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bond valence approach for rapid crystal structure
estimation†

Keisuke Kameda, * Takaaki Ariga, Kazuma Ito, Manabu Ihara *
and Sergei Manzhos *

The development of novel functional ceramics is critically important for several applications, including the

design of better electrochemical batteries and fuel cells, in particular solid oxide fuel cells. Computational

prescreening and selection of suchmaterials can help discover novelmaterials but is also challenging due to

the high cost of electronic structure calculations which would be needed to compute the structures and

properties of interest such as the material's stability and ion diffusion properties. The soft bond valence

(SoftBV) approach is attractive for rapid prescreening among multiple compositions and structures, but

the simplicity of the approximation can make the results inaccurate. In this study, we explore the

possibility of enhancing the accuracy of the SoftBV approach when estimating crystal structures by

adapting the parameters of the approximation to the chemical composition. Specifically, on the

examples of perovskite- and spinel-type oxides that have been proposed as promising solid-state ionic

conductors, the screening factor – an independent parameter of the SoftBV approximation – is modeled

using linear and non-linear methods as a function of descriptors of the chemical composition. We find

that making the screening factor a function of composition can noticeably improve the ability of the

SoftBV approximation to correctly model structures, in particular new, putative crystal structures whose

structural parameters are yet unknown. We also analyze the relative importance of nonlinearity and

coupling in improving the model and find that while the quality of the model is improved by including

nonlinearity, coupling is relatively unimportant. While using a neural network showed practically no

improvement over linear regression, the recently proposed GPR-NN method that is a hybrid between

a single hidden layer neural network and kernel regression showed substantial improvement, enabling

the prediction of structural parameters of new ceramics with accuracy on the order of 1%.
1 Introduction

In the development of novel materials for various applications,
computation-guided design has been acquiring increasing
importance. The availability of methods to compute properties
and the availability of signicant and growing CPU resources in
principle permit in silico discovery of new promising materials
before more expensive experimental work is engaged.1–5

Computation-guided design is particularly important for func-
tional ceramics needed in technologies such as electrochemical
batteries, fuel cells, electrolysis cells, and other technologies
important for sustainable energy generation, storage, and
ering, School of Materials and Chemical

, 2-12-1 Ōokayama, Meguro-ku, Tokyo,

.titech.ac.jp; mihara@chemeng.titech.ac.

SI) available: The list of structures used
ve database identiers, as well as the
OI: https://doi.org/10.1039/d4dd00152d

the Royal Society of Chemistry
use.6–10 This includes functional oxides for solid-state ionic
applications: solid-state metal-ion batteries (SSB)11,12 and solid
oxide fuel cells/electrolysis cells (SOFC/SOEC),13 where the
development of novel solid-state ionic conductors for various
ions (alkali and alkali earth metal ions for SSB, protons and
oxide ions for SOFC/SOEC) is still needed that would possess
sufficient ionic conductivity as well as thermodynamic and
redox stability and sufficiently low cost.14–17 All these applica-
tions have much in common: for all types of conducted ions,
there is a similarity of conceptual frameworks that can be
employed for their understanding and design, a similarity of
promising types of materials for them, and a similarity of
modeling methods that can be used to produce mechanistic
insight and to computationally pre-screen and guide the
experimental development of new materials. There are also
differences due to different mechanisms of ion–host interac-
tions with different conducted ions. There is a vast design
space, in particular, for mixed and doped oxides, which likely
contain efficient solid electrolytes. The challenge is getting to
the right material in that space. Computational prescreening
Digital Discovery, 2024, 3, 1967–1979 | 1967
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and mechanistic insight-directed search are ways to achieve
this.

Density functional theory (DFT)18,19 is in principle sufficiently
accurate to ascertain the required properties of a ceramic
material with a putative composition and (crystal) structure. It
can provide mechanistic insights, control, and resolution not
easily achievable experimentally, but the relatively high
computational cost of DFT calculations makes prescreening of
all conceivable structures, let alone all ionic conduction paths,
in a wide range of candidate materials too tedious. Such pre-
screening can in principle be done at the force eld level if
a force eld framework is available that can be used for a wide
range of ceramics and provide sufficient accuracy without
requiring retting of the force eld for every new composition
and structure. Most promising material candidates can then be
subject to more detailed analysis with DFT and ultimately
experimental verication.

The so bond valence approximation (SoBV) developed by
Adams and co-workers provides such a framework.20–22 It is
a type of two-body force-eld approximation that incorporates
assumptions about the physics of bonding interactions. It is
based on the bond valence approximation23 and the inclusion of
screened coulombic interactions, which is appropriate for
sufficiently ionic bonding. In this approach, one introduces
a Bond Valence Site Energy (BVSE) which is a sum of contri-
butions from all cations i21,22

EBVSE ¼
XM
i¼1

EBVSE;i

¼
XM
i¼1

"XNj

j¼1

D0;ij

 �
sij

smin;ij

�2

� 2sij

smin;ij

!

þ
Xi0s i

i
0¼1

qiqi0

Rii
0
� erfc

�
Rii’

sf � ðri þ ri0 Þ
�#

(1)

where the sum over j is the sum over anions,

sijðRijÞ ¼ exp
�
R0;ij � Rij

bij

�
is bond valence at the interatomic

distance of Ri,j between i and j ions, smin,ij = sijjRij=Rmin,ij
is the

value of sij at the “equilibrium” geometry described by inter-
atomic distances Rmin,ij. D0,ij, R0,ij, bij, and screening factor (sf)
are parameters. ri are ionic radii. qi are effective charges of the
ions. Here and in the following, we use indices i for cations and j
for anions unless stated otherwise. The sum in eqn (1) is taken
over ion's Nj nearest neighbors (typically rst coordination
sphere dened by a cutoff radius Rcutoff,ij which is another
parameter) and all cations whose number is M. The choice of
summation as a function of the atomic environment gives it
a avor of a reactive force eld. Coulombic interactions,
contrary to common force elds, are only explicitly included for
repulsion between effective charges qi (see below) and are
screened (controlled by sf). In eqn (1), strictly speaking, only sf
is an unconstrained free parameter. Relations have been
established among the other parameters. The parameters bij can
be expressed via ionic soness (inverse of hardness24) s of the
1968 | Digital Discovery, 2024, 3, 1967–1979
anion A and cation C, bij ¼
P5
n¼0

aiðsðAÞj � s
ðCÞ
i Þn where ai are

coefficients tted based on empirical HSAB (hard and so acids
and bases) concept.22 A consistent set of relations between
parameters has been developed21,22,25,26 by making the SoBV
force eld agree with known structures and other known force
elds such as the universal force eld (UFF).27 According to
those works, the bond breaking energy D0,ij is related to bij and
the oxidation state Vi,j as:21,25

