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itrant redox data on fluorophores
to pair with optical data for predicting small-
molecule, ionic isolation lattices†

Michaela K. Loveless, ‡a Minwei Che,‡a Alec J. Sanchez,a Vikrant Tripathy,a

Bo W. Laursen, b Sudhakar Pamidighantam, acd Krishnan Raghavachari a

and Amar H. Flood *a

Redox and optical data of organic fluorophores are essential for using design rules and property screening

to identify new candidate dyes capable of forming optical materials. One such optical material is small-

molecule, ionic isolation lattices (SMILES), which have properties defined by the optical and

electrochemical properties of the fluorophores used. While optical data are available and readily

extracted, the promise of digital discovery to mine the data and identify new dye candidates for making

new fluorescent compounds is limited by experimental electrochemical data, which is reported with

varying quality. We report methods to extract data from 20 000+ literature-reported dyes for generating

a library of both redox and optical data constituted by 206 dye-solvent entries. Wide heterogeneity in

data collection and reporting practices predicated use of a workflow involving manual data extraction,

expert annotations of data quality and validation. Chemometric analysis shows distributions of solvents,

electrolytes, and reference electrodes used in electrochemistry and the distributions of dye families and

molecular weights. Data were extracted and screened to identify fluorophores predicted to form

fluorescent solids based on SMILES. Screening used three design rules requiring dyes to be cationic,

have a redox window within −1.9 and +1.5 V (vs. ferrocene), and a size less than 2 nm. A set of 47 dyes

are compliant with all design rules showcasing the potential for using paired electrochemical-optical

data in a workflow for designing optical materials.
1 Introduction

Optically active materials composed of molecular building
blocks1–4 have garnered attention for their potential applica-
tions in lasers,5 solar energy harvesting,6 and uorescent
sensors.7,8 The delivery of target properties to the materials, e.g.,
light absorption and emission, energy and electron transfer,
can benet from well-dened design rules, working models,
and structure–property relationships.9 This knowledge of the
design criteria provides a basis for selection of molecular uo-
rophores to create new materials. For this reason, use of large
datasets,10–15 cheminformatics,11,12 and machine learning13,14
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approaches involving dyes and their key properties11,16–18 can
enhance the development of optical materials.

Small-molecule, ionic isolation lattices (SMILES) are a class
of new optical materials (Fig. 1a), with well-dened design rules
(Fig. 1b).19 These rules can be used to select the set of dyes that
impart specic properties (e.g., color,20 degree of absorption,21

emission lifetimes,22,23 brightness2) onto a solid-state material.
Rule 1 requires the dyes to be cationic. This charged state is
responsible for directing alternating charge-by-charge packing
when mixed with the anion-binding cyanostar.2 Rule 2 involves
the nesting of the highest occupied molecular orbital (HOMO)
and lowest unoccupied molecular orbital (LUMO) of the dye
inside the frontier molecular orbitals of the cyanostar–anion
complex. These orbital energies are approximated by the
oxidation and reduction potentials and must therefore sit
between +1.5 and −1.9 V vs. Fc/Fc+. This alignment ensures that
there are no electron transfer processes or charge-transfer
states20 generated aer photoexcitation. A corollary of this
rule is that the optical gap of the dye must be less than the
cyanostar–anion complex. Rule 3 requires the dye to be smaller
than the ∼2 nm diameter of the cyanostar–anion complex to
allow spatial isolation and exciton decoupling of the dyes.22,24
Digital Discovery, 2024, 3, 2105–2117 | 2105

http://crossmark.crossref.org/dialog/?doi=10.1039/d4dd00137k&domain=pdf&date_stamp=2024-10-05
http://orcid.org/0000-0001-8521-9455
http://orcid.org/0000-0002-1120-3191
http://orcid.org/0000-0002-6247-7504
http://orcid.org/0000-0003-3275-1426
http://orcid.org/0000-0002-2764-9155
https://doi.org/10.1039/d4dd00137k
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00137k
https://pubs.rsc.org/en/journals/journal/DD
https://pubs.rsc.org/en/journals/journal/DD?issueid=DD003010


Fig. 1 (a) SMILES materials are made by mixing cyanostar (left) with
compliant dyes (blue) to form ordered lattices (middle) that can be
processed into fluorescent forms (right). (b) The creation of fluores-
cent SMILES materials is governed by three design rules for selecting
dyes that are: (1) cationic, (2) aligned inside a redox window, and (3)
less than 2 nm in size. (c) The screening process uses the three rules to
identify SMILES-compliant dyes.
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A dataset containing cationic dyes that include charge states,
redox data, optical data, and size would be valuable for
screening dyes for use in creating SMILES materials (Fig. 1c).
The dye's charge and size can be assigned in a straightforward
way, with pen and paper, if necessary, but the redox and optical
data need to be determined experimentally or using calibrated
computational methods. The literature holds a wealth of
experimental data from decades of research across many
elds.25–30 Oen, however, the literature is too extensive to
extract the data by hand. Therefore, an automated process for
data extraction using natural language processing (NLP) is
preferred.31–33 Previous work has successfully extracted optical
data on dyes from the literature,17,18 and recent advancements
have extended this to include electrochemical data from tables.
These tools, like ChemDataExtractor17,18 and ChemDataEx-
tractor 2.0,17,18 help address the challenges of parsing and
structuring data directly from primary sources, especially when
dealing with large datasets and complex formats. There have
been several reports where ChemDataExtractor34–38 and similar
soware39–41 have been used to inform the selection of dyes for
targeting specic materials properties, such as, use in dye-
sensitized solar cells.42

The extraction of optical data is easily automated using NLP
methods.17,18,36 Electrochemical data are rarely extracted despite
the importance of the optical and redox properties for topical
areas of research, such as, photoredox catalysis.28,29,43–45 Even if
the cyclic voltammograms (CVs) are provided, gures are
currently inaccessible to current NLP methods. Electrochemical
data are only accessible to these existing NLP methods if it is
reported in tables or in the text with its full experimental
2106 | Digital Discovery, 2024, 3, 2105–2117
context. Collections of these data in the related literature have
been presented but mostly as tables in publications.46–50

Another topical area is redox ow batteries. We found an
example that outlined data infrastructure, D3TaLES, providing
for redox potentials to be sourced from experiment and
computations.51 Most databases of their redox potentials appear
to be comprised of computed values.25,52 The rarity of databases
of experimental electrochemical properties likely stems from
several challenges in the variety of the reporting practices.53

