training dataset, there is no improvement with a neural

© 2024 The Author(s). Published by the Royal Society of Chemistry
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network over the linear regression in spite of the higher
expressive power of an NN. We employ a recently proposed
machine learning method (called in the following GPR-NN) that
is a hybrid between a neural network and kernel regression; in
particular, it avoids nonlinear parameter optimization that is
a cause of overfitting. GPR-NN allows building optimal
nonlinear functions and controlling the inclusion of coupling
between the features,* to analyze the importance of nonline-
arity and of coupling. We find that while the quality of the
model is improved by including nonlinearity, the coupling is
relatively unimportant. Overall, GPR-NN allowed the most
accurate estimation of the optimal screening factor as a func-
tion of composition, enabling the prediction of structural
parameters of new ceramics with accuracy on the order of 1%.

2 Methods

We fit sf as a function of other SoftBV parameters that carry the
information about the chemical composition (b, Ro j, Reutott,j»
r;, and Ng, which thus form the feature space). These features
are available during SoftBV calculations. We consider 115
perovskite-type oxides with a general formula ABO; and 128
spinel-type oxides with a general formula AB,O, where A and B
are cations. These crystal structures are shown in Fig. 1. The list
of all materials is given in the ESL.{ These structures are taken
mostly from Materials Project’® and several (those not in
Materials Project) from the ICDD database.” The structures
taken from ICDD were confirmed by DFT calculations in
Quantum Espresso*® (using PBE* functional, PAW pseudopo-
tentials, and a plane wave cutoff of 35 Ry) i.e. a similar DFT
setup to that used by Materials Project. These were the materials
of this type that we could find in the databases and that also had
parameters available for them in SoftBV (for this reason e.g.
actinides were not included).

Considering the relatively large dimensionality of the feature
space, the number of data points (number of structures) is
small.>** We, therefore, perform the following procedure as
shown in Fig. 2: from each real structure obtained from the
database called reference structure in the following, we form
structures with lattice vectors isotropically expanded or con-
tracted by 10%; these are called sample structures in the
following. A 10% strain is sufficient to cover the range of
possible lattice parameters of a given type of crystal structure
with different chemical compositions. sf is then set to values
from 0.55 to 0.75 at 0.0125 intervals and structure optimization
was performed in SoftBV. The error Er - the difference between
the lattice constants (defined below) following SoftBV optimi-
zation - is then collected resulting in a dataset of by, Ry,
Reutoft,ijs Tis Nc, sf, and Er for each composition. In this way, the
number of data points is expanded severalfold. In the case of
perovskite-type oxides, SoftBV optimization does not result in
any changes in fractional positions of atoms or distortions of
the rectilinearity of the unit cell, and Er is defined as the mean
relative error in lattice vectors a = b = ¢ between a reference
structure obtained from the database and the optimized struc-
ture by SoftBV (l e. Er = (areference - aopt)/areference = (breference -
bopt)/breference = (Creference - Copt)/creference)- In the case of Spinel'

Digital Discovery, 2024, 3,1967-1979 | 1969
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Fig. 1 Crystal structures of (a) perovskite (A — green, B — violet, O — red), (b) spinel (A — green, B — violet, O — red) oxides.

type oxides, SoftBV optimization results in small changes in the
fractional positions of atoms within the unit cell. We defined
the changes in fractional position per number of ions (N) as

N
Asiie = 1/N >~ /(Ax?2 + Ay? + Az?), where N is the number of
i=1

atoms in the cell and Ax, Ay, and Az are errors in fractional
coordinates. 4 was lower than 0.01 in most of the spinel-type
oxides, ie. the error in structural parameters is mostly due to
the lattice constants. Therefore, Er defined above was also used
for optimizing crystal structures of the spinel-type oxides.

