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We describe a new tool for the efficient management of computational chemistry. Digichem is a program

that automates and simplifies nearly the entire computational pipeline, including large-scale batch

submission of calculations, analysis and results parsing, the generation of 3D density plots and 2D graphs

of calculation data, storage and retrieval of calculation results to a database, and automated handling of

multi-step jobs. The program is designed to reduce the tedium and likelihood of human error for

researchers of all skill-levels but is particularly targeted towards novice users who otherwise may find the

barrier to entry to computational chemistry unnecessarily high. To date, this program has been used to

successfully run and analyse over 50 000 individual calculations, evidencing its usefulness and utility. The

Digichem program is presently released under a free-to-use license, and components of the Digichem

system are additionally available under an open-source license.
Introduction

Since its inception in the 1920s, computational chemistry has
had a revolutionary impact on the way chemists perform
research.1 Once limited to describing the bonding interactions
of the hydrogen molecule,2 modern computational chemistry
can accurately predict a multitude of molecular properties for
systems containing hundreds or thousands of atoms,3–6

including molecular orbitals and their energies, molecular
vibrations, electronic excited states, transition states, nuclear
magnetic resonance (NMR) shielding and coupling constants,
and reaction pathways. Much of this explosion in scale was
driven by the seminal works of Hohenberg, Kohn, and Sham,7,8

building upon the works of many others,9–12 in developing the
fast but accurate methodology that is known as density func-
tional theory (DFT). Today, a plethora of computational models
are available to the theoretician. This not only includes various
avours of DFT, including the original local-density approxi-
mation functionals, the nowadays ubiquitous hybrid func-
tionals such as B3LYP13–16 and PBE0,17–19 and the modern
double-hybrid functionals of Truhlar,20 Grimme21 and others,
but also post Hartree-Fock (HF) methods, such as Møller–Ples-
set perturbation theory22,23 and coupled cluster theory.24–27 In
the latter case, the popularity of these post-HF wavefunction
based methods has been greatly accelerated by time-saving
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approximations, such as the resolution of the identity (RI)
approximation,28–34 and the related chain of sphere exchange
algorithm (COSX),35,36 permitting their application to larger
systems than has been possible previously. These develop-
ments, amongst others, have led to computational chemistry
being routinely used to understand natural phenomena that are
otherwise inscrutable, and to predict the properties of mole-
cules, either as a screening tool to help guide synthetic efforts,
or to provide additional evidence for synthetic pathways or
molecular properties.

Over its lifetime, the accuracy, speed, and breadth of prob-
lems that can be addressed by computational chemistry has
been steadily expanded. However, comparatively little has been
done to improve the usability, accessibility, or productivity of
computational chemistry. Most computational tasks are still too
demanding in terms of memory, hard-drive space, and central-
processing unit (CPU) cores to be performed on a personal
computer and completed in a reasonable amount of time.
Instead, most computational chemistry is relegated to distrib-
uted, remote super-computing clusters. These clusters invari-
ably operate without a graphical user interface, forcing the user
to interact solely via the command line. For experienced
computing users, this setup enables faster and more efficient
workows because of its inherent support for scripting, but for
many non-expert users the opposite is true, and the lack of
a familiar interface can make even basic computing tasks, such
as opening a le, arduous. Further, solving a computational
chemistry problem rarely involves executing only a single
program. Instead, it typically consists of several programs
operating in sequence, which together make-up a pipeline, each
program taking the output from the last as input to the next.
The core of this pipeline is the computational chemistry
program, or engine, which solves the computational chemistry
problem itself, but other steps are equally important in order to
Digital Discovery, 2024, 3, 1695–1713 | 1695
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correctly set up the computing environment and analyse the
results (Fig. 1). These steps may include, but are not limited to:
(1) drawing of the molecules/systems of interest; (2) choice of
computational parameters (level of theory, CPU/memory usage,
molecular properties of interest, etc.); (3) uploading of the
molecule les to the cluster where the calculations are per-
formed; (4) interfacing to the cluster queuing system; (5)
running the computational chemistry engine; (6) regular
monitoring to determine if the calculation has completed; (7)
analysis of output les to determine if the calculation succeeded
correctly (for example, checking for convergence of the wave-
function); (8) downloading of the completed calculation results;
(9) extraction of results from output les; (10) optional post-
processing of results, such as the generation of orbital density
plots; (11) collation and further processing/analysis.

This pipeline is complex and difficult to learn because it is
made up of many different individual programs, and the user
must learn how to use all of these programs correctly before any
results can be obtained. Complicating matters is that most of
the setup is performed using text les, with little-to-no valida-
tion, and error reporting varies greatly in quality between the
different programs. Further, it is normally necessary to perform
the pipeline multiple times for each molecule because the
properties of interest to the chemist (e.g., HOMO–LUMO gap)
are dependent on the correct molecular geometry being ob-
tained rst, and the geometry optimisation calculation which
provides this must normally be run separately. The process
must then be repeated again for eachmolecule in the study, and
so large computational studies can quickly swell to thousands
of individual calculations.

Together, these problems place an enormous learning
burden on the would-be computational chemist and make the
eld challenging to break into. Even for more experienced
users, the daily process of performing computations can be
tedious, time consuming and error prone, because so much of
the process needs to be curated manually. Many computational
chemists will know the anguish of discovering a mistake in an
input le only aer the calculation has returned with useless
data, wasting days of CPU time and demanding the entire
process be started again. Even when performed correctly, this
process is inefficient. Many parts of the pipeline, most notice-
ably between separate calculation steps, require manual inter-
vention by the chemist to set up the next stage. This results in
Fig. 1 Flow-diagram of an example of the quantum chemistry pipelin
chemistry engine, and red to analysis.

1696 | Digital Discovery, 2024, 3, 1695–1713
the overall execution time being limited not by the speed of the
computer, but by how attentive the user is in checking the
calculation progress. For computational screens involving many
molecules, the inefficiencies are multiplied because only one
molecule can be prepared by the user at a time. For very large
computational projects, this essentially mandates that the
scientist writes their own code to help automate the process, but
this is not a skill that is accessible to all, nor one that is
necessarily linked to scientic prociency.
Existing solutions

Many researchers use computational chemistry as a tool to
support their experimental research, rather than working full
time in the eld itself. In these studies, the number of
computations is typically lower, and so the impact of the inef-
ciencies of the computational chemistry pipeline is lessened.
In these cases, many scientists will choose to accept the status
quo. For researchers who are unable to overcome the learning
barrier themselves, they may instead be able to outsource
computational tasks to collaborators, thus relieving themselves
personally of the burden. For scientists looking to conduct more
complex studies however, or who do not yet have a well-
established network of collaborators to rely upon, this situa-
tion is not tenable. In these cases, it is common for the
researcher to develop programs or scripts to assist them in
managing the pipeline. In the simplest case, a group may share
a set of standardised input templates, which each researcher
then modies to suit their needs. In this way, the need to write
the whole input le from scratch is removed. More advanced
programs may automatically merge parts of the input le
together, for example to combine a standardised section spec-
ifying the method of the calculation with a customizable section
containing the geometry for each molecule. For large-scale
computational screens, this sort of automation is near-
essential because of the number of les that need to be
prepared. Sometimes, these in-house developed codes will
mature to the point where they will be shared with other
researchers, but in many cases they will only be available to
members of the same research group or close collaborators.
This results in a large duplication of effort because multiple
researchers are attempting to solve the same problem. The
generalizability of the scripts can also be an issue, and they may
e. Green tasks relate to setup, blue to executing the computational

© 2024 The Author(s). Published by the Royal Society of Chemistry
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need to be substantially modied to address a new problem.
This demands a signicant investment of time at the start of
each new project. While human error should be reduced
because of the automation they offer, care needs to be taken in
modifying these programs, because any errors that are intro-
duced can propagate to many calculations. Finally, the quality
of these programs depends on how much time the researcher
can dedicate to maintaining them, and this is not always in
abundance.