Unlike optical data, which is recorded on instruments that are
internally calibrated and require little user modication or
interpretation to obtain wavelengths of light absorption and
emission, electrochemical data requires user-dened calibra-
tion of the reference electrode and an assessment of revers-
ibility (vide infra). This calibration occurs both during
experimentation and when reporting the data. These metadata,
e.g., reference electrode, are oen reported separately from the
electrochemical data and are not always complete. This
reporting style causes difficulty for automated extraction so-
ware to put the data in its context, leading to incomplete or
incorrect data extraction. Recently, a model involving a con-
volutional neural network (CNN) and the large language model
(LLM) GPT-3.5 (ref. 54) has been developed to extract tabular
oxidation potentials, showing promise in overcoming some of
these challenges by improving the accuracy and completeness
of the data extraction process. However, like NLP models, it
cannot extract data from gures (such as CV curves) and
therefore cannot assess the reversibility of the reported poten-
tials. A recent report of carbon dioxide electrocatalytic reduction
processes55 overcame this issue by extracting their data on
electrocatalytic reduction from the literature by using expert
annotations in a semi-manual process. This process required
that people examine the primary literature, assess and extract
quality-controlled data. This method resulted in a dataset that
could be applied to the discovery of new and effective catalysts.

The need for expert annotations also stems from the
reversibility of electrochemical processes measured using CV.
The CV provides data on oxidation and reduction processes that
can be classied as either reversible or irreversible. While there
are well-described methods56 to make this classication, these
are not always undertaken. There are also a variety of ways in
which these classications are reported in the primary litera-
ture. This limitation requires expert annotations of the data. A
recent editorial authored by multiple journal editors lays out
the case for systematic reporting of electrochemical data.53

Herein, a dataset is generated that contains paired redox and
optical data on cationic dyes from the literature with the goal of
using the data to inform the selection of candidate dyes for
making uorescent SMILES materials. A three-step approach
was ultimately adopted consisting of extraction, validation, and
analysis (Fig. 2). This process resulted in a collection of optical
and electrochemical data and size. The dataset included 206
entries, spanning 13 dye families. The workow we followed led
to a sequential buildup of data that is not intended to be
representative of the literature but instead to examine the
literature as a potential source of electrochemical data. Signif-
icant heterogeneity in the reporting of electrochemical data
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Papers were collected from three sources: Deep4Chem
dataset, the photoredox catalysis literature, and a targeted search for
other dyes. The unique dye-solvent entries contained within the
papers were down-selected to remove those without positively
charged dyes and without electrochemical data. After removing
duplicate entries, 206 unique dye-solvent entries remained.

Fig. 2 A graphical representation of the three-step workflow involving
extraction, validation, and analysis that was developed during our
study.
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required expert evaluations, annotations of high/medium/low
data quality, and hand extraction of the data that constituted
a substantial bottleneck. Cheminformatic analysis of this
dataset was performed to identify trends and patterns in the
data and to provide an understanding of the scope of chemical
diversity from among the literature we surveyed. The immediate
goal, described herein, is use of validated electrochemical data
and screening (Fig. 1c) to identify 47 dyes that have the potential
to form uorescent SMILES materials. In the future, the dataset
of 206 dyes can serve as a validated collection against which
theoretical methods can be calibrated for the calculation of
redox properties.

2 Methods
Data collection

The data selection criteria were guided by the established
design rules for SMILES materials and the need for paired
optical and redox data. We prioritized entries that met the +1
charge requirement and which contained both optical and
electrochemical data. This systematic ltering ensured that the
dataset was tailored to the study's objectives, despite the
inherent limitations in the availability of such paired data in the
literature. The data used in the study was obtained from the
scientic literature (Fig. 3) using various means. A search of the
literature using Web of Science and a topic of “molecular dyes”
shows over 36 000 publications. The dataset generated in this
work represents a subset of these papers although not repre-
sentative of all the data in the literature. We found too few
examples where optical and redox data were paired, such that
we had to alter our data extraction process in an ad hocmanner.
Thus, the nal dataset is not necessarily representative of the
literature, but it provides a starting point for evaluating our
workow and identifying the bottlenecks in collecting paired
redox and optical data.

Our exploration of the data available began with a dataset of
optical properties generated by Deep4Chem using CDE.34 This
dataset has 20 000 entries constituted by unique dye-solvent
pairs from ∼800 papers in the primary literature. These
entries were down selected using an automated process that
parses the SMILES string of the uorophore to retain only those
with a net charge of +1. This selection process conforms to the
rst design rule for making SMILES materials. This sorting
© 2024 The Author(s). Published by the Royal Society of Chemistry
resulted in approximately 1700 dye-solvent entries from fewer
than 100 papers and represents a ∼10% yield. These entries
were further down selected by expert assessment of the ∼100
papers to identify those that contained electrochemical data.
This reduced the dataset by another order of magnitude to∼100
dye-solvent entries. Our anecdotal observation is that 10% of
publications on dyes report their electrochemical data. Aer
applying these two rules, we obtained a ∼0.5% yield from the
original dataset.

This intermediate dataset (∼100 entries) was evaluated and
found to contain a restricted number of dye classes. To diversify
the dataset, we undertook various approaches. One approach
was to conduct manual searches on Web of Science and Sci-
Findern, using “cyanine” and “rhodamine” as search keywords,
aiming to identify established classes of cationic uo-
rophores.57,58 While this approach yielded valuable papers on
cyanines, the search for rhodamines generated many papers
focused on bioimaging, thereby limiting the effectiveness of
this method with this class of dyes. Furthermore, only a limited
number of the identied papers contained electrochemical
data, prompting us to explore a different approach. We directed
our attention towards triangulenium dyes due to the routine
collection of both optical and electrochemical data by one of us
(BWL).45,59–63 Additionally, we targeted papers within the
emerging eld of photoredox catalysis,28,29,43–45 where both
optical and redox data are essential for examining the reactivity
of the photocatalysts. The expected wealth of electrochemical
data within these paper collections was conrmed, signicantly
enriching our dataset. Following the removal of duplicate
entries, the nal dataset provided a collection of 206 entries
from nearly 30 papers.