D0;ij ¼ k
bij

2

2

c
�
ViVj

�1=c
Rmin;ij

�
ninj
�1=2 (2)

where k is a coefficient (k= 14.4 eV Å−1 if these units are used), c
is related to the maximum angular momentum of the valence
shell of the cation (c= 1 for s- and p-block elements, and 2 for d-
and f-block elements), and ni, nj are the principal quantum
numbers of the cation and anion.21,25 R0,ij can be thought of as
the bond length resulting between the anion and cation when
the cation contributes one valence to the anion;28 it is related to
other parameters as21,25,26

Rmin;ij ¼
�
g1 þ g2

��si � sj

���R0;ij � bij ln

�
Vi

NC

�
(3)

where g1,2 are coefficients and NC is the coordination number.
When matching to UFF, there is also a relationship between
D0,ij, R0,ij, and bij:26

D0;ij z k
bij

2

2

c
�
ViVj

�1
c

Rmin;ij

�
ninj
�1
2

R0;ij (4)

The effective charges qi and qj of anions and cations in eqn
(1) are typically calculated as21,25

qi ¼ Viffiffiffiffi
ni

p

0
BB@
P
j

VjNjffiffiffiffi
nj

p
P
i

ViNiffiffiffiffi
ni

p

1
CCA

1
2

; qj ¼ Vjffiffiffiffi
nj

p

0
BB@
P
i

ViNiffiffiffiffi
ni

p
P
i

VjNjffiffiffiffi
nj

p

1
CCA

1
2

(5)

This ensures, in particular, the overall charge neutrality. A
relationship between Rcutoff,ij and other parameters has also
been proposed:22

Rcutoff ;ij ¼ R0;ij � bij ln

0
@sij

�
Rcutoff ij

	
k

1
A (6)

where k is an empirical coefficient. Ionic radii are typically
preset to agree with the literature;29,30 their sum in eqn (1) is
fully correlated with sf.

The SoBV approach provides a measure of material's
stability via the Global Instability Index (GII)21

GII ¼
0
@ 1

N

XN
i¼1

 X
j

sij � Vi

!2
1
A

1=2

(7)
© 2024 The Author(s). Published by the Royal Society of Chemistry
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where Vi are the formal oxidation states and N is the number of
cations. It also provides the ability to quickly prescreen ion
conduction properties as eqn (1) provides a potential energy
map. In particular, the availability of a Bond Valence Path
Analyzer (BVPA), that analyses the topology of EBVSE as a func-
tion of transiting ion's position,20 makes it easy to rapidly
compute all conduction paths for a given ion in a material,
which is instrumental for understanding the nature of the
diffusion (1D, 2D, 3D) and rate-limiting diffusion events. The
method has been shown to be efficient for the prescreening of
conductors for cations such as Li+,31–34 Na+,35,36 Mg2+,37 and Zn2+

(ref. 38) for SSB. The approximations made to achieve high-
throughput screening inevitably limit the quantitative accu-
racy compared to DFT. For example, for metal cations con-
ducted ions, while trends in diffusion barriers agree well with
DFT, their values can differ on the order of 1 eV.20 Protons and
oxide ions (of interest to SOFC/SOEC) are more challenging, in
particular, as their interactions with the host are less ionic, and
the two-body approximation and the simple expression of eqn
(1) are less reliable.39

SoBV is oen used for xed crystal structures. Comparisons
of properties (site energies, diffusion paths, etc.) at any level of
theory are only meaningful if the structure is known with
sufficient accuracy. For materials with new, putative composi-
tions, optimal structures are unknown. It is desirable to have
sufficient force eld accuracy to nd the correct structure
directly with SoBV without engaging in much more expensive
DFT calculations or experiments. The ability to predict the
structure would facilitate usingmore accurate methods (such as
DFT) for energetic analysis, as the cost of optimization is then
saved. It is in principle possible to improve the accuracy of the
SoBV approximation by adjusting its parameters, for example
by making them depend on the composition or chemical envi-
ronment of the atom. While bij, D0,ij, R0,ij, Rcutoff or NC, and
charges still can be treated as tunable parameters and made
depend on the chemical environment (see e.g. ref. 40), it would
be at a cost of tempering with the basis of SoBV ideology
unless restrictions are imposed enforcing interrelations
between the parameters such as those indicated above. This
issue does not arise when tuning or parameterizing sf. When
the structure of a material is known, sf can be automatically set
to minimize the pressure, thus effectively tuning sf to the
structure (lattice constants).21 This value will in the following be
called sfauto. When prescreening for newmaterials with putative
compositions where the optimal (correct) structure is not
known, this approach in principle results in a non-optimal
value of sf (i.e. in a sfauto value optimal for a wrong structure).

In this study, we therefore aim to determine an optimal value
of the screening factor when the structure is not known, as
a function of composition. We use linear and neural network
(NN) models and show, on the examples of perovskite-41–43 and
spinel-type oxides44 which have been proposed as promising
solid-state ionic conductors, that this can noticeably improve
the ability of the SoBV approximation to model structures, in
particular new, putative crystal structures whose structural
parameters are yet unknown.We show that due to the smallness
of the training dataset, there is no improvement with a neural
© 2024 The Author(s). Published by the Royal Society of Chemistry
network over the linear regression in spite of the higher
expressive power of an NN. We employ a recently proposed
machine learning method (called in the following GPR-NN) that
is a hybrid between a neural network and kernel regression; in
particular, it avoids nonlinear parameter optimization that is
a cause of overtting. GPR-NN allows building optimal
nonlinear functions and controlling the inclusion of coupling
between the features,45 to analyze the importance of nonline-
arity and of coupling. We nd that while the quality of the
model is improved by including nonlinearity, the coupling is
relatively unimportant. Overall, GPR-NN allowed the most
accurate estimation of the optimal screening factor as a func-
tion of composition, enabling the prediction of structural
parameters of new ceramics with accuracy on the order of 1%.

