
Digital
Discovery

PAPER

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 0

8
A

ug
us

t 2
02

4.
 D

ow
nl

oa
de

d
on

 2
/3

/2
02

6
9:

16
:0

0
A

M
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d

L
ic

en
ce

.

View Article Online
View Journal | View Issue
PerQueue: mana
Department of Energy Storage and Conversio

Engelunds Vej 301, DK-2800 Kongens Lyngb

† Electronic supplementary informa
https://doi.org/10.1039/d4dd00134f

Cite this: Digital Discovery, 2024, 3,
1832

Received 15th May 2024
Accepted 7th August 2024

DOI: 10.1039/d4dd00134f

rsc.li/digitaldiscovery

1832 | Digital Discovery, 2024, 3, 183
ging complex and dynamic
workflows†

Benjamin Heckscher Sjølin, William Sandholt Hansen, Armando Antonio Morin-
Martinez, Martin Hoffmann Petersen, Laura Hannemose Rieger,
Tejs Vegge, Juan Maria Garćıa-Lastra and Ivano E. Castelli *

Workflow managers play a critical role in the efficient planning and execution of complex workloads. A

handful of these already exist within the world of computational materials discovery, but their dynamic

capabilities are somewhat lacking. The PerQueue workflow manager is the answer to this need. By

utilizing modular and dynamic building blocks to define a workflow explicitly before starting, PerQueue

can give a better overview of the workflow while allowing full flexibility and high dynamism. To exemplify

its usage, we present four use cases at different scales within computational materials discovery. These

encapsulate high-throughput screening with Density Functional Theory, using active learning to train

a Machine-Learning Interatomic Potential with Molecular Dynamics and reusing this potential for kinetic

Monte Carlo simulations of extended systems. Lastly, it is used for an active-learning-accelerated image

segmentation procedure with a human-in-the-loop.
1 Introduction

Attempting to do something for the rst time is always a big
undertaking. Whether this “something” is performed by
following in the footsteps of others or by forging one's own path
toward a workingmethod, a systematic approach can be of great
help. Trying a new method a number of times and with varying
approaches, one should be able to reach a method encapsu-
lating each step, which makes sense and is manageable to
perform repeatedly.

In having discovered and implemented this method, one has
found a workow for the process. This workow will contain
both the order and nature of the actions to perform and the
resources, both time and materials, required for each. By
examining the overall workow, one can split it into discrete
tasks, each of which might show up multiple times throughout
the workow. These tasks can require different resources but be
the same process, e.g., measuring an amount of a material,
mixing chemicals in aqueous media, performing a computa-
tional single-point calculation, or training a machine learning
(ML) model. Tasks can depend on the completion of other
tasks, and they can run in parallel with each other. A collection
of tasks can also be run over and over until some criterion is
satised. Of course, it is important that each of these tasks is
done correctly, but in the context of workows, the input,
n, Technical University of Denmark, Anker

y, Denmark. E-mail: ivca@dtu.dk

tion (ESI) available. See DOI:

2–1841
output, required (man)power, and interconnections are far
more important.

In summary, most methods can be represented by a work-
ow, which is a collection of connected (dependent) tasks with
input, output and required resources. By completing all the
tasks of the workow, one arrives at the nal result.

In our time, computers can be used to some extent in
virtually all applications, and in this context, a lot of the book-
keeping happening between tasks in a workow can be per-
formed using the computer itself. This allows one to focus on
the tasks themselves, while the computer keeps track of results,
inputs, and the order of tasks. Colloquially, a program that is
able to keep track of the workow is called a workow manager.

Quite a selection of workow managers exists,1,2 and in the
space of computational materials science, AiiDA,3,4 Covalent,5

FireWorks,6 Jobow,7 and MyQueue8 are already established
workow engines. They are all capable of running vast work-
ows with multiple workers and differing computational
resources. Despite their usability in many situations, it is still
hard to build truly dynamic workows – where the structure
changes while running – especially dynamic workows that
contain any sort of cyclicity of tasks. The need for dynamic
workows was determined to be one of the general workow
challenges at the workow summit of 2022,9 urgently needed for
ML/AI integrated workow.