Alternatively, or in addition, researchers can use an existing
code or product. As examples, CalcUS,37 WebMO,38 Chem-
Compute39 and MolCalc40 are all web-based, calculation
submission platforms. They provide tools to draw and/or
upload molecular structures, choose calculation options, and
submit a calculation to a number of backend computational
chemistry programs. They also offer common analysis options,
such as the parsing of molecular orbital energies, the plotting of
molecular orbitals and the visualization of vibrational modes,
although the exact feature set differs between each program.
They all interface to a queuing system, either coming bundled
with an internal queuing manager (CalcUS) or interfacing to
external programs, such as SLURM41 (WebMO). CalcUS and
WebMO are targeted towards academic research, while Chem-
Compute and MolCalc are designed for undergraduate
teaching. CalcUS and MolCalc are free and open-source so-
ware, while ChemCompute is offered as a free-to-use service
only, and WebMO is commercial, although it does offer a free
basic version with a reduced feature set. Winmostar42 is
a similar calculation submission platform, but is designed to be
run on the user's desktop rather than in a web-browser, and is
also commercial. Maestro,43 Spartan,44 TMoleX45 and Gauss-
View46 are graphical user-interfaces (GUIs) to the computational
engines Jaguar,47 Q-Chem,48 Turbomole,49 and Gaussian,50

respectively, and each is specic to its own engine. Maestro is
typically distributed as part of the commercial Schrodinger
platform, along with Jaguar, which, according to the authors,43

is targeted primarily towards researchers in drug discovery.
Spartan is sold as a standalone product, with Q-Chem bundled
inside of it, while GaussView is sold as an addon for Gaussian,
and TMoleX is included in the purchase of Turbomole. All four
offer common analysis features, such as parsing of molecular
orbital energies, vibrational frequencies, and excited states,
along with more advanced functionality such as the plotting of
molecular orbital densities. They differ somewhat in their
support for submitting calculations. Both GaussView and
TMoleX can either write input les to the hard drive, or call the
underlying engine directly, if installed on the same machine.
TMoleX additionally supports calling remote installations of
Turbomole. Spartan and Maestro, on the other hand, are
designed to perform the calculation internally, without calling
an external engine, although both can additionally interface to
remote installations. Molden,51 Gabedit52 and Avogadro53 are
more general tools and interface to a number of backend
programs. They offer the usual analysis functions such as
molecular orbital plotting, as well as input le creation tools,
but do not manage the running of the calculation itself. There
are also a number of libraries and support tools available that
© 2024 The Author(s). Published by the Royal Society of Chemistry
the intrepid computational chemist can incorporate into their
own scripts and programs. Open Babel54,55 is a tool for the
interconversion of chemistry le formats, while cclib56,57

provides parsing of calculation output. Both are available as
a python application-programming interface (API) and
a command-line tool. RDKit,58 CDK59–62 and ASE63 are three
extensive libraries for performing computational chemistry,
with RDKit and CDK focusing on analysis and post-processing,
and ASE63,64 on performing atomistic simulations. They are
mainly accessed via an API, but RDKit and ASE also offer
a number of standalone programs. Finally, AQME65 is a collec-
tion of workows designed to automate various repetitive
computational chemistry tasks.

Despite the plethora of programs and libraries that are
available, a complete single solution is not readily available.
Many of the codes that are described above offer excellent
support for either analysis or submission management, but
none offers sufficient support for both for it to be used as
a standalone tool. The user must still navigate multiple
different programs in order to manage the complete pipeline. In
particular, none of the tools that we have explored offer
comprehensive support for large-scale computational screens,
where the number of individual computations may reach the
thousands, and in these cases the scientist is still expected to
develop their own scripts. Many of the programs that offer
a more complete set of tools may also be too expensive for
a subset of researchers or exist only as programming libraries
and cannot be used without the scientist having coding expe-
rience. To address these problems, we have developed Dig-
ichem, a complete computational management tool suitable for
computational chemists of all skill-levels, but particularly
directed at novice users, that we will now describe in more
detail.

Program scope

Computational chemistry is a broad term. Included in this
denition is the study of both molecular and periodic (i.e.,
crystalline) systems, using techniques such as quantum chem-
istry (QC), molecular mechanics (MM), molecular dynamics
(MD), mixed QC/MM methods,66 Monte Carlo67 simulations
and, increasingly, machine learning (ML). While some concepts
are common to multiple different branches of computational
chemistry, the way in which each type of calculation is per-
formed, and the results obtained, can differ substantially. In
Digichem, we have chosen to focus on the application of
quantum chemistry to molecular systems. This includes
common wavefunction methods (HF, MP, CC) as well as DFT,
using atomic-orbital type basis sets. We do not explicitly include
or exclude certain methods (e.g., different functionals), but
rather interface with the functionality that is already presented
in each computational engine. Currently, the program supports
interfacing with the Gaussian,50,68 Turbomole,69 and ORCA70

programs. All common molecular calculations are supported,
including single-point energies, geometry optimisations
(including of excited states), vibrational frequencies, excited
states (via both linear-response type methods71,72 and DSCF73 for
Digital Discovery, 2024, 3, 1695–1713 | 1697
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the rst triplet state), and nuclear magnetic resonance chemical
shis and coupling constants. The exact feature set supported
varies from program to program, and naturally depends on the
functionality of the underlying computational engine. The
program does not currently support calculations involving
multiple structures, most noticeably transition state (saddle
point) type calculations, but we look forward to incorporating
these in the future.

General design and program flow

Digichem is a python program that runs directly on the
computational server. It is designed to entirely replace (or
abstract) the manual process with a single interface, reducing
the steps the user must undertake to the minimum possible
(Fig. 2).

Each calculation conceptually begins with the scientist
choosing a number of molecules and some properties to study,
and this is true for both Digichem and the manual process.
However, unlike the manual process, Digichem does not limit
the user to one type of input le (traditionally this would be the
le-type expected by the computational engine) so the user can
use whatever molecular sketching soware they prefer. The
computational parameters, which normally are included with
the molecular geometry in the same le, are also stored sepa-
rately in a program-agnostic format, or they can be later chosen
from an internal library (see below). The user then uploads their
chosen molecules to the server and runs the digichem
command. All the chosen molecules are submitted simulta-
neously with one command, and the computation for each
molecule is run in parallel. For each molecule, Digichem will
create an appropriate folder structure (one folder per molecule,
one sub-folder per calculation) and create the necessary input
les for both the calculation program and resource manager,
based on the calculation options the user chose earlier. Dig-
ichem will then run the calculation program, and simulta-
neously log the program's resource usage (CPU load, memory,
le-space, etc.), which can be useful information for bench-
marking or troubleshooting. Once complete, Digichem parses
the output le to extract the calculation results and to deter-
mine whether the calculation completed without error, which is
based on a number of criteria (see below). Assuming the
calculation was successfully completed, Digichem will then
perform any post-processing tasks (e.g., converting Gaussian
checkpoint les (.chk) to their formatted variant (.fchk)), render
any density plots, draw any 2D graphs, and write the numerical
results to comma-separated value (CSV) les. The raw output
les from the calculation are also preserved, allowing the user to
perform their own custom post-processing if they wish. All the
Fig. 2 Flow-diagram of the Digichem pipeline. Green tasks relate to set

1698 | Digital Discovery, 2024, 3, 1695–1713
processed data are then compiled into a single PDF report for
the user to read later. Finally, if any additional calculation types
were requested, Digichem will take the output geometry and
repeat the entire process for the next calculation type, and so-on
until all requested calculations have been performed.