The output of this optical data extraction was a dataset that
included 25 entity labels: tag, SMILES string, DOI, molecular
weight, name of data entry person, name of compound,
Digital Discovery, 2024, 3, 2105–2117 | 2107
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Fig. 4 Literature examples of (a) high quality (HQ) electrochemical
data and (b) medium quality (MQ) electrochemical data. HQ data has
a clear reference electrode and reversible CV “ducks,” while the ducks
in MQ data are distorted in some manner. Reprinted with permission
from ref. 43. Copyright 2024 American Chemical Society.
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frequency of occurrences of the keyword “electroch” in the main
text, reduction potential, reduction half-wave (h) or peak (p),
reduction solvent, reduction electrolyte, oxidation potential,
oxidation half-wave (h) or peak (p), oxidation solvent, oxidation
electrolyte, reference electrode quoted against, reference elec-
trode measured against, electrochemical method, temperature,
data location in paper, expert validation of electrochemistry,
reduction potential quality, oxidation potential quality, size and
notes.

The CDE was used to extract optical data from a subset of the
papers and effectively extracted optical data for 118 entries with
an F-score of 86.8%,5 where 100% is perfect precision and recall
of data from the papers. We have taken steps to adapting CDE
for electrochemical data, which have, so far, been unsuccessful.
Optical data has numerous advantages for extraction over
electrochemical data. Raw results do not require calibration
(absorption peak position reported in nanometers are obtained
directly from the measurement) nor does the data acquired
require an assignment of the underlying process (absorption
spectra are measured using a UV-Vis spectrometer while emis-
sion spectra are measured on a different instrument). Electro-
chemical data require the voltages to be calibrated to
a reference electrode, and the reversibility of the electron
transfer processes need to be assigned. As a result, our ndings
suggest that electrochemical data do not reach the same
precision or recall as optical data extraction. For instance,
identication of the reference electrode and accurately identi-
fying if the redox process is reversible or not. Thus, even
a modied NLP extraction process fails to reach the levels of
precision and recall required to produce a useable dataset.

The electrochemical data andmetadata for the 206 entries in
the dataset were manually extracted from the papers. Expert
annotations (vide infra) were used to classify the data as high,
medium, or low quality.

To ensure the accuracy of the data extraction, a validation
process was enacted in which data extracted by one member of
the team was reviewed and veried by another. Validation
identied errors in less than ve percent of the manually
extracted data. The output of this electrochemical data collec-
tion campaign was a dataset that included ten entity labels for
redox data: potential, half wave or peak position, solvent, elec-
trolyte, quality (×5) for both oxidation and reduction (×2).

A procedure to estimate the size of the dyes was imple-
mented using the mol-ellipsize64 Python package. This package
ts an ellipsoid to each conformer and calculates its diameter.
The size of each dye is obtained by the mean ellipsoid diameter
of ve conformers generated using the RDKit package.65

When each of the unique 206 dye-solvent pairs are combined
with the 12 optical and 10 entity labels, a maximum of 4796 data
points are included in the nal dataset.
Quality validation

Expert annotations were used to assess the quality of the elec-
trochemical data. The entries were categorized based on the
assessment of the electrochemical experiments (Fig. 4). This
quality assessment sorts the CV data and associated metadata
2108 | Digital Discovery, 2024, 3, 2105–2117
into high, medium, and low quality. These assessments are
made based on the reversibility of the CV curve and the avail-
ability of metadata that places the curve in its experimental
context. Ensuring data quality is crucial, as it directly impacts
the condence in subsequent analyses and the potential for
these data to be used in calibrating computational models.
High quality (HQ) data were identied based on two criteria: (1)
the reference electrode associated with the data is clearly re-
ported, and (2) the voltammograms conform to a reversible
electrochemical process. The latter was assessed using various
accepted methods,56 i.e., the CVs display a well-dened and
reversible pair of redox waves, colloquially referred to as “clean
ducks”. This criterion also benets future use of these data for
calibrating the redox potentials calculated using quantum
chemistry methods. For HQ data, half-wave potentials (Fig. 4a)
were reported in the dataset.

Data of medium quality (MQ) possess a well-dened refer-
ence electrode and a CV indicative of irreversible electron
transfer (Fig. 4b). For CVs that display irreversible redox
processes (e.g., imperfect “ducks”), peak positions were
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 A bar plot that displays the frequency of high, medium, and
low-quality electrochemical data (nreduction = 191, noxidation = 123).
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reported. These peaks do not accurately reect the reversible
half-wave potentials.66,67 MQ data will still be analyzed but are
understood to provide less accurate estimates of the formal
reduction and oxidation potentials.

In instances where there was no clear description of the
reference electrode, voltammograms were not available, or
curve shapes were imperfect, the electrochemical data were
dened as low quality (LQ). Additionally, there were instances
where the reduction potential of one compound was classied
as HQ while the oxidation potential was classied as MQ.

Out of a total of 302 electrochemical potentials 107, 76 and
131 were classied as HQ, MQ and LQ, respectively. Within the
subset of 116 oxidation and 186 reduction potentials, 31 and 76
were classied as HQ, 36 and 40 as MQ, and 56 and 75 as LQ
(Fig. 5).
Fig. 6 A selection of a representative dye from each of the 13 dye
families explored in this report. With the dyes is the molecular weight
and the number of heavy (i.e., non-hydrogen) atoms.
Post processing

The manually extracted data undergoes a cleansing process to
improve accuracy. The SMILES strings of all entries were con-
verted into canonical SMILES strings using the chem-
informatics toolkit RDKit. These canonical SMILES strings,
along with the reference column containing DOIs, are examined
for any instances of duplication. The duplicated entries serve as
a convenient sample corpus for accuracy validation. In total, 28
duplicates were identied in this process. Any discrepancies
found during this review of the duplicates are corrected using
original papers. Aer addressing identied discrepancies,
redundant records are removed from the dataset. Violin plots of
the electrochemical properties are generated. Five outliers were
identied by having unphysical values. These data were
corrected.
3 Results

An analysis of data on dye class, molecular weights, sizes,
aromaticity, optical properties, and electrochemical properties
is undertaken as a basis to inform SMILES design rules. An
analysis of distributions of the dye families (Fig. 6) reveals that
this dataset consists of 13 categories of cationic dyes, with
© 2024 The Author(s). Published by the Royal Society of Chemistry
acridinium and cyanine dyes dominating the collection
(Fig. 7a). The prevalence of any one family does not guarantee
availability of both reduction and oxidation potentials. We
identify instances where both reduction and oxidation poten-
tials are present for a specic dye-solvent system, which we term
a “redox pair” (Fig. 7b). In this case, while acridinium dyes are
present in large number, only a few are redox pairs. In this
dataset, there are a total of 75 dyes that have redox pairs among
the 206 entries.