A particular case is active learning workows, which have to
run the training-selection-labeling until the underlyingmodel is
good enough.10 These workows are hard to conceptualize in
these established managers. Additionally, the procedures for
setting up dynamic workows in these managers are not very
© 2024 The Author(s). Published by the Royal Society of Chemistry

http://crossmark.crossref.org/dialog/?doi=10.1039/d4dd00134f&domain=pdf&date_stamp=2024-09-06
http://orcid.org/0000-0002-4861-2132
http://orcid.org/0009-0002-0700-8016
http://orcid.org/0000-0002-3391-9967
http://orcid.org/0000-0001-5840-1796
http://orcid.org/0000-0002-2986-2937
http://orcid.org/0000-0002-1484-0284
http://orcid.org/0000-0001-5311-3656
http://orcid.org/0000-0001-5880-5045
https://doi.org/10.1039/d4dd00134f
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00134f
https://pubs.rsc.org/en/journals/journal/DD
https://pubs.rsc.org/en/journals/journal/DD?issueid=DD003009

Paper Digital Discovery

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 0

8
A

ug
us

t 2
02

4.
 D

ow
nl

oa
de

d
on

 2
/3

/2
02

6
9:

16
:0

0
A

M
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d

L
ic

en
ce

.
View Article Online
intuitive since the workow structure is revealed as the work-
ow is running, which means that making errors in the
construction is quite easy. Together, this results in a relatively
high barrier to entry for more complex use cases, where the
reliance on purely acyclic dependency graphs requires the user
to devise creative ways to implement loops in their workows.

With this in mind, we have created a different solution in
which the user has to specify the structure of the workow
upfront using a small selection of very powerful modular
building blocks. This workow manager is called PerQueue –

a contraction of Persistent Queue – and is supposed to be
a lightweight self-contained program that runs directly on the
resources where it is needed. With the dynamism of workows
within PerQueue, one can overcome the challenge of using
acyclic dependency graphs with cyclicity and still uphold the
FAIR principle. Supporting shareable dynamic workows
alongside generated databases with necessary metadata allows
easier reproduction of the workow outcome.
Fig. 1 A UML Class diagram for the user-oriented classes of the
PerQueue package. This describes the relations between different
classes and visualizes how TaskGroups can contain both Tasks and
other TaskGroups. Users only interact with the classes with colored
boxes, where the rest are for the internals of PerQueue.
2 PerQueue architecture

PerQueue is written in the Python3 programming language, and
it is designed to be a data-passing and persistence framework
that utilizes the MyQueue8 package to submit jobs to the chosen
queuing scheduler. The workows, including the state and data
for each task, are stored in an SQLite3 database that is stored
locally to where PerQueue runs from. This means that PerQueue
is meant to be installed on the (super)computer from where all
its workows will run, though a clever user will be able to start
the jobs on remote systems.

Contrary to its competing workow managers, dynamic and
exible workows in PerQueue are dened as if they were not
dynamic. Dynamic aspects are instead achieved by dening the
kind of dynamism of each step of the workow as part of its
specication. An example is a step that has to run over and over
until some condition is met, which is achieved by dening the
step as being cyclical. This means that the workow structure
must be determined upfront, instead of being built only
through execution. This allows the user to have a clear overview
of the workow already from the point of submission, instead of
relying on their own code to correctly and dynamically build the
workow. While this requirement for dening the workow
structure up front might seem to limit exibility, this is not the
case for PerQueue. The exible nature comes from being able to
connect the workow steps in a very uid manner and from
being able to call any code from inside Python, even other
executables. The dynamic aspect comes from some of the
workow pieces dened within PerQueue, which are described
later.

In the following sections, we explain the pieces that make up
PerQueue. To guide the reader, the UML Class diagram in Fig. 1
gives a useful overview of the relations between these pieces.
2.1 Architecture basics

In PerQueue, the workow itself consists of single pieces of
work, each denoted as a task and represented by a Task object.
© 2024 The Author(s). Published by the Royal Society of Chemistry
For creation, these require the path to the python script to run
(enforced to exist), its (known) arguments and the allocated
resources. Additionally, a custom name can be given to each
Task.