2 Methods

We t sf as a function of other SoBV parameters that carry the
information about the chemical composition (bij, R0,ij, Rcutoff,ij,
ri, and NC, which thus form the feature space). These features
are available during SoBV calculations. We consider 115
perovskite-type oxides with a general formula ABO3 and 128
spinel-type oxides with a general formula AB2O4 where A and B
are cations. These crystal structures are shown in Fig. 1. The list
of all materials is given in the ESI.† These structures are taken
mostly from Materials Project46 and several (those not in
Materials Project) from the ICDD database.47 The structures
taken from ICDD were conrmed by DFT calculations in
Quantum Espresso48 (using PBE49 functional, PAW pseudopo-
tentials, and a plane wave cutoff of 35 Ry) i.e. a similar DFT
setup to that used byMaterials Project. These were the materials
of this type that we could nd in the databases and that also had
parameters available for them in SoBV (for this reason e.g.
actinides were not included).

Considering the relatively large dimensionality of the feature
space, the number of data points (number of structures) is
small.50 We, therefore, perform the following procedure as
shown in Fig. 2: from each real structure obtained from the
database called reference structure in the following, we form
structures with lattice vectors isotropically expanded or con-
tracted by 10%; these are called sample structures in the
following. A 10% strain is sufficient to cover the range of
possible lattice parameters of a given type of crystal structure
with different chemical compositions. sf is then set to values
from 0.55 to 0.75 at 0.0125 intervals and structure optimization
was performed in SoBV. The error Er – the difference between
the lattice constants (dened below) following SoBV optimi-
zation – is then collected resulting in a dataset of bij, R0,ij,
Rcutoff,ij, ri, NC, sf, and Er for each composition. In this way, the
number of data points is expanded severalfold. In the case of
perovskite-type oxides, SoBV optimization does not result in
any changes in fractional positions of atoms or distortions of
the rectilinearity of the unit cell, and Er is dened as the mean
relative error in lattice vectors a = b = c between a reference
structure obtained from the database and the optimized struc-
ture by SoBV (i.e. Er = (areference − aopt)/areference = (breference −
bopt)/breference = (creference − copt)/creference). In the case of spinel-
Digital Discovery, 2024, 3, 1967–1979 | 1969
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Fig. 1 Crystal structures of (a) perovskite (A – green, B – violet, O – red), (b) spinel (A – green, B – violet, O – red) oxides.
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type oxides, SoBV optimization results in small changes in the
fractional positions of atoms within the unit cell. We dened
the changes in fractional position per number of ions (N) as

Dsite ¼ 1=N
PN
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðDx2 þ Dy2 þ Dz2Þp
, where N is the number of

atoms in the cell and Dx, Dy, and Dz are errors in fractional
coordinates. Dsite was lower than 0.01 in most of the spinel-type
oxides, i.e. the error in structural parameters is mostly due to
the lattice constants. Therefore, Er dened above was also used
for optimizing crystal structures of the spinel-type oxides.

We dene a D = 11 dimensional vector of descriptors

x = (Er, R0,AO, bAO, NC,AO, Rcutoff,AO, rA, R0,BO, bBO, NC,BO,

Rcutoff,BO, rB) h (x1, x2, ., x11)

and ~x as a vector of all descriptors other than Er. The dataset of
(x, sf) values for all materials and all structure expansions/
contractions used for machine learning is provided in ESI.†
Ionic radii (which are coordination-dependent in SoBV) for the
coordination number of 6 were used in all cases. 80% of the
expanded sample data of x and sf randomly selected without
duplicating compositions for training and testing were used for
Fig. 2 The procedure of optimizing the screening factor.

1970 | Digital Discovery, 2024, 3, 1967–1979
the training of the following regression models, and the
remaining 20% for the testing. The features (x) are normalized
before tting (i.e. its average and standard deviation are set to
0 and 1, respectively).

We perform linear regressions using the “regress” function in
MATLAB (version R2021a of MATLAB was used in this work):

sf ¼
XD¼11

n¼1

anxn (8)

We also perform non-linear regression using a feed-forward
neural network (NN):51

sf = NN(x) (9)

The NN regressions are performed in MATLAB using
“trainlm” function. Levenberg–Marquardt algorithm52 was used
to train the NN. We considered different numbers of hidden
layers and neurons. “tansig” neuron activation function is used
in the following. Other neuron activation functions were tried
but resulted in no improvement (not shown). The estimated
optimal sf (sfest) was obtained from eqn (8)–(10) by setting Er =
© 2024 The Author(s). Published by the Royal Society of Chemistry
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0, i.e. sfopt = NN(0,~x). SoBV optimization of crystal structures
with expanded or contracted lattice was carried out using sfauto
and sfopt, and the Er was compared to evaluate the accuracy of
SoBV.

For the analysis of the relative importance of nonlinearity
and coupling among the features, we use the GPR-NN method
of Manzhos and Ihara.45 The reader is referred to ref. 45, 53 and
54 for more details and context; here, we only briey summarize
the key properties of the method relevant to the purpose of the
present work. The target function sf(x) is expressed as

sfðxÞ ¼
XN
n¼1

fnðwnxÞ ¼
XN
n¼1

fnðynðxÞÞ (10)