Most of the dyes (79.4%) studied have a molecular weight
between 300 and 500 g mol−1 (Fig. 8). Only a few had a mass of
over 600 g mol−1 including highly functionalized cyanine dyes.
The optical gap and electronic properties have been demon-
strated to correlate well with the number of rings for conjugated
dye systems, such as, polycyclic aromatic hydrocarbons.68–71 An
analysis of the number of rings (Fig. 9) shows that 4, 5, or 6,
were most common with rhodamine and triangulenium fami-
lies being in this range. These analyses show that the data
Digital Discovery, 2024, 3, 2105–2117 | 2109
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Fig. 7 Bar charts showing the (a) dye family distribution and (b) the
distribution of redox pairs in each dye family, presented in both
numerical and percentage terms.

Fig. 8 Histogram representing the distribution of molecular weights
for all the dyes in the dataset.

Fig. 9 Bar chart which represents distribution in the number of rings in
an entry determined by RDKit's smallest set of smallest rings (SSSR).

Fig. 10 Bar chart representing the solvents used to collect electro-
chemical (reduction in red, oxidation in blue) and optical (yellow) data
of high and medium quality (nreduction = 198, noxidation = 94, noptical =
135).
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collected and reported in this work represent a broad chemical
diversity within the 13 dye families. These data are also known
to be correlated to optical and electrochemical properties of
organic uorophores,72 making them valuable to the practical
use of this data in future work. In addition, the correlation
between optical and electrochemical data provides an empirical
basis for using the optical data to predict some missing elec-
trochemical data.”

To better understand the methods of data collection used in
the literature, an analysis of metadata was performed. Only
electrochemical data of high and medium quality was analyzed.
Thus, we only include redox potentials that have clearly dened
reference electrodes, and may either be electrochemically
2110 | Digital Discovery, 2024, 3, 2105–2117
reversible (high quality, HQ) or irreversible (medium quality,
MQ). Data that was poorly referenced or for which the CV data
had non-ideal behavior (low quality, LQ) was excluded. See
Methods section for more details on classication of quality.

The metadata of a reduced HQ and MQ dataset of 116
reductions and 67 oxidations from 175 and 123 total entries,
respectively, was analyzed. The solvent in which the sample is
dissolved inuences both optical and electrochemical results.
The majority of the data was collected in acetonitrile (Fig. 10).
This observation is true for all measurements we analyzed
(reduction, oxidation, optical) and most likely originates from
this solvent having a wide window of electrochemical stability,
also offering reasonable polarity to dissolve salts like the
cationic dyes being analyzed here. Other common solvents
include methanol, dichloromethane, and dimethylformamide.
A few other solvents are used sparingly with only one or two
reported examples of their use in the literature sources we
surveyed.

The electrolytes and reference electrodes used and reported
in the data were analyzed. TBAPF6 and TBAClO4 are the most
common electrolytes for measuring the reduction potential of
molecular dyes (Fig. 11a). To measure the oxidation potential,
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 11 (a) Bar chart of the electrolyte used to measure reduction
potentials (red) and oxidation potentials (blue) (nreduction = 178,
noxidation = 66). (b) Bar chart representing the reference electrode
against which electrochemical data was reported (green) and
measured (purple) (nreported = 90, nmeasured = 145) (high and medium
quality data included). Fig. 12 Plots of electrochemical window between oxidation and

reduction versus (a and d) absorption maxima, (b and e) emission
maxima and (c and f) the estimates for the E‡0,0 defined as the
numerical average of the absorption and emission maxima. The
second column is specific to triangulenium, which is a prevalent dye
family in the dataset.
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TBABF4 is the most common. LiCl was also used but was the
least common. During the analysis of the reference electrodes
used in this dataset, it was observed that some authors opted to
use one reference electrode during the electrochemical
measurement, while reporting the potentials relative to
a different reference electrode (Fig. 11b). It is also common73 to
add ferrocene to the solution being analyzed as an internal
standard, and then to adjust the reference electrode to another
one when reporting the data in the literature. Comparison of
data to ferrocene ensures the accuracy of the peak positions
collected from the CV experiment. Thus, the data reported
below is referenced to ferrocene.

One additional problem with electrochemical data is that
only one of the reduction and oxidation potentials are reported
when both are needed for SMILES compliance (vide infra).
Fortunately, the more prevalent optical data can be used
together with one of the redox potentials to estimate the loca-
tion of the missing potential. For this purpose, we rely on the
observation that the optical gap, Eop (eV), is oen seen to
correlate74–80 with the potential difference, DEredox (V) between
the rst oxidation, Eox, and reduction, Ered, processes (eqn (1)):

Eop z DEredox = Eox − Ered (1)

The redox gap can be approximated by utilizing optical
experimental data (Fig. 12). This relationship also provides
a means to extend the data, which can be used to estimate
© 2024 The Author(s). Published by the Royal Society of Chemistry
missing redox potentials (vide infra). Hence, our dual data
extraction method addresses the challenge of incomplete data
reporting and enhances our ability to screen for SMILES-
compliant materials efficiently. These data include absorption
and emission maxima, both of which can be reliably extracted
from the literature. In order to examine these correlations, we
need a collection of dyes for which we have the redox gap (Eox
and Ered), as well as the optical gaps approximated by EAbs and
EEm, and by the E0,0 (see next).

The E0,0 value is frequently used to estimate the adiabatic
energy difference between ground and excited states of the
dyes.81 The literature and thus our dataset does not explicitly
include E0,0. As a consequence, we generate estimates, E‡0,0, from
the numerical mean of the absorption and emission energies
(eqn (2)):

E
‡
0;0a

EAbs � EEm

2
(2)

This relationship (eqn (2)) assumes that the reported
absorption band corresponds to the S0–S1 transition.

Our data correlating redox window (DEredox) to absorption
maxima (Fig. 12a) only include 40 data points that include both
Digital Discovery, 2024, 3, 2105–2117 | 2111
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optical data and paired redox data. From the original dataset,
155 of the 206 dyes have absorption maxima and 75 of the 206
dyes have both Eox and Ered (Fig. 7b). The same limitation arises
with the emission maxima and E‡0,0 for which we have 31
(Fig. 12b) and 26 (Fig. 12c) datapoints, respectively, limiting the
total number of entries to analyze.