A singular task can be submitted to PerQueue on its own, but
the power of PerQueue only really shows when a collection of
these are connected within a Workow. Dependency linking is
done by representing the workow as a directed acyclic graph
(DAG), where the roots denote the tasks that are started
immediately, while the children only start when their parent
tasks have succeeded.

One of the strengths of PerQueue is the level of abstraction
that exists with workow creation. The Workow object can
contain not only Task objects but also other Workow objects,
such that sub-workows can be specied and reused without
incurring memory overheads or code duplication.

Submitting workows to PerQueue is achieved by running
a python script like the one shown in Chart 1. Once a Workow
or Task is submitted to the PerQueue manager, the manager
runs a static compilation of the workow, where sub-workows
are unpacked to result in as at a structure as possible. There-
aer, all the unique Tasks are committed to the database
together with all DynamicTaskGroups, described below.

The manager then nds all the Tasks that have no depen-
dencies or whose dependencies have been completed. It creates
an Entry for each of these and sends the entry to its specied
scheduler to run and get the result.

An Entry keeps track of a few things, most importantly which
Task to execute, its current state, its PerQueue specic argu-
ments, described later, and once completed, the data that the
script returned. Unless inserted as arguments or returned as
Digital Discovery, 2024, 3, 1832–1841 | 1833

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00134f

Chart 1 Submitting a simple two-layer workflow with PerQueue,
where two separate tasks depend on the same task, can be done by
running this script with Python. This script checks that the 3 python
scripts (“step_*.py”) exist and then runs them in the correct order as
subprocesses. The arguments dictionaries are serialized with JSON
and saved in the backing database. The code script for each
“step_*.py” can be found in the ESI.†

Digital Discovery Paper

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 0

8
A

ug
us

t 2
02

4.
 D

ow
nl

oa
de

d
on

 2
/3

/2
02

6
9:

16
:0

0
A

M
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d

L
ic

en
ce

.
View Article Online
data, other inputs to and outputs of an Entry are not stored in
the PerQueue database. A powerful feature of PerQueue is that
the returned data of Entrys is both stored in the database and
automatically forwarded to all subsequent tasks. This ensures
a exible and simple ow of data through any workow.
Moreover, it can ensure reproducibility, if the user stores all
relevant parameters of the task in the output. The arguments
and returned data for an Entry is de-/serialized as JSON, which
is how the data is stored in the backing database. An extended
JSON denition is used to support more datatypes such as
NumPy arrays.
2.2 Statically resolved task groups

PerQueue ships with a handful of modular workow pieces,
which simplify the construction of workows and are used for
setting up the dynamic parts of those workows.

The workow pieces are collectively denoted by TaskGroup.
These are then divided into two groups, that of StaticTaskGroups
which each have functionality at workow submission, and
DynamicTaskGroups which each have dynamic behavior. The
latter can only be resolved while the workow is running, since
they represent a choice to be made within the workow.

At the time of workow submission, PerQueue runs a static
compilation, which entails running recursively through the built
workow. Here, it collects all Task objects and resolves all Stat-
icTaskGroup objects by calling their resolve() method. This invo-
cation recursively calls the resolve() method of contained
TaskGroups and replaces them in the dependency graph with the
new subgraph returned from the method call. What each
TaskGroup returns when resolved is described in their subsection.
While all StaticTaskGroups can be fully resolved at submission –

such is their denition – any DynamicTaskGroup instead resolves
1834 | Digital Discovery, 2024, 3, 1832–1841
its contents and then returns itself. In effect, DynamicTaskGroups
are stored in the encapsulating Workow alongside the Tasks,
where they are ready to be processed before being run.

In this way, the static compilation attens the user-specied
workow down to its simplest possible representation, consist-
ing of only Tasks and DynamicTaskGroups, the latter of which
contains only Tasks and possibly other DynamicTaskGroups.