This is a rst-order additive model in (generally) redundant
coordinates y = Wx, where W is the matrix of coefficients. The
rows of W are dened as elements of a D-dimensional Sobol
sequence55 although other ways of setting W are possible.45 The
shapes of the functions fn are computed using the rst-order
additive GPR53,54,56–58 in y. That is, GPR of sf(y(x)) is performed

in y with an additive kernel Kðy; y0Þ ¼ PN
n¼1

kðyn; y0
nÞ. In this way,

all functions fn are computed simultaneously, in one linear step.
The shapes of the functions fn are optimal for given data and
given W in the least squares sense.56 The original coordinates
{xn} are also included in the set of {yn}. If only {xn} are included,
the method defaults to rst-order additive GPR.45,56,57 The
representation of eqn (10) is equivalent to a single hidden layer
NN with optimal and individual to each neuron activation
functions, and with weights xed by rules rather than opti-
mized. MatrixW is equivalent to thematrix of NN weights, while
biases are subsumed in the denition of fn. One can say that eqn
(10) is an NN in x and a 1st-order additive GPR in y. The method
has the advantage that because no nonlinear optimization is
Fig. 3 Error in structural parameters (Er) of (a and b) perovskite-type oxid
different screening factors (sf). Figures (a) and (c) are the results of optim
10%. Figures (b) and (d) are the results of optimizing crystal structures w

© 2024 The Author(s). Published by the Royal Society of Chemistry
done, it does not suffer from overtting as the number of
‘neurons’ N grows beyond optimal,45 combining the high
expressive power of an NN and the robustness of linear
regression (with nonlinear basis functions) which is GPR.59

In this work, we use an additive RBF kernel in y:

Kðy; y0Þ ¼ PN
n¼1

kðyn; y0
nÞ where kðyn; y0

nÞ ¼ exp

0
B@� ðyn � y

0
nÞ

2

2l2

1
CA.

The data are normalized so that an isotropic kernel is used with
a single length parameter l. In this work, we use this method to
probe the importance of coupling terms by testing different N.
In the limit of large N the model fully includes all coupling
among features, while in the limit y = x ˛ RD, no coupling is
included. On the other hand, the construction of optimal
shapes of fn in the method is used to study the importance of
nonlinearity. Similar to the case of an NN t, sfopt is computed
from the model of eqn (10) by setting Er = 0, i.e. sfopt = f(0,~x).

With all methods, the loss function minimized by the
regression was the SSE (sum of squared errors),

SSE ¼PM
i¼1

ðmodelðxðiÞÞ � sfðxðiÞÞÞ2, where {(x(i), sf(x(i)))}, i = 1,.,

M is the training set of size M.
3 Results and discussion
3.1 Machine learning the screening factor with linear
regression and neural networks

Fig. 3 shows the relationship between Er and sf. Er, namely the
error in the lattice parameter, increased with an increase in sf. A
larger sf makes the coulombic repulsion in BVSE stronger at
long range as per eqn (1). Because the stress in a given crystal
structure is to a signicant degree due to coulombic repulsion,
SoBV optimization with large sf resulted in an overestimated
lattice constant. The relationship between Er and sf was
es and (c and d) spinel-type oxides following SoftBV optimization with
izing crystal structures with lattice vectors isotropically contracted by
ith lattice vectors isotropically expanded by 10%.
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different for each composition but did not depend on the initial
lattice parameter. For instance, for two perovskite-type oxides of
BaCeO3 (orange squares) and LaGaO3 (green triangle), one
obtains Er = 0 with sf of about 0.60 and 0.65, respectively
(Fig. 3(a) and (b)). Similar results were also obtained in the case
of spinel-type oxides (i.e. MnCo2O4 (red squares) and ZnFe2O4

(yellow triangles)) as shown in Fig. 3(c) and (d). These results
indicate that there is only one sf minimizing Er for each
material and the optimal sf is material-dependent, which
suggests that an improvement can be achieved by making sf =
sf(x).

The linear and single-hidden layer NN regressions of sf for
perovskite- and spinel-type oxides were carried out 100 times
using different combinations of training and testing data. Fig. 4
shows the distributions of root mean square error (RMSE)
values of estimated sf from these regressions.
Fig. 4 Distributions of root mean square error (RMSE) of the screening fa
and box plots) data obtained by linear (LN) and neural network (NN) r
combinations of the training and testing data for (a) perovskite-type oxid

1972 | Digital Discovery, 2024, 3, 1967–1979
Table 1 summarizes the maximum, minimum, and median
RMSE and R2 values over the 100 runs. The RMSE for the
training data decreases with an increase in the number of nodes
for the NN regression, as expected, while the median RMSE for
the testing data was the lowest for the NN regressions with only
1–3 nodes. The results did not change when the number of the
hidden layers changed to 2–12. The NN regressions with 1–3
nodes show smaller median RMSE for both training and testing
data than the linear regression. Therefore, the non-linearity or
coupling effects present in an NN might improve the accuracy,
which is analyzed in Section 3.2, but the small number of data
makes it difficult.

The RMSE for the testing set could be decreased, especially
for the NN regression with a larger number of nodes, by
increasing the number of data using both the perovskite- and
spinel-type oxides data in a combined dataset. These results
ctor for training (filled circles and box plots) and testing (empty circles
egressions with 1 to 12 nonlinear nodes, for 100 runs with different
es, (b) spinel-type oxides, and (c) the combined dataset.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Maximum, minimum, and median root mean square errors (RMSE) and R2 values in the screening factor of linear and neural network
(NN) regressions. “N” is the number of nodes (neurons)

Methods

RMSE/R2 of training RMSE/R2 of testing

Maximum Minimum Median Maximum Minimum Median

Perovskite
Linear 0.032/0.83 0.025/0.73 0.031/0.75 0.049/0.89 0.024/0.56 0.03/0.76
NN, N = 1 0.024/0.90 0.019/0.84 0.023/0.86 0.036/0.93 0.016/0.71 0.024/0.85
NN, N = 2 0.023/0.95 0.014/0.86 0.02/0.89 40/0.93 0.017/0.00 0.029/0.80
NN, N = 3 0.021/0.97 0.011/0.88 0.017/0.92 24/0.95 0.014/0.00 0.029/0.79
NN, N = 4 0.018/0.97 0.010/0.91 0.014/0.95 2.5/0.94 0.015/0.01 0.036/0.71
NN, N = 6 0.013/0.99 0.006/0.95 0.009/0.98 38/0.91 0.018/0.00 0.051/0.60
NN, N = 9 0.007/1.00 0.003/0.99 0.005/0.99 12/0.85 0.026/0.00 0.088/0.34
NN, N = 12 0.004/1.00 0.002/0.99 0.003/1.00 6.2/0.76 0.040/0.00 0.14/0.17