We see that the correlations are poor. However, we note that
the data is dominated by two dye families, the trianguleniums
and rhodamines totaling 23 out of the 40 examples. These two
families account for the two regions in the plots (see Fig. 12c).

For this reason, we examined these correlations by plotting
the data based on these two dye families (Fig. 12d and S1a,† n =

14 and 9, respectively), and observe higher correlations (R2 =

0.556 and 0.773). Similar trends can be found in the literature
correlating the electrochemical and optical gap for
Fig. 13 Violin plots showing the distributions of (a) the redox potentials (
the dyes collected in the dataset. The electrochemical gap of cyanostar is
quality experimental data. The lowest datum in the acridinium and triang

2112 | Digital Discovery, 2024, 3, 2105–2117
polyquinolines and polyanthrazolines.82 This nding suggests
that higher correlations can be obtained when investigating
similar classes/families, aka, homologous series.

The poor correlation is also likely due to slight variations in
data collection methods and techniques across different labora-
tories. The same improvements (0.657# R2# 0.784, see Fig. S2c–
e†) can be seen when examining dyes from within a single paper
(containing more than four dyes, n > 4), for 3 of the 4 paper
specic plots. For one of the papers (Fig. S2b†), the R2 = 0.040,
however this is due to opposing trends in the collected data.
Nevertheless, these ndings suggest that electrochemical and
absorption data are dependent on the dye family and experi-
mental conditions, which may not be consistent across papers.

We observe the same trends for correlations of the redox gap to
the emissionmaxima (Fig. 12b, R2= 0.329, n= 31) and E‡0,0 values
nreduction = 116, noxidation = 67) and (b) the electrochemical windows of
shown in green (n= 92). The data plotted is of high, medium, and low-
ulenium violin plots are at 0.9 and 0.8 V, respectively.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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(Fig. 12c, R2 = 0.065, n = 26). We observe the plots to be bimodal
and that the dye-specic correlations separate these into distinct
datasets showing clear improvements, 0.511 # R2 # 0.912
(Fig. 12e and S1b,† n= 14 and 8), as do paper specic correlations,
0.861 # R2 # 0.926 (Fig. S3b–d†) and 0.800 # R2 # 0.893
(Fig. S4b–d†). These relations between optical and redox gaps
allow us to estimate values of missing redox potentials.
Extending the data

A proportion of the data (133 of 206) included just one of the
two redox potentials. For example, acridiniums typically have
only a reduction or oxidation potential reported due to their use
in photoredox catalysis28,29,50,83 such that only one of these
potentials is important. The dataset can be extended84,85 by
various means to add these missing entries.

In order to extend the data for use in data mining for SMILES
compliance, we use the correlation between the optical data and
Fig. 14 Three curves representing for the probability of forming
emissive SMILES materials based on (a) Boltzmann distribution, (b)
linear decrease in probability within±1 eV, and (c) exact alignment with
the redox window of a cyanostar anion complex.

Fig. 15 By fitting the molecular dyes to an ellipse, an approximation of
their size can be made. This size approximation can also be performed
on cyanostar (orange) (n = 170).

© 2024 The Author(s). Published by the Royal Society of Chemistry
the gap (eqn (1)) to estimate the missing data, either the
oxidation or reduction potential. For this purpose, we either
used the estimated E‡0,0 when both absorption and emission
maxima are available or the absorption maximum, EAbs (eV) in
its place, and following equations:

E‡
red = Eox (V) − E‡

0,0 (eV) (3)

E‡
ox = Ered (V) − E‡

0,0 (eV) (4)

4 Discussion
Analysis of electrochemical data

An analysis of the electrochemical data was performed to
identify candidate dyes for forming SMILES materials. All the
dyes in consideration are cationic and fulll rule 1 (Fig. 1b). The
Fig. 16 The reduction (blue) and oxidation (green) potentials of
cyanine dyes plotted from lowest to highest oxidation potential. Any
reduction potentials that were obtained by extending the data using
eqn (3) or (4) are denoted as open circles. Dyes that do not follow rule
3 are marked with a single X. Dyes that do not follow rules 2 and 3 are
marked with a double X.

Fig. 17 Solid and open circles indicate literature and extended data,
respectively.

Digital Discovery, 2024, 3, 2105–2117 | 2113

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00137k


Digital Discovery Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

3 
Se

pt
em

be
r 

20
24

. D
ow

nl
oa

de
d 

on
 1

1/
20

/2
02

5 
12

:3
2:

03
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
next assessment was to fulll rule 2 by identifying those dyes
with both reduction and oxidation potentials sitting inside the
redox window of the cyanostar complex.

A visualization approach to assess compliance can be con-
ducted using violin plots (Fig. 13a) where the oxidation and
reduction potentials of all dyes in a family with blue and red
violins respectively. These plots were constructed and compared
to the redox potentials of the cyanostar–anion complex. They
provide valuable information on the types of dyes that are ex-
pected to make emissive SMILES materials based on rules 1 and
2. For example, both the reduction and oxidation potentials for
many triangulenium dyes are within the bounds dened by the
redox window of the cyanostar–anion complex (green). Conse-
quently, triangulenium dyes are good candidates for SMILES
materials, which has been demonstrated in previous reports.2

Violin plots of the gap (eqn (1)) based on the redox window
(Fig. 13b) show that most of the dyes in the dataset are predicted
to have an optical transition of lower energy than cyanostar's.
Thus, the width of these windows and alignment relative to the
redox properties of the cyanostar complex could be tuned by
functional group modulation. The data suggest that some
coumarin dyes may be suitable for use in SMILES materials,
however, the DEredox is quite wide, and it approaches the width
of cyanostar's redox window (green). Thus, any ne-tuning of
the redox window of a coumarin to t within cyanostar's needs
to account for these small tolerances closer to the edges of the
window.

The edges of the window are subject to uncertainties. There
exists experimental error (±0.1 V) arising from the uncertainties
Fig. 18 All 47 unique SMILES-compliant dyes from the 13 dye families.