Digichem is split into distinct sub-modules to handle each
part of the calculation pipeline. All the sub-modules are
accessed from a single command on the command-line, which
is digichem, followed by a keyword to identify the sub-module.
Each of the sub-modules can be controlled through
a command-line interface, which is quicker for power-users,
while the most important sub-modules also support a graph-
ical interactive interface powered by the Urwid library,74 which
can be accessed by specifying the ‘-I’ (interactive) option aer
the sub-module name.

The interactive interface can also be launched directly by
specifying the ‘digichem interactive’ command (Fig. 3), from
which all major facets of the program can be accessed. For
novice users, this is the only command they are required to
learn. The graphical interface formats text and other non-
alphanumeric characters, such as the Unicode box drawing
characters,75 to appear like graphical widgets such as buttons,
checkboxes, text-entry elds, and scrollable windows. These
interactive elements are more familiar to users of traditional
GUIs than the opaque command-line. Because the library
powering this interface only uses the functionality already
available in the text console,74 this interface does not require
a full graphical soware stack (e.g., X-server) on the remote
cluster. All access to Digichem is provided via the secure-shell
(SSH) protocol, which is already the default way users interact
with their calculation servers, and it is therefore equally acces-
sible from client machines running Windows, MacOS, or Linux.
Digichem does not require any rewall ports to be opened,
except for SSH port 22, which is already required to provide
access to the cluster, in contrast to web-server designs.37,38,40 The
currently supported sub-modules are: digichem submit, for
calculation submission; digichem convert, for managing input
data types, digichem result, for parsing and analysing
completed calculation results; digichem report, for generating
portable document format (PDF) reports of completed results;
digichem image, for generating graphical data from completed
calculations; and digichem database, for managing historical
calculation data.

Installation

Although written primarily in the python programming
language, Digichem is distributed as a self-contained binary
produced by the PyInstaller program.76 This ‘frozen’ package
up, blue to executing the computational engine, and red to analysis.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Digichem main menu.
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contains all of the dependencies required for Digichem to run,
including the Python interpreter itself. This type of distribution
has the advantage that the end user doesn't need to install any
other soware or Python packages, greatly streamlining the
installation process. The only soware that Digichem depends
upon that is not provided are the computational engines
themselves. The Digichem packages are currently compiled on
three different versions of the CentOS operating system (7.9,
8.5, and Stream-8), which in our experience are by far the most
common operating systems used on computational clusters at
present. Other Linux distributions are not explicitly tested but
should also be supported so long as they are no older than
CentOS-7.9, which was last released in 2020 and has now
reached end-of-life. We will continue to update our list of target
operating systems as usage patterns change.

For the end-user, the installation process consists of only
four steps:

(1) Download the most recent version of Digichem from our
Github repository.77 The program can either be downloaded
directly onto the computational server (using wget), or down-
loaded rst to the user's personal computer and then uploaded
to the server using the secure copy protocol (SCP) or le-transfer
protocol (FTP).

(2) Extract the archive using the ‘tar’ command.
(3) Run the included install script to install the necessary

symbolic links.
(4) Run the included setup script to discover the available

server queues and computational engines.
The installation procedure is further explained in a detailed,

step-by-step fashion within our user documentation.78

Depending on the end-user's needs, Digichem can either be
installed personally (i.e., only for the current user), which does
not require server admin privileges or super-user access, or to
a shared location in which a single Digichem installation can
© 2024 The Author(s). Published by the Royal Society of Chemistry
serve multiple users on the same server. We believe we have
simplied the installation procedure as much as possible
considering the lack of a graphical user interface on the
computational servers. For users who have had any prior
experience working with the secure-shell protocol (SSH, the
standard method users interact with computational servers),
the steps should be familiar and easy to follow. However, we
also acknowledge for complete novices, who may have never
used a command line before, even these steps may be over-
whelming. We intend to address this shortcoming in a future
version by providing a fully graphical, automated installation
procedure, should there prove to be sufficient demand.
Calculation submission
Input les

In most computational engines, the molecular geometry and
the calculation options (the method) are combined into a single
input le, but in Digichem we made the conscious decision to
separate them. This makes it easy to reuse a computational
methodology across multiple molecules, as is required in
a large-scale computational screen, and to repeat a calculation
in the future with a different structure. Both the method and
coordinate les are written in the non-binary YAML format,79

which can be edited using any text editor and is more intuitive
than many of the calculation engine native formats. In addition
to the molecular geometry, the coordinate le also species the
overall charge and spin multiplicity of the system, something
which is missing from many popular cheminformatics formats
(XYZ, for example), and this is preserved across Digichem
calculations. Both les are calculation engine independent,
which means that any geometry or method le is compatible
with any of the calculation engines that Digichem supports, so
long as the chosen calculation options are supported by the
Digital Discovery, 2024, 3, 1695–1713 | 1699
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underlying calculating engine (Fig. S5†). To improve interop-
erability, we have also made efforts to standardize calculation
options across different engines, for example supporting both
PBE0 and the Gaussian specic PBE1PBE as names for this
popular hybrid functional.17,19Digichem does not currently offer
a 3D molecule builder, because this is not possible within the
connes of a terminal interface, but instead supports all of the
common cheminformatics le formats. These are automatically
converted to the internal Digichem format, using either the
external obabel program54 or the internal Digichem parser,
permitting the user to use whichever 3D sketching soware they
prefer. A full description of the supported le formats in avail-
able in Table S4.† Files can also be manually interconverted
with the digichem convert sub-module.
The digichem submit command

Submission in Digichem is achieved using the digichem
submit sub-module. Any number of coordinate and/or method
les can be specied at once. Each coordinate le will spawn
a calculation to be run in parallel with the other coordinate
les, while each method will be queued up to be performed in
series using the output geometry from the previous calculation
step (Fig. 4). Once submitted, all the selected calculations
will be started automatically, and no further interaction by
the user is required. Digichem currently supports the
Gaussian,50,68 Orca70 and Turbomole49 programs, and can
handle submitting to different programs one aer another.
This process can be repeated near-innitely and is limited only
by the resources available on the underlying cluster. In this
way, computational screens of any size can be handled in an
identical manner. Parallel calculation submission and
resource management is handled by external queuing so-
ware, and Digichem currently supports both SLURM41 and
PBS.80 Options to control shared resources, such as the
amount of memory, number of parallel CPUs, and maximum
job execution time, can all be congured as part of the method
le. Digichem has options to ensure that the resources
requested by the calculation, such as the amount of memory,
do not exceed those requested from the scheduler.
Submission with the interactive interface

The digichem submit sub-module greatly simplies the
submission process for intermediate and advanced users, but
for novice users the requirement to use the command-line and
to write method les by hand is not ideal. For this scenario, the
Fig. 4 Example submission process with digichem submit. In each case,
calculation options (in the case of the Gaussian .com file) are ignored.