Spinel
Linear 0.023/0.88 0.021/0.86 0.022/0.87 0.028/0.90 0.02/0.79 0.024/0.85
NN, N = 1 0.019/0.93 0.016/0.90 0.018/0.92 0.029/0.96 0.012/0.80 0.02/0.90
NN, N = 2 0.016/0.96 0.013/0.93 0.015/0.94 0.087/0.94 0.015/0.33 0.019/0.91
NN, N = 3 0.015/0.97 0.010/0.94 0.012/0.96 1.4/0.95 0.014/0.00 0.02/0.90
NN, N = 4 0.013/0.98 0.008/0.96 0.010/0.97 28/0.96 0.012/0.00 0.022/0.88
NN, N = 6 0.009/0.99 0.005/0.98 0.007/0.99 15/0.95 0.015/0.00 0.031/0.80
NN, N = 9 0.005/1.00 0.003/0.99 0.004/1.00 9.2/0.91 0.019/0.00 0.073/0.41
NN, N = 12 0.003/1.00 0.002/1.00 0.002/1.00 3.9/0.83 0.028/0.00 0.11/0.23

Perovskite + spinel
Linear 0.031/0.80 0.027/0.74 0.030/0.76 0.038/0.86 0.024/0.63 0.029/0.77
NN, N = 1 0.024/0.88 0.021/0.84 0.023/0.86 0.030/0.91 0.019/0.77 0.024/0.85
NN, N = 2 0.023/0.92 0.018/0.86 0.021/0.88 0.035/0.92 0.017/0.72 0.024/0.86
NN, N = 3 0.022/0.92 0.017/0.87 0.019/0.90 1.2/0.93 0.016/0.01 0.023/0.86
NN, N = 4 0.019/0.94 0.014/0.90 0.017/0.92 1.3/0.92 0.017/0.00 0.024/0.86
NN, N = 6 0.016/0.96 0.012/0.93 0.014/0.95 3.5/0.93 0.018/0.00 0.031/0.77
NN, N = 9 0.013/0.98 0.009/0.96 0.011/0.97 0.62/0.90 0.020/0.00 0.039/0.70
NN, N = 12 0.01/0.99 0.007/0.97 0.008/0.98 4.3/0.86 0.024/0.00 0.051/0.59
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show that a key issue is overtting due to the small number of
data points. Fig. 5 shows the distributions of the data for
selected pairs of parameters (among bij, R0,ij, Rcutoff,ij, ri, NC).
Even from two-dimensional projections that allow only
Fig. 5 Distributions of pairs of parameters ((a) rA and rB, (b) bAO and bBO
perovskite- (blue circles) and spinel-type (red triangles) oxides data.

© 2024 The Author(s). Published by the Royal Society of Chemistry
a limited insight into a multivariate distribution, one can
appreciate rather uneven and sparse sampling with data based
on individual crystal structure types. This result indicates that
the accuracy of SoBV can be improved by estimating sf as
, (c) R0,AO and R0,BO, (d) NC,AO and NC,BO, and (e) Rcut,AO and Rcut,BO) in
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Table 2 The mean absolute error (MAE) and the standard deviation
(STD) for the error of structure optimization (that is Er defined in
Methods section, dimensionless) of perovskite, spinel, and both oxides
using the automatically set screening factors in the SoftBV (“Auto”) and
estimated optimal screening factors by the linear, the neural network
(“NN”), and the GPR-NN methods trained on the combined data set of
the perovskite- and spinel-type oxides

Auto Linear NN (node = 1) GPR-NN

Perovskite oxides MAE 0.13 0.026 0.031 0.014
STD 0.066 0.038 0.044 0.024

Spinel oxides MAE 0.10 0.023 0.022 0.013
STD 0.032 0.024 0.026 0.026

Both oxides MAE 0.12 0.025 0.026 0.014
STD 0.053 0.032 0.036 0.025
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a function of SoBV parameters encoding composition if the
space of descriptors can be adequately sampled using data for
oxides of various compositions.

The crystal structures were optimized using each of the
average sfopt computed from each of the ve linear, NN, and GPR-
NN (shown in Section 3.2) regressionmodels that had the highest
R2 values among the 100 runs (Fig. 6). These models used both
perovskite- and spinel-type oxide data for training. The use of
sfopt improved the accuracy of structure optimization from using
sfauto. The mean absolute error (MAE) and the standard deviation
(STD) of the distributions of Er are summarized in Table 2.
Although an NN in principle has a higher expressive power and
should be able to make a better t, the MAE and STD for the
linear model were equal or even slightly better than the NN
model. This ultimately has to do with a small number of data and
associated overtting (see Fig. 4). Overall, there is no signicant
improvement in sf tting quality with NN vs. linear regression,
and the NN t does not lead to an improvement in the estimation
of the optimal sf and in the quality of structure optimization.
Fig. 6 The distribution of structure parameter errors of crystal
structures optimized using automatically set screening factors in the
SoftBV for each sample structure (“sf_auto”) and screening factors
estimated by the linear regression (“LN”), neural network with 1 node
(“NN_node1”), and the GPR-NN methods trained on the combined
data set of the perovskite- and spinel-type oxides, for (a) perovskite
(“prv”), (b) spinel (“spn”), and (c) both oxides.

1974 | Digital Discovery, 2024, 3, 1967–1979
While the accuracy has improved on average, the distribution of
Er with the linear or NN regression is relatively broad with Er for
some materials exceeding 0.1. The GPR-NN regressions
(described in the following section) have the highest accuracy for
optimizing the crystal structures with the narrowed distribution
of Er, with MAE = 0.014 and STD = 0.025.