2114 | Digital Discovery, 2024, 3, 2105–2117
in the measurements. If computational chemistry is used to
estimate redox properties in the future, chemical accuracy oen
offers a larger error (±0.25 eV). Furthermore, while the redox
window is set by the electrochemical potentials, the possibility
for “uphill” electron transfer can also occur if there are charge-
transfer (CT) products in which coulombic interactions in the
proximal D+A− pair provide thermodynamic stability.86

Screening of the data for SMILES compliance

The original and extended dataset set of data provide the redox
potentials can be combined with estimates of dye sizes to
identify the subset of dyes that are compliant with the SMILES
design rules. We can consider the compliance with the second
design rule using probability curves (Fig. 14). Each curve
represents an approximation of this probability. The rst
(Fig. 14a) includes the possibility of Boltzmann weighted
distributions of electron transfer products and experimental
error in the measurements. The second (Fig. 14b) approximates
this distribution with a simple linear form. The simplest
(Fig. 14c) is a hard cut-off at the edge of the redox window and is
the criterion we used during screening.

Compliance with rule 3 was determined using an estimation
of molecular size by mol-ellipsize (Fig. 15).64 These data can be
compared to the size of cyanostar (2 nm diameter). This analysis
was performed on each of the 170 unique dyes in the dataset,
revealing 120 dyes that are smaller than cyanostar. These 120
dyes adhere to rule 3. This list can be compared to the list of
redox-aligned dyes to produce a collection of dyes that adhere to
all three design rules.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Testing dyes for SMILES compliance

Cyanines make up a large percentage (28.4%) of the dataset and
typically have both reduction and oxidation data reported. By
plotting the redox window of cyanine dyes against the redox
window of the cyanostar–anion complex, we see that 34 of the 48
cyanine dyes t the electrochemical design rule (Fig. 16) as
dened by the simplest hard cut off.

Across all the 206 dye-solvent pairs, we found a total of 57
pairs (Fig. 17) that were compliant with all design rules leading
to 47 (Fig. 18) unique dyes. The distribution of SMILES-
compliant dyes (Fig. 19) shows the prevalence of three dye
families constituted by rhodamine-like dyes (40%), cyanines
(34%), and trianguleniums (15%) totaling 89%. Focusing on
rule 2, 183 of the 206 dyes are compliant and t inside the redox
window but many are too large in size which leads to the
decrease in the nal number. Considering rule 3 alone, we nd
120 dyes are of the right size to serve as building blocks for
making SMILES. When taking rule 2 into account this number
again drops to 57 dye-solvent pairs and unique dyes.
Looking to SMILES compliance and beyond

The dataset shared here provides a set of paired optical and
electrochemical data for a variety of uorophores that can be
used in various ways to advance the science, engineering, and
digital discovery of SMILES materials. Given the paucity of
electrochemical studies on uorophores, this validated data-
set can serve as a test set for calculating redox potentials using
quantum chemical methods. These calculated potentials can
then be used to estimate electrochemical properties in future
literature extraction campaigns to augment any of the missing
redox data. In addition, the workow dened here may also be
utilized or modied toward other goals. For example, the
production of redox ow batteries25,26 requires the selection of
molecules with specic oxidation and reduction potentials
as well as high reversibility, which is constituted by the
dyes tagged with the HQ signier. Another use is for
selection of photoredox catalysts (redox potentials, optical
properties).28,43,45
Fig. 19 Dye family distribution of 47 SMILES-compliant dyes.

© 2024 The Author(s). Published by the Royal Society of Chemistry
5 Conclusions

A data extraction workow has been used to generate a library of
206 dye-solvent combinations bearing both optical and elec-
trochemical data from which properties screening identied 47
candidates that are predicted to form emissive SMILES mate-
rials. In these concluding remarks, we address recommenda-
tions for electrochemical data reporting, a summary of the key
cheminformatic ndings, and provide insights as to how these
data can be used for improving materials design workows.

The extraction of electrochemical data from the literature
relied on expert annotations, which restricted our workow.
This method was used to circumvent a series of serious limi-
tations to extraction that arise because of the nonuniform
reporting of electrochemical data. The workow used here can
be improved upon by relying on data that has been reported in
a more uniform format. For example, we recommend following
the advice of American Chemical Society editors53 to use
systematic procedures for reporting electrochemical data and to
promote use of natural language processing for extracting these
properties. Submission of the data to appropriate databases is
also recommended. Such databases include D3TaLES51 for
experimental electrochemical data and RedDB87 for computa-
tional electrochemical data. Recent papers18,38 have highlighted
the importance of domain-specic corpuses for data extraction,
thus the creation of a molecule-centric schema for organizing
the data collected herein represents the next logical step in this
work. These remedies would allow the data to be presented in
a way that is easily managed by automated tools such as web
scraping and NLP. In addition to data extraction and validation,
we used a method for estimating missing redox potentials from
optical data.

The library of 206 dyes represented 13 different dye families.
Our analyses show that the majority of cationic dyes present in
the literature we sampled are acridiniums, followed closely by
cyanines. We note a variety in the experimental conditions used
to collect electrochemical data with some commonalities. The
majority of the data extracted came from experiments run in
acetonitrile, likely due to its wide solvent window and reason-
able polarity.

The set of 47 candidate dyes include six dye families that
have not previously been utilized in SMILES materials show-
casing the use of mining methods to enable digital discovery. In
future screening campaigns, and particularly when using larger
datasets, the order of the rules can be changed to more effi-
ciently identify SMILES dye candidates. Finally, the dataset can
be utilized by members of the scientic community to identify
candidates for a variety of applications beyond optical materials
including photoredox catalysts and redox ow batteries. With
input from others, this dataset can be expanded to be more
representative of the dyes published across the literature.

Data availability

The data collected for this analysis is available at Figshare
(https://doi.org/10.6084/m9.gshare.25852909). Two datasets
are shared here. DyeData206 contains the 206 dye-solvent
Digital Discovery, 2024, 3, 2105–2117 | 2115
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combinations of cationic dyes extracted from the literature and
the 25 data entities that describe this pair. DyeData58 is
a subset of DyeData206 that retains only the dye-solvent pairs
that adhere to all of the SMILES rules. The deposited data also
contains DOI links to the literature papers from which the data
were extracted.
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M. P. Marshak, C. J. Galvin, A. Aspuru-Guzik, R. G. Gordon
and M. J. Aziz, Adv. Energy Mater., 2017, 7, 9.