1700 | Digital Discovery, 2024, 3, 1695–1713
interactive submission interface is more suitable, which can be
accessed using the digichem submit -I command (Fig. 5), or
from the main menu.

From this screen, the user can choose all the parameters of
the calculation without using the command-line or generating
the les manually. The starting geometries can be selected from
a le-picker type interface (Fig. S6a†), similar to how les are
selected in any commonly used GUI application, and the charge
and multiplicity can be adjusted for each using text elds. The
empirical formula of each molecule is also displayed to permit
the user to check that the correct structure has been loaded. The
calculation methods, meanwhile, can be selected from one of
the approximately 240 000 pre-built calculations stored in Dig-
ichem's internal library, which cover the calculations of opti-
mised geometries, vibrational frequencies, single-point
energies and gradients, excited states, and NMR properties
(Fig. S6c and d†). Multiple calculation methods can be chosen,
and each will be performed in series, and the interface provides
buttons to re-order the methods to ensure they are performed in
the correct sequence. Each calculation method is associated
with a unique numerical identier (ID) consisting of three parts
separated by a forward-slash, which in order correspond to: (1)
the SLURM/PBS queue, (2) the calculation engine, and (3) the
calculation itself. For example, the optimisation calculation
shown in Fig. 5 has the unique code 1/4/143674. These calcu-
lation codes, if known in advance, can be used to quickly select
a calculation from the internal library without navigating the
interactive hierarchy, and can be specied on the command line
to further speed up the submission process for advanced users.
The library provides options for the most popular DFT func-
tionals, including PBE0 17,19 and B3LYP,13–16 as well as more
advanced methods such as Møller–Plesset and coupled-cluster
theory, a variety of common solvents and the most common
basis sets in the Pople,81 Karlsruhe,82 and correlation-consistent
families.83 We expect that, in most cases, the Digichem library
will provide all the calculation options that a novice computa-
tional chemist would require, but the interactive interface also
provides options to load a method le in case the user wishes to
write a method from scratch or re-use a method from a previous
calculation. Finally, Digichem provides an interface to interac-
tively modify the calculation options from any loaded method
(Fig. 6). This interface groups related options together and
provides help messages and validation, where appropriate, to
help novice users nd and understand each calculation option.
In this way, a user could select an existing method from the
library and modify it to suit their needs; for example, increasing
only the starting geometry is taken from the given input file, while any

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Screenshot of the interactive submission interface.

Fig. 6 Screenshots of the calculation method editor interface.
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the number of requested CPUs so that the calculation will run
more quickly. Once the calculation has been set up to the user's
specications, all queued molecules will be submitted to the
queuing manager simultaneously once the green ‘conrm’

button is pressed (Fig. 5).
© 2024 The Author(s). Published by the Royal Society of Chemistry
File storage and monitoring
Folder structure

For each calculation submitted, Digichem automatically parti-
tions the calculation data into a hierarchy of les and folders
(Fig. 7). At the top of the hierarchy, each molecule is self-
Digital Discovery, 2024, 3, 1695–1713 | 1701
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Fig. 7 Example of the Digichem directory hierarchy for three molecules (benzene, naphthalene and pyridine) and two calculations (a geometry
optimisation and a TDA-DFT excited-states calculation).
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contained to its own directory. Within this, each individual
calculation is stored in a separate sub-directory, which is named
aer the calculation in question. Digichem ensures that no two
calculations can be performed in the same sub-directory, even if
the same calculation is submitted multiple times. In this case,
a number is appended to the directory name to distinguish it,
and this logic is race-condition free. Within each calculation
sub-directory, a third tier of directories store the calculation
data. These directories are as follows: ‘Flags’, which conveys
information about the current status of the calculation (see
below); ‘Input’, which stores input les both for the specic
calculation engine and Digichem; ‘Logs’, which stores log
messages from Digichem andmonitors CPU andmemory usage
(see below); ‘Output’, which stores raw output from the calcu-
lation engine, including the log le and any checkpoint binary
les; ‘Results’, which stores formatted calculation data in text
format, including CSV; and ‘Report’, which contains the PDF
report and any associated image data.

The Results and Report folders will naturally only be created
aer the calculation has completed, as they only contain
completed calculation data. A separate ‘scratch’ directory is also
created and managed for each calculation, which is used by many
computational engines for input/output (IO) intensive reading and
writing. This scratch directory is normally stored outside of the rest
of the calculation directory hierarchy to take advantage of faster
and/or larger physical le storage media. Each scratch directory is
also ensured to be unique for each calculation and is automatically
removed following the completion of the corresponding calcula-
tion. This hierarchy of folders is managed entirely by the program,
and greatly simplies data management and storage.

Calculation monitoring

Calculation monitoring is traditionally achieved by: (1) check-
ing the status of the job using the relevant queuingmanager, for
example with the squeue command; and (2) checking the nal
lines of the calculation engine log le, for example using the
less or tail commands. Digichem provides an alternative that
does not depend on external tools, and is more convenient for
1702 | Digital Discovery, 2024, 3, 1695–1713
novice users, by means of the Flags sub-directory. Within this
folder are a number of text les with distinctive names. These
les are all empty, but the name of each le conveys informa-
tion about the status of the calculation, and new les are
created, and old ones are deleted, as certain milestones in the
calculation are hit. At the beginning of the calculation, the
PENDING ag will be the only le present, which indicates the
calculation is currently in the queue, and awaiting resources.
Once the calculation reaches the top of the queue and execution
begins, the PENDING ag will be deleted and replaced with the
STARTED ag. Once the calculation is complete, this in turn will
be replaced with the SUCCESS ag, and the POST phase will
begin, and so on. In this manner, it is possible to monitor the
entire process of the calculation from the le-explorer, without
using any external tools. The currently supported le ags, and
their meanings, are detailed in Table 1.

The CPU usage, memory usage and read/write speed of the
calculation over time is of importance to both users of compu-
tational chemistry and designers of new soware, as it helps to
identify ‘bottlenecks’ (i.e., the slow part) of a calculation, and to
diagnose out-of-memory failures. Digichem provides calculation
proling for all of its supported calculation engines, and records
information such as CPU load, memory consumption, and read/
write speed. This information is continuously logged to a CSV le
as the calculation progresses, so it can be inspected even before
the calculation has completed, and the proling frequency can be
manually adjusted to favour either higher resolution (more
proling steps) or lower le size (fewer proling steps). The CPU
and memory statistics for an example optimisation calculation
are shown graphically in Fig. 8, which clearly details the short,
large decreases in CPU usage surrounding a new energy calcu-
lation step starting.
Calculation analysis
Check for calculation completion

Aer each calculation has completed Digichem then automat-
ically performs parsing of the calculation log le. In the rst
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 8 Graph of CPU and memory usage of an example calculation, plotted from the profiling data provided by Digichem. The calculation was
the optimisation of Naphthalene, performed at the PBE0/6-311G**/GD3BJ level of theory, in the gas-phase, using Orca with 4 CPUs and
a maximum memory allocation of 10 GB. Profiling was performed every 1 s. The CPU usage is the total for all CPUs, so 400% corresponds to 4
CPUs working at maximum load.