Fig. 7 shows the relationship between GII obtained from the
optimized and reference structures. GII is an index for chemical
stability, e.g. GII < 0.1 is typically taken to mean that the
structure is stable, while GII > 0.2 is considered to be a warning
that the structure may be unstable.21 A better GII value should
be obtained when a better structure is used because the error of

GII is due to the error of sijðRijÞ ¼ exp
�
R0;ij � Rij

bij

�
as eqn (7), in

other words, due to the error in the distance between cations
and anions. GII values of optimized structures using sfauto are
larger than those of reference structures and do not show the
correlation of GII values of SoBV-optimized structures with
those of reference structures. On the other hand, there is
a correlation between the GII values of structures optimized
using sfopt and the reference structures, especially for
perovskite-type oxides. This result reects the improvement of
the accuracy of structure optimization with ML-estimated sf.
3.2 Analysis of the importance of nonlinearity and coupling
using the GPR-NN method

The NN results are somewhat unusual in that while there is
a slight improvement in the quality of sf prediction (judged by
the value of R2 over the test set and the range thereof for
different train-test splits) over linear regression, there is no
improvement in the quality of structure optimization vs. linear
regression, and the optimal NN appears to have a size of 1–3
neurons only, with the 2- or 3-neuron NN only insignicantly
outperforming a 1-neuron NN, with larger NNs showing clear
overtting. NN being a universal approximator, the training set
error can be made arbitrarily small, but the global quality of the
model, exemplied by the test set error, is ultimately limited by
the density of sampling. When sampling is sparse enough,
higher-order coupling terms may not be recoverable.54,58,60 That
the sampling is sparse in this case, and that this is a limiting
factor in utilizing the superior expressive power of an NN, is
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 GII of optimized and reference structures of (a) perovskite- and (b) spinel-type oxides. The crystal structures were optimized by using
automatically set screening factors in the SoftBV for each sample structure (“sf_auto”) and screening factors estimated by the linear regression
(“LN”), the neural network with 1 node (“NN_node1”), and the GPR-NNmethods trained on the combined data set of the perovskite- and spinel-
type oxides.

Fig. 8 Top left: correlation between target (“exact”) values of the screening factor and those predicted by an additive model with a kernel length
set to a large value l = 200, for training (blue) and test (red) data (some blue and red points visually overlap). The correlation coefficients between
the exact and predicted values for training and testing data are also shown. The following panels show the shapes of fi(xi) in the order of decaying
magnitude, with the magnitude (defined as var(fi)

1/2) shown on top of each plot.

© 2024 The Author(s). Published by the Royal Society of Chemistry Digital Discovery, 2024, 3, 1967–1979 | 1975
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clear from the above comparison of tting only the perovskite or
the spinel data separately or the combined dataset.

A NN performs non-linear operations on linear combina-
tions of inputs {xn} introducing both nonlinearity and coupling.
This is true even for a single-hidden neuron NN. We can sepa-
rate these two effects with the help of the GPR-NN method. We
rst perform simulations where y = x, i.e. an additive model in

x, sfðxÞ ¼ PN
n¼1

fnðxnÞ. We perform a two-dimensional hyper-

parameters scan of the length parameter l and the GPR noise
parameter s. At each (l, s), we perform 100 ts differing by
different random splits of training and test data (whereby 20
percent of materials are used for testing and 80 for training).
Note that when l becomes large (l [ 1 for data scaled on unit
cube), kernel resolution is lost61 and the component functions
fn(xn) become near-linear. This is illustrated in Fig. 8 for the case
of l = 200, log(s) = −3, where we show the shapes of fn in such
Fig. 9 Top left: correlation between target (“exact”) values of the screen
kernel length of l = 7, for training (blue) and test (red) data (some blue an
exact and predicted values for training and test data are also shown. T
magnitude, with the magnitude (defined as var(fi)

1/2) shown on top of ea

1976 | Digital Discovery, 2024, 3, 1967–1979
a limiting case as well as the correlation plots between the exact
(target) values of sf and those predicted by the model for
a representative run. In this case the average/min/max/standard
deviation (over 100 runs) of the training set R2 are 0.80/0.78/
0.84/0.02, and of the test set R2, 0.77/0.59/0.85/0.06, respec-
tively, – similar to traditional linear regression. The average/
min/max/standard deviation of the RMSE is 0.031/0.028/0.032/
0.001 for the training and 0.032/0.028/0.039/0.002 for the test
set, respectively.

The optimal hyperparameters were chosen as those mini-
mizing simultaneously the average test set R2 and its variance
(over multiple runs); they are l = 7 and log(s) = −3. With these
hyperparameters, the average/min/max/standard deviation
(over 100 runs) of the training set R2 are 0.89/0.88/0.92/0.01,
respectively, and of the test set R2, 0.85/0.71/0.93/0.05, respec-
tively. The average/min/max/standard deviation of the RMSE is
0.022/0.019/0.023/0.001 for the training and 0.024/0.017/0.038/
ing factor and those predicted by an additive model with an optimized
d red points visually overlap). The correlation coefficients between the
he following panels show the shapes of fi(xi) in the order of decaying
ch plot.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 10 Statistics of training and test set errors in sf and R2 values as a function of the number of coupling terms. The box shows a one-sigma
interval about the mean, and the whiskers showminimum and maximum values, over 100 runs differing by random selection of training and test
data.
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0.006 for the test set, respectively. This is a noticeable
improvement over linear regression and the NN. This model has
no coupling. The correlation plots between the exact (target)
values of sf and those predicted by the model as well as the
shapes of fn in this case are shown in Fig. 9 for a representative
run. They are highly nonlinear. Nonlinearity improves the
quality of the model and also inuences the relative importance
of variables: in both the linear and the nonlinear model, the
most important (by the magnitude of fn(xn)) variables are x1 (Er),
x4 (R0,AO), and x8 (rA). The least important is x10 (NC,AO) in the
non-linear model with the optimal l = 7 while it is x11 (NC,BO) in
the (practically) linear model achieved with l= 200. The order of
importance of variables with small magnitudes of fn(xn) may
differ; it is normal that the relative importance of features is
different for different methods.62,63

We now x l and s at their optimized values and test if
adding coupling terms further improves the model. The results
are summarized in Fig. 10. We do not observe any further
improvement due to the inclusion of coupling among the
features. The coupling terms are either unimportant or unre-
coverable due to the low density of sampling.