26 K. J. Kim, Y. J. Kim, J. H. Kim and M. S. Park, Mater. Chem.
Phys., 2011, 131, 547–553.

27 K. Gong, Q. R. Fang, S. Gu, S. F. Y. Li and Y. S. Yan, Energy
Environ. Sci., 2015, 8, 3515–3530.

28 T. P. Yoon, M. A. Ischay and J. N. Du, Nat. Chem., 2010, 2,
527–532.

29 M. H. Shaw, J. Twilton and D.W. C. MacMillan, J. Org. Chem.,
2016, 81, 6898–6926.

30 M. D. Hughes, Y. J. Xu, P. Jenkins, P. McMorn, P. Landon,
D. I. Enache, A. F. Carley, G. A. Attard, G. J. Hutchings,
F. King, E. H. Stitt, P. Johnston, K. Griffin and C. J. Kiely,
Nature, 2005, 437, 1132–1135.

31 S. S. BuHamra, A. N. Almutairi, A. K. Buhamrah,
S. H. Almadani and Y. A. Alibrahim, Front. Public Health,
2022, 10, 1070870.

32 A. S. Behr, M. Völkenrath and N. Kockmann, Knowl. Inf. Syst.,
2023, 65, 5503–5522.

33 D. Gunter, P. Puac-Polanco, O. Miguel, R. E. Thornhill,
A. Y. X. Yu, Z. Y. A. Liu, M. Mamdani, C. Pou-Prom and
R. I. Aviv, Neuroradiology, 2022, 64, 2357–2362.

34 J. F. Joung, M. Han, M. Jeong and S. Park, Sci. Data, 2020, 7, 6.
35 C. J. Court and J. M. Cole, Sci. Data, 2018, 5, 12.
36 S. Huang and J. M. Cole, Sci. Data, 2020, 7, 13.
37 D. Y. Huang and J. M. Cole, Sci. Data, 2024, 11, 9.
38 T. Isazawa and J. M. Cole, Sci. Data, 2023, 10, 11.
39 Q. Y. Dong and J. M. Cole, J. Chem. Inf. Model., 2023, 63,

7045–7055.
© 2024 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00137k


Paper Digital Discovery

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

3 
Se

pt
em

be
r 

20
24

. D
ow

nl
oa

de
d 

on
 1

1/
20

/2
02

5 
12

:3
2:

03
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
40 Y. Zhang, C. Wang, M. Soukaseum, D. G. Vlachos and
H. Fang, J. Chem. Inf. Model., 2022, 62, 3316–3330.

41 J. Guo, A. S. Ibanez-Lopez, H. Y. Gao, V. Quach, C. W. Coley,
K. F. Jensen andR. Barzilay, J. Chem. Inf. Model., 2021, 61, 4124.

42 M. K. Son, H. Seo, K. J. Lee, S. K. Kim, B. M. Kim, S. Park,
K. Prabakar andH. J. Kim, Thin Solid Films, 2014, 554, 114–117.

43 L. Y. Mei, J. M. Veleta and T. L. Gianetti, J. Am. Chem. Soc.,
2020, 142, 12056–12061.

44 J. H. Kuhlmann, M. Uygur and O. G. Mancheño, Org. Lett.,
2022, 24, 1689–1694.

45 M. H. Nowack, J. Moutet, B. W. Laursen and T. L. Gianetti,
Synlett, 2024, 35, 307–312.

46 N. A. Romero and D. A. Nicewicz, Chem. Rev., 2016, 116,
10075–10166.

47 N. Holmberg-Douglas and D. A. Nicewicz, Chem. Rev., 2022,
122, 1925–2016.

48 Y. Y. Wu, D. Kim and T. S. Teets, Synlett, 2022, 33, 1154–1179.
49 A. Vega-Peñaloza, J. Mateos, X. Companyó, M. Escudero-

Casao and L. Dell'Amico, Angew. Chem., Int. Ed., 2021, 60,
1082–1097.

50 B. Zilate, C. Fischer and C. Sparr, ChemComm, 2020, 56,
1767–1775.

51 R. Duke, V. Bhat, P. Sornberger, S. A. Odom and C. Risko,
Digital Discovery, 2023, 2, 1152–1162.

52 C. B. Cooper, E. J. Beard, A. Vázquez-Mayagoitia, L. Stan,
G. B. G. Stenning, D. W. Nye, J. A. Vigil, T. Tomar,
J. W. Jia, G. B. Bodedla, S. Chen, L. Gallego, S. Franco,
A. Carella, K. R. J. Thomas, S. Xue, X. J. Zhu and
J. M. Cole, Adv. Energy Mater., 2019, 9, 10.

53 S. Minteer, J. G. Chen, S. Lin, C. Crudden, S. Dehnen,
P. V. Kamat, M. Kozlowski, G. Masson and S. J. Miller, J.
Org. Chem., 2023, 88, 4036–4037.

54 S. Lee, S. Heinen, D. Khan and O. A. von Lilienfeld, Mach.
Learn.: Sci. Technol., 2024, 5, 025058.

55 L. D. Wang, Y. Gao, X. Q. Chen, W. J. Cui, Y. C. Zhou,
X. Y. Luo, S. S. Xu, Y. Du and B. Wang, Sci. Data, 2023, 10, 11.

56 L. R. Faulkner and A. J. Bard, Electrochemical Methods:
Fundamentals and Applications, Wiley, 111 River Street,
Hoboken, NJ, 2nd edn, 2001.

57 T. Geiger, H. Benmansour, B. Fan, R. Hany and F. Nüesch,
Macromol. Rapid Commun., 2008, 29, 651–658.

58 Y. Ooyama and Y. Harima, ChemPhysChem, 2012, 13, 4032–
4080.

59 R. K. Jakobsen and B. W. Laursen, ChemPhotoChem, 2023, 8,
e202300215.

60 L. Kacenauskaite, N. Bisballe, R. Mucci, M. Santella,
T. Pullerits, J. S. Chen, T. Vosch and B. W. Laursen, J. Am.
Chem. Soc., 2021, 143, 1377–1385.

61 B. W. Laursen and T. J. Sorensen, J. Org. Chem., 2009, 74,
3183–3185.

62 B. P. Maliwal, R. Fudala, S. Raut, R. Kokate, T. J. Sorensen,
B. W. Laursen, Z. Gryczynski and I. Gryczynski, PLoS One,
2013, 8, 19.