We define a D = 11 dimensional vector of descriptors

x = (Er, Ro.a0, bao, Nc,a0» Reutoff, a0, T'a» Ro,B0> PO, NC BO,

Reutoft,Bos B) = (X1, X2, +.05 X11)

and X as a vector of all descriptors other than Er. The dataset of
(x, sf) values for all materials and all structure expansions/
contractions used for machine learning is provided in ESLf
Ionic radii (which are coordination-dependent in SoftBV) for the
coordination number of 6 were used in all cases. 80% of the
expanded sample data of x and sf randomly selected without
duplicating compositions for training and testing were used for

Reference structures

from Materials Project and ICDD

Isotopically expanded
or contracted by 10%

the training of the following regression models, and the
remaining 20% for the testing. The features (x) are normalized
before fitting (i.e. its average and standard deviation are set to
0 and 1, respectively).

We perform linear regressions using the “regress” function in
MATLAB (version R2021a of MATLAB was used in this work):

D=11

sf = Z 0y Xy (8)
n=1

We also perform non-linear regression using a feed-forward
neural network (NN):**

sf = NN(x) 9)

The NN regressions are performed in MATLAB using
“trainlm” function. Levenberg-Marquardt algorithm®> was used
to train the NN. We considered different numbers of hidden
layers and neurons. “tansig” neuron activation function is used
in the following. Other neuron activation functions were tried
but resulted in no improvement (not shown). The estimated
optimal sf (sf.s) was obtained from eqn (8)—(10) by setting Er =

Sample structures

« Perovskite oxides: 115 x 2 samples

» Perovskite oxides: 115 compositions

+ Spinel oxides: 128 compositions

Calculation the mean relative error

(Er) in lattice vectorsa =b=c¢

« Spinel oxides: 128 x 2 samples

Structure optimization using the expanded
samples and sf= 0.55-0.75

Optimized structures

« Perovskite oxides: 1955 samples

Er= (areference - aopt)/ Areference

80% of the data for training and 20% of the data for testing
were selected randomly without duplicating compositions for both usage

« Spinel oxides: 2176 samples

Linear or neural network (NN) regression for estimating optimal sf with Er = 0 (sf,,)
sf =Xzt  anxy ., sf = NN(X), sfope = sf (Er = 0,%)

X = (ET: RO,AO'bAO'NC,AO:Rcuthf,AO'rA'RO,BO'bBO:NC,BO'REutnff,BO'rB) = (X1, X2, s X11)

Fig. 2 The procedure of optimizing the screening factor.
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0, i.e. sfope = NN(0,X). SoftBV optimization of crystal structures
with expanded or contracted lattice was carried out using sf,,
and sf,,, and the Er was compared to evaluate the accuracy of
SoftBV.

For the analysis of the relative importance of nonlinearity
and coupling among the features, we use the GPR-NN method
of Manzhos and Thara.*”” The reader is referred to ref. 45, 53 and
54 for more details and context; here, we only briefly summarize
the key properties of the method relevant to the purpose of the
present work. The target function sf(x) is expressed as

sf(x) = Zﬁ(wnx) = Zﬂ(yn<x)> (10)

This is a first-order additive model in (generally) redundant
coordinates y = Wx, where W is the matrix of coefficients. The
rows of W are defined as elements of a D-dimensional Sobol
sequence® although other ways of setting W are possible.*” The
shapes of the functions f, are computed using the first-order
additive GPR*****3% in y. That is, GPR of sf(y(x)) is performed

N
in y with an additive kernel K(y,y') = 3" k(yx,y,,)- In this way,
n=1

all functions f,, are computed simultaneously, in one linear step.
The shapes of the functions f, are optimal for given data and
given W in the least squares sense.*® The original coordinates
{x,,} are also included in the set of {y,,}. If only {x,,} are included,
the method defaults to first-order additive GPR.****” The
representation of eqn (10) is equivalent to a single hidden layer
NN with optimal and individual to each neuron activation
functions, and with weights fixed by rules rather than opti-
mized. Matrix W is equivalent to the matrix of NN weights, while
biases are subsumed in the definition of f,,. One can say that eqn
(10) is an NN in x and a 1%"-order additive GPR in y. The method
has the advantage that because no nonlinear optimization is