Table 1 List of currently supported file flags

Flag name Description

PENDING The calculation has been submitted but has not yet begun. Most
commonly, this occurs because the calculation is waiting in the queue
for server resources

STARTED The calculation has begun. This ag persists even aer the calculation
has completed

RUNNING The calculation is currently ongoing. This ag is removed once the
calculation has completed

SUCCESS The calculation has completed successfully
CONVERGED The optimisation converged successfully; only relevant to geometry

optimisations
NOT_CONVERGED The optimisation did not converge successfully; only relevant to

geometry optimisations
CLEANUP The main calculation has nished, and Digichem is currently cleaning

up
ERROR The calculation has stopped because an error occurred
POST The main calculation has nished, and Digichem is currently

performing post-analysis. This largely involves writing the PDF report
and any associated image les

DONE All work on the calculation folder is complete, and Digichem will make
no further changes. The calculation folder can be safely moved,
downloaded or deleted
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instance, Digichem determines whether the calculation has
completed successfully, which can normally be detected by the
presence of a trigger line at the end of the calculation (for
example, “****ORCA TERMINATED NORMALLY****” for Orca,
or “Normal termination of Gaussian” for Gaussian), as well as
by checking if the exit code of the calculation engine is 0. The
correct convergence of the density or wavefunction is also
checked according to the criteria set by each computational
program, and for a geometry optimisation the optimisation
© 2024 The Author(s). Published by the Royal Society of Chemistry
must have converged to a minimum for the calculation to be
considered successful. The success/failure status of the
program is used to set the SUCCESS or ERROR le ags, as
appropriate, and is also used to determine whether to continue
to the next calculation in the queue. If the calculation is not
successful, no further calculations in the chain will be
submitted. This prevents errors being accidently propagated to
subsequent calculations and wasting CPU time.
Digital Discovery, 2024, 3, 1695–1713 | 1703
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Table 2 List of the currently supported result files, and their contents

File Type Contents

Absorptions .csv Simulated UV-vis absorption spectrum using
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The calculaton of vibrational frequencies is a popular
method to check whether a geometry optimisation has fully
converged. If negative (i.e., imaginary) frequencies are present,
then this typically suggests the geometry has not converged to
a local minimum. In the current version of Digichem, negative
frequencies are treated as a warning and are presented in red in
the generated PDF report to draw attention, but they do not stop
further program execution. This is because: (1) imaginary
frequencies do not always indicate a geometry optimisation has
failed to converge, and in certain types of calculations
(transition-state geometry optimisations, for example) they are
expected; and (2) the user may decide that the error introduced
by the incorrect geometry is negligible (particularly if the
negative frequency is very small) and should be ignored, rather
than resubmitting. Of course, the user is free to change the
molecular geometry and resubmit the calculation if they
choose.
Gaussian-broadened excited states, plotted on
an energy (eV) scale

Atoms .csv Atoms of the studied molecule and their output
geometry

Beta .csv Orbital energies and symmetries of any beta
orbitals

CC .csv Coupled cluster (CC) energies, including at each
optimisation step if relevant

ES .csv Electronic excited state (ES) energies,
multiplicities and other data

IR .csv Simulated IR absorption spectrum using
Gaussian-broadened vibrational frequencies

MP .csv Møller–Plesset (MP) energies, including at each
optimisation step if relevant

NMR .csv Nuclear magnetic resonance (NMR) data. This
le contains calculated NMR shielding, and
a matrix of coupling constants between each of
the non-magnetically equivalent atoms of the
molecule. Additional CSV les are also created
of simulated NMR spectra, with and without
simulated decoupling, using Gaussian-
broadened peaks

Orbitals .csv Orbital energies and symmetries. If the
calculation uses unrestricted orbitals (or
otherwise contains both alpha and beta
orbitals), this le will contain only the alpha
orbitals

SCF .csv Self-consistent eld (SCF) energies, which
normally correspond to calculations at the
Hartree–Fock or DFT level, including at each
optimisation step if relevant

SOC .csv Spin–orbit coupling (SOC) matrix between each
calculated excited singlet and triplet state

Summary .csv Single-row overview of the calculation metadata
and principal results

Summary .txt The same information as above, but presented
in a human-readable text format

UV-vis .csv Simulated UV-vis absorption spectrum using
Gaussian-broadened excited states, plotted on
a wavelength (nm) scale

Vibrations .csv Calculated vibrational frequencies
Geometry .si Output geometry in a Digichem-native format,

including charge and multiplicity
Geometry .xyz Output geometry in a program-independent

format, not including charge or multiplicity
Result .sir Complete processed output from the

calculation, in a lossless Digichem-native
format, can be used for further processing
Log le parsing

If the calculation was successful, Digichem then proceeds to
perform amore complete analysis of the output. The calculation
log le is parsed using the cclib56 library, which is able to extract
various numerical results, such as orbital energies and vibra-
tional frequencies, as well as vital calculation metadata,
including the DFT functional/calculation method, basis set and
solvent. Additional data, which is not present explicitly in the
calculation output, is also calculated by Digichem. This
includes simulated absorption spectra, using Gaussian-
broadened electronic excited states or vibrational frequencies,
simulated NMR spectra, uorescence decay rates, the dissym-
metry factor of transition dipole moments,84 and spin–orbit
coupling, the latter of which is calculated using a modied
version of the PySOC program.85 The processed data is saved to
a number of text les in the Results directory of the calculation.
The most important of these results, such as the calculation
metadata, HOMO/LUMO energies and geometry information
are available in the summary results le (Fig. S9†). This le is
written in a plain-text format which allows it to be easily read
using simple text editors, including those available on the
command line (nano, vi, emacs, etc.), and thus provides an
immediate overview of the completed calculation data. For
further processing with other programs or tools, the individual
calculation results are saved to a number of tabular CSV les,
which can be opened using common spreadsheet management
programs or graphing soware. This gives the user the oppor-
tunity to perform their own analysis and graphing; however,
Digichem also generates graphs of the most important results
automatically (described below). Together, these text-based
result les can greatly facilitate an author's ability to conform
to FAIR data practices because the les are easily read and are
program-independent. Additionally, all the results processed
from the completed calculation are stored in a Digichem-
specic YAML le. This le can be read by the ‘result’, ‘report’
and ‘database’ sub-modules to load the full-set of calculation
results, without having to re-parse the calculation log le.
Finally, the output geometry of the calculation is stored in the
1704 | Digital Discovery, 2024, 3, 1695–1713
Digichem-specic .si format and the program-independent .xyz
format, allowing for easy reuse in future calculations or depo-
sition in ESI.† All of the automatically generated result les, and
their contents, are detailed in Table 2.
The digichem result command

In addition to the automated parsing that is performed by
Digichem at the end of each calculation, it is also possible to
parse any calculation log le on demand. This is achieved with
the ‘digichem result’ sub-module, which is capable of writing
© 2024 The Author(s). Published by the Royal Society of Chemistry
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any of the result les that are normally generated automatically.
This allows the user, for example, to analyse a calculation result
that was not submitted by Digichem, and still obtain the same
data. Meanwhile, the desired output format can be selected by
specifying the relevant option aer the command, for example
CSV can be selected with the ‘-c’ option, or the text summary
format with ‘-s’.