Finally, in Fig. 6, we show the distribution of structural
parameter errors achieved with the GPR-NN method (using
optimal hyperparameters). The method is clearly superior over
the linear regression and the NN in terms of the average error as
well as the width of the error distribution, which are listed in
Table 2. The optimal shapes of the nonlinear functions used
with each variable, and the absence of nonlinear parameter
optimization in GPR-NN allow capitalizing on the superior
expressive power of a nonlinear method while retaining the
robustness of linear regression.
4 Conclusions

In this study, we explored the possibility and extent of
improvement of the accuracy of the SoBV approximation by
© 2024 The Author(s). Published by the Royal Society of Chemistry
tting the screening factor as a function of descriptors of
chemical composition. We showed that it is the screening factor
that can be parameterized in this way without the danger of
tempering with the basis of SoBV ideology. The features that
we used are various parameters that are already available in
a SoBV calculation; that is, the screening factor as a function
of those features can in principle be implemented without
hardship. We rst used linear and neural network models and
showed, on the examples of perovskite- and spinel-type oxides
which have been proposed as promising solid-state ionic
conductors, that this can noticeably improve the ability of the
SoBV approximation to model structures, in particular new,
putative crystal structures whose structural parameters are yet
unknown.

We showed that the sampling density of the space of
descriptors is an important limiting factor in the possible
improvement in sf, which may even prevent one from using the
superior expressive power of nonlinear models. In this work,
this was palliated on one hand by combining data from
different crystal structures having structural similarity (perov-
skite and spinel oxides in this case) and on the other hand by
producing synthetic sample points from strained structures.
Only a slight improvement in the screening factor regression
was obtained with an NN over linear regression while no
improvement over linear regression was observed in the quality
of structure optimization with sf predicted by the NN model.

We then applied to this problem the recently developed GPR-
NNmethod that allows obtaining a superior expressive power of
a nonlinear approximation while avoiding nonlinear parameter
optimization during regression. The method is a hybrid
between an NN and kernel regression; it builds optimal shapes
of nonlinear basis functions (neuron activation functions) and
permits including coupling among features in a controlled way.
We analyzed the relative importance of nonlinearity and
coupling and found that while nonlinearity helps obtain a more
accurate model, coupling terms were not important or were
Digital Discovery, 2024, 3, 1967–1979 | 1977
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unrecoverable from the data. The sf predicted by GPR-NN
showed the best quality of structure optimization with SoBV
and a signicant improvement over linear and NN regressions.

As our tests on perovskites, spinels, and combined data
show, there is a degree of portability of the machine-learned
model to other crystal structures with similar coordination
environments of ions. The models are in principle not portable
to crystal structures with signicantly different coordination
environments simply because other parts of the feature vector x,
which are environment-dependent SoBV parameters, will be
different and unsampled. While this is a limitation, there is still
much value in exploring different compositions of particular
crystal symmetries, of which there is typically a nite number of
interest in particular applications.

Data availability

A list of all crystal structures with their database identiers as
well as the dataset used in machine learning are available in
ESI.† The GPR-NN code is available in ref. 45.
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13 A. B. Muñoz-Garćıa, A. M. Ritzmann, M. Pavone, J. A. Keith
and E. A. Carter, Acc. Chem. Res., 2014, 47, 3340–3348.

14 M. Coduri, M. Karlsson and L. Malavasi, J. Mater. Chem. A,
2022, 10, 5082–5110.

15 R. Li, R. Deng, Z. Wang, Y. Wang, G. Huang, J. Wang and
F. Pan, J. Solid State Electrochem., 2024, 28, 317.

16 J. Lee, T. Lee, K. Char, K. J. Kim and J. W. Choi, Acc. Chem.
Res., 2021, 54, 3390–3402.

17 Q. Ma and F. Tietz, ChemElectroChem, 2020, 7, 2693–2713.
18 P. Hohenberg and W. Kohn, Phys. Rev., 1964, 136, B864–

B871.
19 W. Kohn and L. J. Sham, Phys. Rev., 1965, 140, A1133–A1138.
20 L. L. Wong, K. C. Phuah, R. Dai, H. Chen, W. S. Chew and

S. Adams, Chem. Mater., 2021, 33, 625–641.
21 H. Chen, L. L. Wong and S. Adams, Acta Crystallogr., Sect. B:

Struct. Sci., Cryst. Eng. Mater., 2019, 75, 18–33.
22 H. Chen and S. Adams, IUCrJ, 2017, 4, 614–625.
23 I. D. Brown, Chem. Rev., 2009, 109, 6858–6919.
24 R. G. Parr and R. G. Pearson, J. Am. Chem. Soc., 1983, 105,

7512–7516.
25 S. Adams, in Bond Valences, ed. I. D. Brown and K. R.

Poeppelmeier, Springer, Berlin, Heidelberg, 2014, pp. 91–
128.

26 S. Adams and R. P. Rao, Phys. Chem. Chem. Phys., 2009, 11,
3210–3216.

27 A. K. Rappe, C. J. Casewit, K. S. Colwell, W. A. I. Goddard and
W. M. Skiff, J. Am. Chem. Soc., 1992, 114, 10024–10035.

28 W. H. Zachariasen, J. Less-Common Met., 1978, 62, 1–7.
29 R. D. Shannon, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr.,

Theor. Gen. Crystallogr., 1976, 32, 751–767.
© 2024 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00152d


Paper Digital Discovery

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

6 
A

ug
us

t 2
02

4.
 D

ow
nl

oa
de

d 
on

 7
/2

3/
20

25
 1

0:
59

:0
1 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
30 R. D. Shannon and C. T. Prewitt, Acta Crystallogr., Sect. B:
Struct. Crystallogr. Cryst. Chem., 1969, 25, 925–946.

31 M. M. Obeid, J. Liu, Y. Shen and Q. Sun, Chem. Mater., 2023,
35, 3256–3264.

32 K. M. Rießbeck, M. Seibald, S. Schwarzmüller, D. Baumann
and H. Huppertz, Eur. J. Inorg. Chem., 2023, 26, e202300304.

33 Z. Deng, D. Chen, M. Ou, Y. Zhang, J. Xu, D. Ni, Z. Ji, J. Han,
Y. Sun, S. Li, C. Ouyang and Z. Wang, Adv. Energy Mater.,
2023, 13, 2300695.