(a) 06 — s
® 115 perovskite oxides .
0.4 [ ¢ BaCeO; )
LaGaO, :.l
L0z ,,..iiaiii'
T sae s TR ERY
T LR AL
T
0.2 ceoeeses
-0.4 e
0.5 0.6 0.7 0.8
sfl-
(c) 0.6
@ 128 spinel oxides
0.4 | ® MnCo,0,
ZnFe,0, .
v 0.2 | i
= 1mil
w o LLLEE R A
0 M!!M”u""
0.2
-0.4 L
0.5 0.6 0.7 0.8
sfl -
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done, it does not suffer from overfitting as the number of
‘neurons’ N grows beyond optimal,* combining the high
expressive power of an NN and the robustness of linear
regression (with nonlinear basis functions) which is GPR.*®

In this work, we use an additive RBF kernel in y:

W =)

N
KO.Y) = 3 kny,) where  kn.y,) = exp| — "3

The data are normalized so that an isotropic kernel is used with
a single length parameter /. In this work, we use this method to
probe the importance of coupling terms by testing different N.
In the limit of large N the model fully includes all coupling
among features, while in the limit y = x € R”, no coupling is
included. On the other hand, the construction of optimal
shapes of f,, in the method is used to study the importance of
nonlinearity. Similar to the case of an NN fit, sf,. is computed
from the model of eqn (10) by setting Er = 0, i.e. sfope = f{0,X).

With all methods, the loss function minimized by the

regression was the SSE (sum of squared errors),

M - -

SSE = Y (model(x?) — sf(x?))?, where {(x?, sfx))}, i =1, ...,
=1

M is the training set of size M.

3 Results and discussion

3.1 Machine learning the screening factor with linear
regression and neural networks

Fig. 3 shows the relationship between Er and sf. Er, namely the
error in the lattice parameter, increased with an increase in sf. A
larger sf makes the coulombic repulsion in BVSE stronger at
long range as per eqn (1). Because the stress in a given crystal
structure is to a significant degree due to coulombic repulsion,
SoftBV optimization with large sf resulted in an overestimated
lattice constant. The relationship between Er and sf was

(b) 0.6

® 115 perovskite oxides  °
0.4 [ ¢ BaCeO, o
LaGaO; oo
: 0.2 eaiili
B oof iigiiiéiaa;;m!!
pegreaaaiiocs
-0.2 cosvec®®
P4
0.5 0.6 0.7 0.8
sf/ -
(d) 0.6
® 128 spinel oxides
0.4 [ ® MnCo,0,
ZnFe,0, .
v 0.2 |
& ||lll””==
° !!!!!!ll""'
-0.2
04 ————
0.5 0.6 0.7 0.8
sfl -

Fig. 3 Error in structural parameters (Er) of (a and b) perovskite-type oxides and (c and d) spinel-type oxides following SoftBV optimization with
different screening factors (sf). Figures (a) and (c) are the results of optimizing crystal structures with lattice vectors isotropically contracted by
10%. Figures (b) and (d) are the results of optimizing crystal structures with lattice vectors isotropically expanded by 10%.
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different for each composition but did not depend on the initial
lattice parameter. For instance, for two perovskite-type oxides of
BaCeO; (orange squares) and LaGaO; (green triangle), one
obtains Er = 0 with sf of about 0.60 and 0.65, respectively
(Fig. 3(a) and (b)). Similar results were also obtained in the case
of spinel-type oxides (i.e. MnCo,0, (red squares) and ZnFe,O,
(vellow triangles)) as shown in Fig. 3(c) and (d). These results
indicate that there is only one sf minimizing Er for each
material and the optimal sf is material-dependent, which
suggests that an improvement can be achieved by making sf =
sf(x).

The linear and single-hidden layer NN regressions of sf for
perovskite- and spinel-type oxides were carried out 100 times
using different combinations of training and testing data. Fig. 4
shows the distributions of root mean square error (RMSE)
values of estimated sf from these regressions.