Oen, the scientist is only interested in a subset of the results
from the calculation output. Digichem supports the extraction of
targeted data through lters, which can reference any part of the
nested hierarchy of data that Digichem stores internally. For
example, the lter ‘-f orbitals’ will return all orbital information
associated with the calculation, while ‘-f orbitals:HOMO’will only
return information related to the HOMO, and ‘-f orbital-
s:HOMO:energy’ will only return the energy of the HOMO, and so
on. In addition, Digichem supports not only parsing results from
a single calculation result le, but also many simultaneously by
specifying multiple output les aer the ‘digichem result’
command. In this way, the results from entire studies can be
collated into a single spreadsheet le, and specic results can be
extracted using the commands described above, giving the user
the exibility to acquire any result they require with ease.

Data storage
Result databases

Processing large datasets is one of the more daunting and
tedious tasks faced by the computational chemist. As their size
grows, datasets, tables, and CSV les become increasingly
cumbersome to navigate and process, and a true database
quickly becomes advantageous. Databases (through querying)
allow huge amounts of data to be searched quickly and can
store results more efficiently (taking less le space) than the raw
calculation output les. This means that past calculation data
can be stored for long periods of time. Digichem maintains an
internal database of calculation data that is stored locally on the
computational server. By default, this database is accessible
only by the user who submitted the calculations, but shared
databases (on the same server) can also be established to permit
collaboration between members of the same group. Once each
calculation is complete, the results are automatically stored in
each of the congured databases. These databases can be later
queried to retrieve data matching certain criteria using the
‘database’ submodule (see below). Digichem also provides tools
to insert data, using ‘digichem database insert’, delete data,
using ‘digichem database delete’ and copy data, using the
‘digichem database slice’ command, which allows for conve-
nient and efficient sharing of datasets between researchers.
Digichem supports both the JSON-based TinyDB86 backend for
human-readable data storage, and the binary-based Mongita87

backend for more efficient storage. Both backend programs
operate using le-locks to manage concurrent access, and so
can be safely used from multiple processes simultaneously.

In addition to the typical calculation metadata, Digichem
also assigns a unique ID to each calculation result. These IDs
are calculated from the checksum of the corresponding log le,
meaning they are deterministic, and are used to prevent an
© 2024 The Author(s). Published by the Royal Society of Chemistry
identical calculation from being inserted into the same data-
base twice. In addition, each calculation has a ‘history’ attri-
bute, which can optionally contain the ID of the calculation that
occurred before it and thus generated the geometry for the
following calculation. For example, the ‘history’ attribute of an
excited-states calculation might contain the ID of the geometry
optimisation that preceded it. In this way, the researcher can
easily determine the chain of calculations that lead to each
result.

Database queries

The ‘search’, ‘delete’ and ‘slice’ commands all support a simple
query language to select which calculation results to interrogate.
Each query starts by identifying an attribute to search against, for
example the HOMO energy, followed by a comparison operator,
the most common of which are ‘<’ (less than), ‘#’ (less than or
equal to), ‘ = ’ (equal to), ‘ = = ’ (exactly equal to, which is case
sensitive for text), ‘>’ (greater than) or ‘$’ (greater than or equal
to). Digichem also supports more advanced queries to allow
comparison of a single item in a list, and for molecular
substructure searching. Each query is then completed with
a value to search against. As a full example, the command ‘dig-
ichem database main search orbitals:values:any:label==HO-
MO:energy:value <−0.5’ would retrieve all calculation results
from the main Digichem database with a HOMO energy of less
than −0.5 eV. Multiple queries can be specied simultaneously
and combine in a logical AND fashion, which permits querying
for results that fall between a given range. The current version of
the program does not yet offer a graphical interface to the data-
base searching operations, mostly because of the design chal-
lenges in writing an interface for a complex query language. We
intend to incorporate such a feature in a future release.

Calculation reports

For experienced practitioners, the tables of data generated by the
‘result’ and ‘database’ commands are an efficient way to access
the results of a calculation or study. However, for novice users,
these tablesmay be daunting and confusing because the data they
contain is presented without context. If the user does not under-
stand the headings of the table, then the data within it are useless.
Likewise, if the user is unaware of the correct name of the datum
they require, they cannot use the lter tools to extract it because
they do not know what to query. Even for the experienced users,
there are some data that must be visualized to be understood. A
classic example for computational chemistry would be an orbital
density plot, which shows the electron density distribution of an
orbital throughout the molecule, and these types of results must
be shown graphically. Even for data that are purely numerical, the
user must typically format or produce graphs of the results before
they can be understood or shared with a collaborator. This work is
time-consuming, yet can be automated.

Automated PDF reports

To achieve this, Digichem provides the ‘report’ sub-module.
Following from the successful completion of a calculation,
Digital Discovery, 2024, 3, 1695–1713 | 1705
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Digichem will automatically generate a single PDF document
that presents all the parsable results of that calculation. This
report is presented in a style designed to mimic that of
a scientic journal article (Fig. 9), as we envisioned that this
format should be familiar to scientists and thus easy to navi-
gate. A selection of example calculation reports is included in
the ESI.†

The report begins with a header section that contains the
name of the molecule and the type of calculation that was
performed, including which properties were calculated and at
what level of theory. This is exemplied in Fig. 9a, which
summarizes the calculation of the excited states of pyridine,
calculated at the DFT level using the PBE0 functional (named
PBE1PBE in Gaussian terminology) and the 6-31G(d) basis set.
This section is followed by the ‘abstract’ (Fig. 9b), which
contains a brief textual summary of the most important results
of the calculation. This again contains the molecule name and
level of theory, but also included are important numerical
results, such as the HOMO–LUMO gap, and the energies of the
lowest energy singlet and triplet excited states. In place of the
traditional graphical abstract, the Digichem report includes
a 3D rendered image of the geometry of the molecule. Next is
Fig. 9 Excerpts from an example calculation report generated by Digich
using the Tamm Dancoff approximation were calculated. (a) Header sec
calculation metadata, (d) result summary tables, (e) methodology sectio
electron density at the DFT level, (h) start of the geometry discussion s
available in the ESI.†

1706 | Digital Discovery, 2024, 3, 1695–1713
a table of the metadata of the calculation (Fig. 9c), which
includes the calculation engine used (in this case, Gaussian 16)
and the execution time. Next is the summary section (Fig. 9d), in
which headline results from the calculation are displayed in
a tabular format. The data presented here are identical to those
shown in the summary text result le generated by the ‘result’
sub-module, but here additional captions and more descriptive
headings provide context to the tables. A methodology section
follows (Fig. 9e), which contains a textual description of the
same metadata shown in Fig. 9c, followed by a brief description
of the analysis performed by Digichem itself. This latter section
also includes references to the various libraries used to help
generate the report, such as Weasyprint,88 Mako,89 and cclib.56

The nal section shown is the discussion, which occupies the
bulk of the report. Visible here is the discussion of the total
system energy (Fig. 9f), with an accompanying 3D plot of the
total electron density of the system at the PBE0 level (Fig. 9g),
and a discussion of the molecular geometry (Fig. 9h) including
a 2D drawing of the molecule produced by the RDKit library.58