63 T. J. Sorensen and B. W. Laursen, J. Org. Chem., 2010, 75,
6182–6190.

64 A. Tarzia, D. M. Huang and C. Doonan, Mol-ellipsize (Version
v1.0.1), Zenodo, 2021.
© 2024 The Author(s). Published by the Royal Society of Chemistry
65 G. Landrum, RDKit (Release 2022_09_5), Zenodo, 2022.
66 N. Elgrishi, K. J. Rountree, B. D. McCarthy, E. S. Rountree,

T. T. Eisenhart and J. L. Dempsey, J. Chem. Educ., 2018, 95,
197–206.

67 Various factors may contribute to the appearance of
irreversibility in the CV, including slow electron transfer
rates, instability of chemical species, and involvement of
reversible chemical reactions. The rst relates to the
formal denition of an irreversible electron transfer in
which the rate of electron transfer is slow, leading to the
leading peak in the CV being shied farther from the
formal redox potential. Alternatively, the chemical product
of the electron-transfer process is unstable and subject to
decomposition, leading to a shi in the observed peak
away from the formal potential as well as the absence of
a return wave. Another alternative is that the product of
electron transfer participates in a reversible chemical
reaction, leading to the appearance of an irreversible CV.

68 S. L. Gilat, S. H. Kawai and J. M. Lehn, Chem.–Eur. J., 1995, 1,
275–284.

69 Y. J. Li, T. F. Liu, H. B. Liu, M. Z. Tian and Y. L. Li, Acc. Chem.
Res., 2014, 47, 1186–1198.

70 A. Menon, J. A. H. Dreyer, J. W. Martin, J. Akroyd,
J. Robertson and M. Kra, Phys. Chem. Chem. Phys., 2019,
21, 16240–16251.

71 R. Rakhi andC. H. Suresh,ChemistrySelect, 2021, 6, 2760–2769.
72 S. Chakraborty, E. Yanes and R. Gershoni-Poranne, Beilstein

J. Org. Chem., 2024, 20, 1817–1830.
73 R. R. Gagne, C. A. Koval and G. C. Lisensky, Inorg. Chem.,

1980, 19, 2854–2855.
74 D. Adler and J. Feinleib, Phys. Rev. B: Solid State, 1970, 2,

3112–3134.
75 A. E. Cherkashin, F. I. Vilesov, N. P. Keier and

N. N. Bulgakov, Phys. Solid State, 1969, 11, 506–517.
76 W. P. Doyle and G. A. Lonergan, Discuss. Faraday Soc., 1958,

27–33, DOI: 10.1039/df9582600027.
77 H. J. Jiang, Z. Q. Gao, F. Liu, Q. D. Ling, W. Wei and

W. Huang, Polymer, 2008, 49, 4369–4377.
78 F. F. Muhammad, A. I. A. Hapip and K. Sulaiman, J.

Organomet. Chem., 2010, 695, 2526–2531.
79 H. Nejatipour and M. Dadsetani, J. Lumin., 2016, 172, 14–22.
80 S. Visniakova, I. Urbanaviciute, L. Dauksaite,

M. Janulevicius, B. Lenkeviciute, I. Sychugov, K. Arlauskas
and A. Zilinskas, J. Lumin., 2015, 167, 261–267.

81 P. F. Loos and D. Jacquemin, ChemPhotoChem, 2019, 3, 684–
696.

82 R. Holze, Organometallics, 2014, 33, 5033–5042.
83 A. R. White, L. F. Wang and D. A. Nicewicz, Synlett, 2019, 30,

827–832.
84 A. S. Bondarenko, Anal. Chim. Acta, 2012, 743, 41–50.
85 H. Neugebauer, F. Bohle, M. Bursch, A. Hansen and

S. Grimme, J. Phys. Chem. A, 2020, 124, 7166–7176.
86 C. W. Schlenker and M. E. Thompson, ChemComm, 2011, 47,

3702–3716.
87 E. Sorkun, Q. Zhang, A. Khetan, M. C. Sorkun and S. Er, Sci.

Data, 2022, 9, 9.
Digital Discovery, 2024, 3, 2105–2117 | 2117

https://doi.org/10.1039/df9582600027
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00137k

	Extracting recalcitrant redox data on fluorophores to pair with optical data for predicting small-molecule, ionic isolation latticesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00137k
	Extracting recalcitrant redox data on fluorophores to pair with optical data for predicting small-molecule, ionic isolation latticesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00137k
	Extracting recalcitrant redox data on fluorophores to pair with optical data for predicting small-molecule, ionic isolation latticesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00137k
	Extracting recalcitrant redox data on fluorophores to pair with optical data for predicting small-molecule, ionic isolation latticesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00137k
	Extracting recalcitrant redox data on fluorophores to pair with optical data for predicting small-molecule, ionic isolation latticesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00137k
	Extracting recalcitrant redox data on fluorophores to pair with optical data for predicting small-molecule, ionic isolation latticesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00137k

	Extracting recalcitrant redox data on fluorophores to pair with optical data for predicting small-molecule, ionic isolation latticesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00137k
	Extracting recalcitrant redox data on fluorophores to pair with optical data for predicting small-molecule, ionic isolation latticesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00137k

	Extracting recalcitrant redox data on fluorophores to pair with optical data for predicting small-molecule, ionic isolation latticesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00137k
	Extracting recalcitrant redox data on fluorophores to pair with optical data for predicting small-molecule, ionic isolation latticesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00137k
	Extracting recalcitrant redox data on fluorophores to pair with optical data for predicting small-molecule, ionic isolation latticesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00137k
	Extracting recalcitrant redox data on fluorophores to pair with optical data for predicting small-molecule, ionic isolation latticesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00137k
	Extracting recalcitrant redox data on fluorophores to pair with optical data for predicting small-molecule, ionic isolation latticesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00137k

	Extracting recalcitrant redox data on fluorophores to pair with optical data for predicting small-molecule, ionic isolation latticesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00137k
	Extracting recalcitrant redox data on fluorophores to pair with optical data for predicting small-molecule, ionic isolation latticesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00137k
	Extracting recalcitrant redox data on fluorophores to pair with optical data for predicting small-molecule, ionic isolation latticesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00137k
	Extracting recalcitrant redox data on fluorophores to pair with optical data for predicting small-molecule, ionic isolation latticesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00137k
	Extracting recalcitrant redox data on fluorophores to pair with optical data for predicting small-molecule, ionic isolation latticesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00137k