View Article Online
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Table 1 summarizes the maximum, minimum, and median
RMSE and R values over the 100 runs. The RMSE for the
training data decreases with an increase in the number of nodes
for the NN regression, as expected, while the median RMSE for
the testing data was the lowest for the NN regressions with only
1-3 nodes. The results did not change when the number of the
hidden layers changed to 2-12. The NN regressions with 1-3
nodes show smaller median RMSE for both training and testing
data than the linear regression. Therefore, the non-linearity or
coupling effects present in an NN might improve the accuracy,
which is analyzed in Section 3.2, but the small number of data
makes it difficult.

The RMSE for the testing set could be decreased, especially
for the NN regression with a larger number of nodes, by
increasing the number of data using both the perovskite- and
spinel-type oxides data in a combined dataset. These results
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Fig. 4 Distributions of root mean square error (RMSE) of the screening factor for training (filled circles and box plots) and testing (empty circles
and box plots) data obtained by linear (LN) and neural network (NN) regressions with 1 to 12 nonlinear nodes, for 100 runs with different
combinations of the training and testing data for (a) perovskite-type oxides, (b) spinel-type oxides, and (c) the combined dataset.
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Table 1 Maximum, minimum, and median root mean square errors (RMSE) and R? values in the screening factor of linear and neural network
(NN) regressions. “N” is the number of nodes (neurons)

RMSE/R® of training

RMSE/R? of testing

Methods Maximum Minimum Median Maximum Minimum Median
Perovskite

Linear 0.032/0.83 0.025/0.73 0.031/0.75 0.049/0.89 0.024/0.56 0.03/0.76
NN,N=1 0.024/0.90 0.019/0.84 0.023/0.86 0.036/0.93 0.016/0.71 0.024/0.85
NN, N=2 0.023/0.95 0.014/0.86 0.02/0.89 40/0.93 0.017/0.00 0.029/0.80
NN, N=3 0.021/0.97 0.011/0.88 0.017/0.92 24/0.95 0.014/0.00 0.029/0.79
NN, N=4 0.018/0.97 0.010/0.91 0.014/0.95 2.5/0.94 0.015/0.01 0.036/0.71
NN, N=6 0.013/0.99 0.006/0.95 0.009/0.98 38/0.91 0.018/0.00 0.051/0.60
NN, N=9 0.007/1.00 0.003/0.99 0.005/0.99 12/0.85 0.026/0.00 0.088/0.34
NN, N =12 0.004/1.00 0.002/0.99 0.003/1.00 6.2/0.76 0.040/0.00 0.14/0.17
Spinel

Linear 0.023/0.88 0.021/0.86 0.022/0.87 0.028/0.90 0.02/0.79 0.024/0.85
NN,N=1 0.019/0.93 0.016/0.90 0.018/0.92 0.029/0.96 0.012/0.80 0.02/0.90
NN, N=2 0.016/0.96 0.013/0.93 0.015/0.94 0.087/0.94 0.015/0.33 0.019/0.91
NN, N=3 0.015/0.97 0.010/0.94 0.012/0.96 1.4/0.95 0.014/0.00 0.02/0.90
NN, N=14 0.013/0.98 0.008/0.96 0.010/0.97 28/0.96 0.012/0.00 0.022/0.88
NN, N=6 0.009/0.99 0.005/0.98 0.007/0.99 15/0.95 0.015/0.00 0.031/0.80
NN,N=9 0.005/1.00 0.003/0.99 0.004/1.00 9.2/0.91 0.019/0.00 0.073/0.41
NN, N =12 0.003/1.00 0.002/1.00 0.002/1.00 3.9/0.83 0.028/0.00 0.11/0.23
Perovskite + spinel

Linear 0.031/0.80 0.027/0.74 0.030/0.76 0.038/0.86 0.024/0.63 0.029/0.77
NN,N=1 0.024/0.88 0.021/0.84 0.023/0.86 0.030/0.91 0.019/0.77 0.024/0.85
NN, N=2 0.023/0.92 0.018/0.86 0.021/0.88 0.035/0.92 0.017/0.72 0.024/0.86
NN, N=3 0.022/0.92 0.017/0.87 0.019/0.90 1.2/0.93 0.016/0.01 0.023/0.86
NN, N=14 0.019/0.94 0.014/0.90 0.017/0.92 1.3/0.92 0.017/0.00 0.024/0.86
NN, N=6 0.016/0.96 0.012/0.93 0.014/0.95 3.5/0.93 0.018/0.00 0.031/0.77
NN,N=9 0.013/0.98 0.009/0.96 0.011/0.97 0.62/0.90 0.020/0.00 0.039/0.70
NN, N =12 0.01/0.99 0.007/0.97 0.008/0.98 4.3/0.86 0.024/0.00 0.051/0.59