Individual sub-section discussions cover all the results from
the calculation that Digichem is able to parse, which includes
total system energies (at the SCF/DFT, MP and/or CC levels),
em. The excited states of pyridine at the PBE0/6-31G* level of theory
tion, (b) abstract summary and 3D rendered image of the molecule, (c)
n, (f) start of the result discussion section, (g) 3D rendered of the total
ection, including 2D drawing of the molecule. The full PDF report is

© 2024 The Author(s). Published by the Royal Society of Chemistry
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molecular geometry, orbitals, permanent and/or transition
dipole moments (PDM/TDM), the latter of which includes the
calculated dissymmetry factor between the electronic and
magnetic TDM,84 if both are present, electronic excited states,
and vibrational frequencies. Each discussion section is popu-
lated with important numerical results and provides general
context for the results, to help the user to better understand the
data that they have computed. We note that we do not use
articial intelligence or machine learning models to write any
part of the report or interpret the results, they are compiled
entirely from predetermined templates.
2D graphs

Where relevant, these discussion are aided by graphical repre-
sentations of the data, which are drawn using the Matplotlib
library.90 This includes a graph of the total system energy
plotted against each optimisation step gap (Fig. 10c), which is
useful for diagnosing convergence problems, a graph of the
HOMO–LUMO and close-lying orbitals gap (Fig. 10a), and
a graph of the electronic excited-state energies (Fig. 10b). Dig-
ichem is also capable of simulating UV-Vis absorption/
emission, IR absorption and NMR spectra, by applying
a Gaussian line-broadening function to the calculated elec-
tronic excited states, vibrational frequencies (Fig. 10c) and/or
NMR shielding parameters and coupling constants.
3D renders

In addition to these graphs, the Digichem calculation report
sub-module can create three-dimensional renders of the
molecular geometry (Fig. 11a), which can be optionally
augmented with a plot of the permanent dipole moment
(Fig. 11b) and/or a selected transition dipole moment (Fig. 11c).
In the case of the TDM, both the electric and magnetic
Fig. 10 Example graphs generated by Digichem. (a) Graph of HOMO an
states, (c) graph of total system energies with optimisation step number

© 2024 The Author(s). Published by the Royal Society of Chemistry
components are plotted, if available, as the relative orientation
of both is an important parameter for the design of circularly-
polarized light (CPL) emitters,84 amongst other applications.
Digichem can also generate renders of electron densities, and
currently supports orbital densities, total SCF density, spin-
density (for open-shell systems), natural-transition orbital
densities, and excited-state difference densities. The choice of
which orbitals are plotted can be congured by the user, and by
default includes the densities of the HOMO (Fig. 11e), the
LUMO (Fig. 11f), the HOMO–LUMO pair together (Fig. 11g), and
any orbitals that have a signicant contribution to an electronic
excited-state transition. The ‘signicance’ of each orbital is
based on the probability of an electronic transition involving
the orbital; by default, orbitals involved in transitions with
>20% probability are deemed to be signicant and are included,
although this value can be adjusted by the user. The orientation
of the molecule in each render is determined by one of three
rotation algorithms (described further in the ESI†) and each
scene is rendered from four different perspectives to allow the
researcher to view the molecule frommultiple angles, these are:
(1) along the z-axis; (2) along the y-axis; (3) along the x-axis; and
(4) at 45° to the three axes. This ensures that at least one of the
rendered angles shows the molecule clearly in the majority of
cases. Of course, the user can still choose to render themolecule
manually from a custom angle if necessary, using either their
normal molecular viewing soware or the Digichem tools.
Digichem currently supports two rendering engines for gener-
ating these images: VMD,91,92 which is well-established soware
in the eld of computational chemistry, but is only free for
academic use; and Blender,93 using the Beautiful Atoms plu-
gin,94 which by contrast is less well established but is open-
source. All the examples showcased here are rendered using
VMD, but the content is the same regardless of the engine used;
only the visual style of the render is different.
d LUMO energies, and nearby orbitals, (b) graph of electronic excited
, (d) graph of simulated IR absorption graph.

Digital Discovery, 2024, 3, 1695–1713 | 1707
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Fig. 11 Excerpts from an example calculation report generated by Digichem, demonstrating the inclusion of 3D renders. The calculation was of
the excited states of pyridine at the PBE0/6-31G* level of theory using the TammDancoff approximation. (a) Render of the molecular geometry,
(b) the same, showing the calculated permanent dipole moment of the T1 state, (c) the same, showing the calculated electric (red) and magnetic
(green) transition dipole moment of the S1 state, (d) render of the HOMO−1 density, (e) render of the HOMO density, (f) render of the LUMO
density, (g) render of the HOMO (blue) and LUMO (red) orbital densities, overlayed. The colour of the orbital lobes in (d–f) correspond to the
different phases of the orbital.
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The digichem report and image commands

In the same manner as the ‘result’ sub-module, the report
program has both an automated and manual implementation,
and reports can be generated at any time using the ‘digichem
report’ command. As for the ‘result’ program, this sub-module
can also be used to parse calculations that were not submitted
with Digichem, and so it is not necessary to re-submit old,
completed calculations only to generate a new report. Regard-
less of whether it is generated automatically, or through the
‘digichem report’ command, each report contains not only the
nal PDF le, but also individual image les for every graph and
3D render used within it. These images are available in both
a portable, low-quality JPEG format, and a publication-ready
PNG format, and can be readily included in the user's own
works. Digichem also offers the ‘digichem image’ command to
generate only single images for situations in which the entire
report is not needed or the user requires an image that is not
included by default. For example, the command ‘digichem
image output.log --image HOMO−10’ can be used to render the
HOMO−10, which would typically be absent from the auto-
matically generated report, while the command ‘digichem
1708 | Digital Discovery, 2024, 3, 1695–1713
image output.log --list’ can be used to list all the available
images that Digichem can render from a given calculation.

Together, the data contained in each calculation report
should be sufficient for the needs of computational chemistry
users of all experience levels, and in many cases, they remove
the requirement for the scientist to use external tools to process
or format the calculation output. The automatic generation of
publication-ready 3D renders saves considerable time for the
chemist, both because this task is tedious, and because the
renders themselves take time to compute. Lastly, the portable
nature of the PDF means it is ideally suited for the sharing of
results with collaborators and colleagues, and because all the
results of the calculation are included within it (at least to the
extent parse-able by Digichem), it is rare that the raw calculation
output needs to be distributed.