This ensures that the workow that PerQueue has to act on is
as simple as possible, while the setup created from the user's
perspective can be as exible and complex as they want.

2.2.1 Workow. The Workow object is used for gathering
tasks into a connected collection – the intended workow. This
means that the dependencies between tasks are dened within
this object. A restriction here is that the tasks must form a DAG,
which simply means that there can be no connections back to
earlier tasks – any task must depend on only tasks that are not
(eventual) dependencies of itself. This lack of cyclicity is
necessary for static compilation, but it can easily be introduced
with the use of a CyclicalGroup, which is described later.

The secondary job of the Workow object is to create sub-
workows since these can be given to other TaskGroups, or
simply be used for grouping tasks together. Due to the static
compilation, this incurs no memory overhead, and since the
sub-workows are attened by the compilation, it is very useful
for workow setup. When resolved, a Workow returns its own
dependency graph.

2.2.2 StaticWidthGroup. In cases where the workow
requires doing the same actions to a collection of data, where
the only difference between the actions is their input, one can
make use of a StaticWidthGroup (SWG). This takes either
a single Task or a Workow as its sub-workow. The SWG will
automatically create a number of parallel sub-workows – the
number given at creation as the width. Each sub-workow,
denoted as column, is given an index, such that the code can
index back into a data array to get the right input.

When resolved, this group creates the columns described
above and returns the disconnected graph generated by this
operation, where each Entry contains a piece of data, pq_index,
which is the column index of that/those task(s). Contrary to its
dynamic counterpart, the DynamicWidthGroup, this group
requires that the width is known at the time of workow
submission, which means it is useful for, e.g., triple determi-
nation of an experiment or a set number of endpoints for
a Nudged Elastic Band (NEB)11 calculation.
2.3 Dynamic task groups

One of the main features of PerQueue is that of dynamic groups
of tasks, which are TaskGroups that are resolved during the
execution of the workow itself. This allows one to include logic
in the workow that depends on the results obtained within the
workow itself. These are DynamicTaskGroups, which are the
way dynamism is implemented within PerQueue.

Currently, PerQueue contains three types of Dynam-
icTaskGroup. These are the CyclicalGroup, the Dynam-
icWidthGroup and the SwitchGroup, each of which is explained
below. What they have in common is that they take an input
© 2024 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00134f

Paper Digital Discovery

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 0

8
A

ug
us

t 2
02

4.
 D

ow
nl

oa
de

d
on

 2
/3

/2
02

6
9:

16
:0

0
A

M
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d

L
ic

en
ce

.
View Article Online
from their dependencies, which determines their behavior in
a known way.

2.3.1 CyclicalGroup. The CyclicalGroup (CG) allows a group
of tasks to run over and over again until a given condition is
met, and the loop is terminated. This functionality is just like
a while-loop with both a hard iteration limit and a break
condition for each loop iteration. When created, the group takes
a parameter, max_tries, that species the maximum number of
times the group of tasks can run before PerQueue stops
executing the loop. This hard limit is enforced to ensure that the
workow does stop at some point, raising an error, instead of
trying forever on something that will possibly never exit. It is
possible to effectively disable this limit by setting it to a very
large number.

Working with a CG requires that at least one of the nal tasks
of the group returns the PerQueue constant CYCLICAL-
GROUP_KEY as a boolean – True means stop the loop. If
multiple tasks return this value, the loop continues if any of
them returns False.

2.3.2 DynamicWidthGroup. The DynamicWidthGroup
(DWG) is the dynamic version of the SWG, where the number of
columns is determined from the task(s) immediately before the
DWG in the workow. This also means that no workow can
begin with a DWG, since there will be no task to give the
required data. To give the width to the group, at least one of the
dependency tasks must return the PerQueue constant
DYNAMICWIDTHGROUP_KEY with the width as an integer,
which must be the same if returned from multiple tasks.

Besides the dynamic nature of the DWG, it has exactly the
same functionality as the SWG.