show that a key issue is overfitting due to the small number of
data points. Fig. 5 shows the distributions of the data for
selected pairs of parameters (among by, Ro;, Reutoft,i> Ti» Nc)-
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a limited insight into a multivariate distribution, one can
appreciate rather uneven and sparse sampling with data based
on individual crystal structure types. This result indicates that
the accuracy of SoftBV can be improved by estimating sf as

Fig. 5 Distributions of pairs of parameters ((a) ra and rg, (b) baoc and bgo, (€) Roao and Ro go. (d) Ncao and Nego, and (€) Reutao and Ryt o) in
perovskite- (blue circles) and spinel-type (red triangles) oxides data.
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a function of SoftBV parameters encoding composition if the
space of descriptors can be adequately sampled using data for
oxides of various compositions.

The crystal structures were optimized using each of the
average sf,, computed from each of the five linear, NN, and GPR-
NN (shown in Section 3.2) regression models that had the highest
R? values among the 100 runs (Fig. 6). These models used both
perovskite- and spinel-type oxide data for training. The use of
sfope improved the accuracy of structure optimization from using
Sfauto- The mean absolute error (MAE) and the standard deviation
(STD) of the distributions of Er are summarized in Table 2.
Although an NN in principle has a higher expressive power and
should be able to make a better fit, the MAE and STD for the
linear model were equal or even slightly better than the NN
model. This ultimately has to do with a small number of data and
associated overfitting (see Fig. 4). Overall, there is no significant
improvement in sf fitting quality with NN vs. linear regression,
and the NN fit does not lead to an improvement in the estimation
of the optimal sf and in the quality of structure optimization.

(a) 90 r
80 | —prv_sf_auto
70 + —prv_LN
.60 ' —prv_NN_node1
£50 1 _ v GPR-NN
340
030 F
20
10 ¢
0 o / 20 a
-0.3 -0.2 -0.1 0 0.1 0.2 0.3
Er/-
(b) %0
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\-60 | —spn_NN_node1
850
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Fig. 6 The distribution of structure parameter errors of crystal
structures optimized using automatically set screening factors in the
SoftBV for each sample structure (“sf_auto”) and screening factors
estimated by the linear regression ("LN"), neural network with 1 node
("NN_nodel"), and the GPR-NN methods trained on the combined
data set of the perovskite- and spinel-type oxides, for (a) perovskite
("prv), (b) spinel ("spn”), and (c) both oxides.
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Table 2 The mean absolute error (MAE) and the standard deviation
(STD) for the error of structure optimization (that is Er defined in
Methods section, dimensionless) of perovskite, spinel, and both oxides
using the automatically set screening factors in the SoftBV ("Auto”) and
estimated optimal screening factors by the linear, the neural network
("NN"), and the GPR-NN methods trained on the combined data set of
the perovskite- and spinel-type oxides

Auto  Linear NN (node =1) GPR-NN
Perovskite oxides MAE 0.13 0.026 0.031 0.014
STD 0.066 0.038 0.044 0.024
Spinel oxides MAE 0.10 0.023 0.022 0.013
STD 0.032 0.024 0.026 0.026
Both oxides MAE 0.12 0.025 0.026 0.014
STD 0.053 0.032 0.036 0.025

While the accuracy has improved on average, the distribution of
Er with the linear or NN regression is relatively broad with Er for
some materials exceeding 0.1. The GPR-NN regressions
(described in the following section) have the highest accuracy for
optimizing the crystal structures with the narrowed distribution
of Er, with MAE = 0.014 and STD = 0.025.