Performance

A full benchmarking study of the time required to render each
3D image, parse a completed calculation log le, and fully
generate a PDF report is presented in the ESI.† In summary, the
time required to parse each log le depends mainly on the size
of the le and the speed of the underlying le system, but even
© 2024 The Author(s). Published by the Royal Society of Chemistry
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large log les (29 MB, 420 000 individual lines) are parsed in less
than 30 seconds. Each 3D image takes on average 10–30 seconds
to render, with the rendering time decreasing on hardware with
faster le system read/write speeds. The time required to write
each PDF le is only a few seconds, with most of the time taken
to generate each report being spent on rendering the constit-
uent images. The total time taken by Digichem to perform all
post-processing (log le parsing, image rendering, graph and
result le writing, PDF generation) is generally less than 10 min
(Table S3†), which is signicantly less time than what would be
required to manually undertake these tasks.
Program status and future work

Digichem has been in development for over three years, during
which time it has been extensively tested by the Zysman-Colman
research group. Since mid-February 2021 (when we rst began
recording usage information) to the end of April 2024, Digichem
has been successfully used to submit 53 406 calculations
(Fig. 12a), an average of 46 calculations per day. By the time of
writing of this article, Digichem has entirely replaced the
manually-operated calculation pipeline for nearly all of the
group's research. The program currently supports three compu-
tational engines, which are Gaussian,50 Turbomole,49 and Orca,70

with the latter only being introduced in November of 2022
(Fig. 12, red line). Due to its more recent inclusion, some of the
more advanced analysis features are not yet supported for Orca,
including natural transition orbitals and difference density plots,
and these are features we intend to incorporate soon. We are
actively considering the support of new computational engines,
particularly those that offer complementary types of calculations
that are not supported by the current roster of backend
programs. In particular, the Python native computational
package PySCF95 appears to be an ideal candidate, considering it
shares the same programming language as Digichem, it has an
open-source license, and it supports a wide-range of double-
Fig. 12 (a) Graph of the running total number of calculations submitted w
users). Approximately 6% of these calculations (3218) were performed sol
research purposes. (b) The same, excluding calculations performed by th
this second data set. Note the differing scales of the y-axis between (a a

© 2024 The Author(s). Published by the Royal Society of Chemistry
hybrid DFT functionals, which have recently shown great
promise for the prediction of challengingmolecular properties in
the eld of thermally activated delayed uorescence.96 Mean-
while, we are continuing to expand the range of metadata that
Digichem can parse, and in a forthcoming version we will add
support for recognising the different excited states methodolo-
gies (e.g., TDA-DFT vs. TD-DFT), as well as pertinent performance
data, such as the number of CPUs and the amount of memory
that was allocated to each calculation. We are also looking to
expand upon the program's support for in-series calculation
queuing, as Digichem is not currently able to automatically
submit multiple calculations from one completed calculation in
a branching fashion. Finally, we intend to develop an additional
web-based interface to the program to further increase the
approachability of computational chemistry, which would be
particularly appreciated by the novice user.
Availability and licensing

We have demonstrated through our continuing usage that
Digichem is ready for use in active research environments. To
facilitate this, the Digichem project has been split into twomain
components. Core components of the program (Digichem-core)
have been released as a python library under the permissive,
open-source BSD-3-clause license. This library is freely available
for any purpose and can be incorporated into computational
workows by the user. Currently, the library contains func-
tionality pertaining to results parsing, image generation (both
2D graphs and 3D density plots), le interconversion, simulated
spectroscopy (vibrational frequencies, nuclear magnetic reso-
nances etc.), and other miscellaneous functions. Meanwhile,
the full program is available in a closed-source format (i.e.,
compiled binary only) that contains bundled dependencies
(produced using PyInstaller76). At present, the interactive
interface, PDF report generation, database management, and
calculation submission features are limited to the complete
ith Digichem in the Zysman-Colman research group over time (58 total
ely to test the Digichem system, the remaining 94%were performed for
e authors of this paper (57 total users). There are no test calculations in
nd b).
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program only and are not available in the open-source library.
This program is released under a timed license that is free to
use for any purpose, but automatically expires aer a set dura-
tion (currently set to 3 months from release). New releases
(compiled automatically every night) are automatically upgra-
ded with a new license with a new expiry. We have chosen this
licensing model for two reasons:

� To ensure users remain up-to-date with recent releases. As
the soware license expires every 3 months, this ensures the
user updates the program at least this frequently. This is
important, particularly during this rapid development phase, to
ensure that crucial bug xes (as well as new features) are
distributed to end-users. We have chosen 3 months as
a compromise between convenience (to not force constant
updates) and recentness.

� All soware requires updates, maintenance, and develop-
ment to remain useful and relevant. In a fully open-source
project, this requires a critical mass of committed developers
to sustain, many (if not all) of whom are not directly paid for
their time. This can be difficult to achieve, especially in
academia, as evidenced by the examples of soware that do not
see updates past their initial publication, and/or are no longer
available.97–99 We are committed to the continued development
of Digichem, and acknowledge that this cannot be done for free,
forever. By adopting this licensing scheme, we are able to
explore funding strategies for future development, either
through commercialisation, sponsorship, or other means.

Digichem-core is available from ref. 100, while the full Dig-
ichem program is available from ref. 77.

There is no functionality to automatically update the so-
ware in the current version, but we believe that the installation
procedure is extremely simple (see above) and does not require
administrator or super-user privileges. This means a ‘normal’
user can download and update their copy of Digichem easily
and on their own. We are working to develop an automated
update procedure that we intend to release in a future version of
the program.

We also acknowledge that some research projects may last
longer than the three-month license window, and researchers
may want to continue using the same version of Digichem to
ensure the consistency of the results obtained. To address this,
Digichem has adopted semantic versioning. In this scheme,
each version ‘number’ is split into three parts (e.g., 7.1.0), and
each indicates what has changed compared to the previous
version. An increase to the rst number (7) indicates a back-
wards-compatibility breaking change, the second number (1)
indicates a new feature (or features) that are fully backwards-
compatible, and the last number (0) indicates a bug x or
other changes that do not introduce new functionality. This
means that all versions of Digichem 7.x.x, for example, will
produce the same results (although later versions may have
extra functionality). We have additionally implemented an
automated testing suite that compares the data parsed with
each version to a set of expected results, and builds will only
proceed if the results match. When a new major version of
Digichem is released (version 8.x.x, for example), we will
continue to update the license of the previous versions (7.x.x
1710 | Digital Discovery, 2024, 3, 1695–1713
and below), so a researcher is able to use the same major
version number throughout their study.
Conclusions

We have developed a program designed to automate and
simplify the computational chemistry pipeline. We have
included tools that reduce the tedium, duration, and likelihood
of errors in performing calculation submission, management,
and analysis for studies of all sizes, but we have particularly
focused on performing large-scale computational screens where
these issues are normally exasperated. The program is designed
to be used by computational chemists of all skill levels and
experience, but we expect it to be of particular value to novice
users, who would normally nd the process of learning the
intricacies of the pipeline the most daunting. We have exten-
sively tested this program over a period of more than three
years, and the future direction of the project has been outlined.
Through the continued development of Digichem, we continue
to strive towards making computational chemistry accessible
for all.
Data availability

The code for Digichem-core can be found at https://github.com/
Digichem-Project/digichem-core, and for the Digichem
program at https://github.com/Digichem-Project/build-boy.
The version of the code employed for this study is version
7.0.0-pre.2.
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M. Kieferová, I. D. Kivlichan, T. Menke, B. Peropadre,
N. P. D. Sawaya, S. Sim, L. Veis and A. Aspuru-Guzik,
Chem. Rev., 2019, 119, 10856–10915.

2 W. Heitler and F. London, Z. Phys., 1927, 44, 455–472.
3 J. Liu and X. He, Wiley Interdiscip. Rev.: Comput. Mol. Sci.,
2023, 13, e1650.
© 2024 The Author(s). Published by the Royal Society of Chemistry

https://github.com/Digichem-Project/digichem-core
https://github.com/Digichem-Project/digichem-core
https://github.com/Digichem-Project/build-boy
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00147h


Paper Digital Discovery

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

6 
A

ug
us

t 2
02

4.
 D

ow
nl

oa
de

d 
on

 2
/2

/2
02

6 
4:

53
:4

2 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
4 J. M. Soler, E. Artacho, J. D. Gale, A. Garćıa, J. Junquera,
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