34 Y.-C. Yin, J.-T. Yang, J.-D. Luo, G.-X. Lu, Z. Huang, J.-P. Wang,
P. Li, F. Li, Y.-C. Wu, T. Tian, Y.-F. Meng, H.-S. Mo,
Y.-H. Song, J.-N. Yang, L.-Z. Feng, T. Ma, W. Wen, K. Gong,
L.-J. Wang, H.-X. Ju, Y. Xiao, Z. Li, X. Tao and H.-B. Yao,
Nature, 2023, 616, 77–83.

35 P. Naskar, S. Mondal, B. Biswas, S. Laha and A. Banerjee,
Sustainable Energy Fuels, 2023, 7, 4189–4201.

36 Y. Okada, T. Kimura, K. Motohashi, A. Sakuda and
A. Hayashi, Electrochemistry, 2023, 91, 077009.

37 Y. Nishitani, S. Adams, K. Ichikawa and T. Tsujita, Solid State
Ionics, 2018, 315, 111–115.

38 Y. A. Morkhova, M. Rothenberger, T. Leisegang, S. Adams,
V. A. Blatov and A. A. Kabanov, J. Phys. Chem. C, 2021, 125,
17590–17599.

39 Y. Pu, R. Dai and S. Adams, Phys. Status Solidi A, 2021, 218,
2100318.

40 R. J. Morelock, Z. J. L. Bare and C. B. Musgrave, J. Chem.
Theory Comput., 2022, 18, 3257–3267.

41 J. Richter, P. Holtappels, T. Graule, T. Nakamura and
L. J. Gauckler, Monatsh. Chem., 2009, 140, 985–999.

42 K. Karuppiah and A. M. Ashok, Nanomater. Energy, 2019, 8,
51–58.

43 X. Li and M. Ihara, J. Electrochem. Soc., 2015, 162, F927.
44 A. Manthiram, Nat. Commun., 2020, 11, 1550.
45 S. Manzhos and M. Ihara, J. Phys. Chem. A, 2023, 127, 7823–

7835.
46 A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards,

S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder and
K. A. Persson, APL Mater., 2013, 1, 011002.

47 S. Gates-Rector and T. Blanton, Powder Diffr., 2019, 34, 352–
360.
© 2024 The Author(s). Published by the Royal Society of Chemistry
48 P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car,
C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni,
I. Dabo, A. D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi,
R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj,
M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri,
R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto,
C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen,
A. Smogunov, P. Umari and R. M. Wentzcovitch, J. Phys.:
Condens. Matter, 2009, 21, 395502.

49 J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett.,
1996, 77, 3865–3868.

50 S. Manzhos, S. Tsuda and M. Ihara, Phys. Chem. Chem. Phys.,
2023, 25, 1546–1555.

51 G. Montavon, G. B. Orr and K.-R. Mueller, Neural Networks:
Tricks of the Trade, Springer, Berlin Heidelberg, 2nd edn,
2012.

52 W. H. Press, B. P. Flannery, S. A. Teukolsky and
W. T. Vetterling, Numerical Recipes in C: The Art of Scientic
Computing, Cambridge University Press, Cambridge ; New
York, 2nd edn, 1992.

53 S. Manzhos andM. Ihara, Artif. Intell. Chem., 2023, 1, 100013.
54 S. Manzhos, T. Carrington and M. Ihara, Artif. Intell. Chem.,

2023, 1, 100008.
55 I. M. Sobol’, USSR Comput. Math. Math. Phys., 1967, 7, 86–

112.
56 S. Manzhos, E. Sasaki and M. Ihara, Mach. Learn.: Sci.

Technol., 2022, 3, 01LT02.
57 O. Ren, M. A. Boussaidi, D. Voytsekhovsky, M. Ihara and

S. Manzhos, Comput. Phys. Commun., 2022, 271, 108220.
58 M. A. Boussaidi, O. Ren, D. Voytsekhovsky and S. Manzhos, J.

Phys. Chem. A, 2020, 124, 7598–7607.
59 C. M. Bishop, Pattern Recognition and Machine Learning,

Springer, Singapore, 2006.
60 S. Manzhos and T. Carrington, J. Chem. Phys., 2006, 125,

084109.
61 S. Manzhos and M. Ihara, J. Chem. Phys., 2024, 160, 021101.
62 M. Nukunudompanich, H. Yoon, L. Hyojae, K. Kameda,

M. Ihara and S. Manzhos, MRS Adv., 2024, 9, 857–862.
63 J. Im, S. Lee, T.-W. Ko, H. W. Kim, Y. Hyon and H. Chang, npj

Comput. Mater., 2019, 5, 1–8.
Digital Discovery, 2024, 3, 1967–1979 | 1979

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00152d

	Machine learning the screening factor in the soft bond valence approach for rapid crystal structure estimationElectronic supplementary information (ES...
	Machine learning the screening factor in the soft bond valence approach for rapid crystal structure estimationElectronic supplementary information (ES...
	Machine learning the screening factor in the soft bond valence approach for rapid crystal structure estimationElectronic supplementary information (ES...
	Machine learning the screening factor in the soft bond valence approach for rapid crystal structure estimationElectronic supplementary information (ES...
	Machine learning the screening factor in the soft bond valence approach for rapid crystal structure estimationElectronic supplementary information (ES...
	Machine learning the screening factor in the soft bond valence approach for rapid crystal structure estimationElectronic supplementary information (ES...

	Machine learning the screening factor in the soft bond valence approach for rapid crystal structure estimationElectronic supplementary information (ES...
	Machine learning the screening factor in the soft bond valence approach for rapid crystal structure estimationElectronic supplementary information (ES...
	Machine learning the screening factor in the soft bond valence approach for rapid crystal structure estimationElectronic supplementary information (ES...
	Machine learning the screening factor in the soft bond valence approach for rapid crystal structure estimationElectronic supplementary information (ES...
	Machine learning the screening factor in the soft bond valence approach for rapid crystal structure estimationElectronic supplementary information (ES...