Fig. 7 shows the relationship between GII obtained from the
optimized and reference structures. GII is an index for chemical
stability, e.g. GII < 0.1 is typically taken to mean that the
structure is stable, while GII > 0.2 is considered to be a warning
that the structure may be unstable.** A better GII value should
be obtained when a better structure is used because the error of
M) as eqn (7), in
by
other words, due to the error in the distance between cations
and anions. GII values of optimized structures using sf,,, are
larger than those of reference structures and do not show the
correlation of GII values of SoftBV-optimized structures with
those of reference structures. On the other hand, there is
a correlation between the GII values of structures optimized
using sf,,; and the reference structures, especially for
perovskite-type oxides. This result reflects the improvement of
the accuracy of structure optimization with ML-estimated sf.

GII is due to the error of s;(R;) = exp(

3.2 Analysis of the importance of nonlinearity and coupling
using the GPR-NN method

The NN results are somewhat unusual in that while there is
a slight improvement in the quality of sf prediction (judged by
the value of R* over the test set and the range thereof for
different train-test splits) over linear regression, there is no
improvement in the quality of structure optimization vs. linear
regression, and the optimal NN appears to have a size of 1-3
neurons only, with the 2- or 3-neuron NN only insignificantly
outperforming a 1-neuron NN, with larger NNs showing clear
overfitting. NN being a universal approximator, the training set
error can be made arbitrarily small, but the global quality of the
model, exemplified by the test set error, is ultimately limited by
the density of sampling. When sampling is sparse enough,
higher-order coupling terms may not be recoverable.>»**° That
the sampling is sparse in this case, and that this is a limiting
factor in utilizing the superior expressive power of an NN, is

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 8 Top left: correlation between target (“exact”) values of the screening factor and those predicted by an additive model with a kernel length
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clear from the above comparison of fitting only the perovskite or
the spinel data separately or the combined dataset.

A NN performs non-linear operations on linear combina-
tions of inputs {x,} introducing both nonlinearity and coupling.
This is true even for a single-hidden neuron NN. We can sepa-
rate these two effects with the help of the GPR-NN method. We
first perform simulations where y = x, i.e. an additive model in

N
x, sf(x) = fu(x,). We perform a two-dimensional hyper-
n=1

parameters scan of the length parameter / and the GPR noise
parameter o. At each (I, g), we perform 100 fits differing by
different random splits of training and test data (whereby 20
percent of materials are used for testing and 80 for training).
Note that when ! becomes large (I > 1 for data scaled on unit
cube), kernel resolution is lost® and the component functions
fulxn) become near-linear. This is illustrated in Fig. 8 for the case
of [ = 200, log(c) = —3, where we show the shapes of f,, in such

View Article Online

Paper

a limiting case as well as the correlation plots between the exact
(target) values of sf and those predicted by the model for
a representative run. In this case the average/min/max/standard
deviation (over 100 runs) of the training set R* are 0.80/0.78/
0.84/0.02, and of the test set R, 0.77/0.59/0.85/0.06, respec-
tively, — similar to traditional linear regression. The average/
min/max/standard deviation of the RMSE is 0.031/0.028/0.032/
0.001 for the training and 0.032/0.028/0.039/0.002 for the test
set, respectively.

The optimal hyperparameters were chosen as those mini-
mizing simultaneously the average test set R> and its variance
(over multiple runs); they are [ = 7 and log(c) = —3. With these
hyperparameters, the average/min/max/standard deviation
(over 100 runs) of the training set R* are 0.89/0.88/0.92/0.01,
respectively, and of the test set R%, 0.85/0.71/0.93/0.05, respec-
tively. The average/min/max/standard deviation of the RMSE is
0.022/0.019/0.023/0.001 for the training and 0.024/0.017/0.038/
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Fig.9 Top left: correlation between target ("exact”) values of the screening factor and those predicted by an additive model with an optimized
kernel length of [ = 7, for training (blue) and test (red) data (some blue and red points visually overlap). The correlation coefficients between the
exact and predicted values for training and test data are also shown. The following panels show the shapes of f{(x;) in the order of decaying
magnitude, with the magnitude (defined as var(f)*?) shown on top of each plot.
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data.

0.006 for the test set, respectively. This is a noticeable
improvement over linear regression and the NN. This model has
no coupling. The correlation plots between the exact (target)
values of sf and those predicted by the model as well as the
shapes of f, in this case are shown in Fig. 9 for a representative
run. They are highly nonlinear. Nonlinearity improves the
quality of the model and also influences the relative importance
of variables: in both the linear and the nonlinear model, the
most important (by the magnitude of f,,(x,)) variables are x; (Er),
X4 (Roa0), and xg (ra). The least important is x;9 (Nc ao) in the
non-linear model with the optimal / = 7 while it is x;; (N¢ o) in
the (practically) linear model achieved with / = 200. The order of
importance of variables with small magnitudes of f;(x,) may
differ; it is normal that the relative importance of features is
different for different methods.*>%

We now fix [ and ¢ at their optimized values and test if
adding coupling terms further improves the model. The results
are summarized in Fig. 10. We do not observe any further
improvement due to the inclusion of coupling among the
features. The coupling terms are either unimportant or unre-
coverable due to the low density of sampling.

Finally, in Fig. 6, we show the distribution of structural
parameter errors achieved with the GPR-NN method (using
optimal hyperparameters). The method is clearly superior over
the linear regression and the NN in terms of the average error as
well as the width of the error distribution, which are listed in
Table 2. The optimal shapes of the nonlinear functions used
with each variable, and the absence of nonlinear parameter
optimization in GPR-NN allow capitalizing on the superior
expressive power of a nonlinear method while retaining the
robustness of linear regression.

4 Conclusions

In this study, we explored the possibility and extent of
improvement of the accuracy of the SoftBV approximation by

© 2024 The Author(s). Published by the Royal Society of Chemistry

fitting the screening factor as a function of descriptors of
chemical composition. We showed that it is the screening factor
that can be parameterized in this way without the danger of
tempering with the basis of SoftBV ideology. The features that
we used are various parameters that are already available in
a SoftBV calculation; that is, the screening factor as a function
of those features can in principle be implemented without
hardship. We first used linear and neural network models and
showed, on the examples of perovskite- and spinel-type oxides
which have been proposed as promising solid-state ionic
conductors, that this can noticeably improve the ability of the
SoftBV approximation to model structures, in particular new,
putative crystal structures whose structural parameters are yet
unknown.

We showed that the sampling density of the space of
descriptors is an important limiting factor in the possible
improvement in sf, which may even prevent one from using the
superior expressive power of nonlinear models. In this work,
this was palliated on one hand by combining data from
different crystal structures having structural similarity (perov-
skite and spinel oxides in this case) and on the other hand by
producing synthetic sample points from strained structures.
Only a slight improvement in the screening factor regression
was obtained with an NN over linear regression while no
improvement over linear regression was observed in the quality
of structure optimization with sf predicted by the NN model.

We then applied to this problem the recently developed GPR-
NN method that allows obtaining a superior expressive power of
a nonlinear approximation while avoiding nonlinear parameter
optimization during regression. The method is a hybrid
between an NN and kernel regression; it builds optimal shapes
of nonlinear basis functions (neuron activation functions) and
permits including coupling among features in a controlled way.
We analyzed the relative importance of nonlinearity and
coupling and found that while nonlinearity helps obtain a more
accurate model, coupling terms were not important or were
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unrecoverable from the data. The sf predicted by GPR-NN
showed the best quality of structure optimization with SoftBV
and a significant improvement over linear and NN regressions.

As our tests on perovskites, spinels, and combined data
show, there is a degree of portability of the machine-learned
model to other crystal structures with similar coordination
environments of ions. The models are in principle not portable
to crystal structures with significantly different coordination
environments simply because other parts of the feature vector x,
which are environment-dependent SoftBV parameters, will be
different and unsampled. While this is a limitation, there is still
much value in exploring different compositions of particular
crystal symmetries, of which there is typically a finite number of
interest in particular applications.

Data availability

A list of all crystal structures with their database identifiers as
well as the dataset used in machine learning are available in
ESI.+ The GPR-NN code is available in ref. 45.
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