2.3.3 SwitchGroup. The SwitchGroup (SG) functions like
a block of if-elseif-else clauses – also known as a switch or match
statement – where the execution path is determined by the
dependencies. At submission, one denes a dictionary of keys
and Task or Workow values, such that each key corresponds to
a specic sub-workow. A restriction here is that an empty path
is not allowed due to how the workows are stored in the
database.

To control which path the workow takes during runtime, at
least one of the dependency tasks must return the PerQueue
constant SWITCHGROUP_KEY with the key for the given path.
To skip the SG – taking the empty path not allowed at creation –

one can set the value of the SWITCHGROUP_KEY to the Per-
Queue constant SWITCHGROUP_SKIP. This acts as if the path
was empty skipping the SG. In this way, the no-operation is still
possible.
2.4 Filtering workows

PerQueue has another capability, which is that it natively
implements ltering workow steps, where each Entry can
mark itself as discarded upon nishing. This ensures that none
of its dependents get to run since the task itself determined that
it did not fulll its ltering condition.

In this way, workows in PerQueue can easily reduce
resource usage, e.g., high-throughput workows, where one is
interested in performing only the relevant calculations.
© 2024 The Author(s). Published by the Royal Society of Chemistry
3 Use cases

The following sections show the power and exibility of Per-
Queue in real-world cases. These are deliberately chosen to be at
different scales to illustrate the wide applicability of the work-
ow manager.

This starts with a workow for high-throughput screening
with ltering steps using Density Functional Theory (DFT).
Secondly, a workow that utilizes active learning to accelerate the
training of machine-learning interatomic potentials. Thirdly,
a workow for cluster expansion and (kinetic) Monte Carlo
simulations. Lastly, a workow for active learning for segmenting
electrode images with a human annotator is presented. The
submission scripts for all four cases are available in the ESI.†
3.1 High-throughput screening for solid-state electrolytes

High-throughput computational screenings serve as robust
frameworks for generating novel candidate materials tailored
for specic applications.12,13 These screenings begin with the
creation of a vast pool of starting systems, which are subse-
quently subjected to a series of steps that determine whether
the material is still a good candidate. This is analogous to
a dynamic funnel. Each step operates under dened conditions,
allowing qualied systems to progress further along the
screening pipeline. As the screening advances, there is an
anticipated increase in the computational cost associated with
calculations.

In this context, our objective is to explore a fraction of the
vast chemical space in pursuit of adept solid-state electrolyte
materials by means of DFT. A SWG is used to run the same
workow for three different vacancy locations in the material
for each of the starting systems. At each “Conditional”
connection in Fig. 2, that branch of the workow can decide to
stop, using the concept described in Section 2.4. The high-
throughput aspect is implemented by creating one of these
schematics for each of the thousands of decorations available
by using different elements on the atomic positions of a proto-
type material. Consequently, by the nal step, the number of
candidate systems is signicantly reduced, facilitating the
utilization of resource-intensive techniques such as NEBs.

To streamline this process, a comprehensive workow
manager proves indispensable. Such a manager should not only
facilitate the tracking of past and forthcoming steps but also
empower users by enabling automated decision-making based
on the generated results. PerQueue stands out in this capacity
by abstracting complex workows into simple parallel graphs,
whose data passing allows for enhanced traceability through
robust provenance tracking. PerQueue efficiently handles
multiple parallel instances, essential for conducting high-
throughput computational screenings. Moreover, the inclu-
sion of descriptors within the manager's framework aids in
identifying deviations from desired criteria. This enables users
to si through non-conforming results and reduce unnecessary
workload. Armed with this detailed insight, users can make
informed decisions despite the large amount of generated data
points, thus optimizing the screening process.
Digital Discovery, 2024, 3, 1832–1841 | 1835

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00134f

Fig. 2 Schematic of a PerQueue workflow tailored for high-
throughput computational screenings. A dashed arrow indicates that
the workflow can stop at that step, since a criterion is not upheld. The
StaticWidthGroup is used to run the same sub-workflow for three
different vacancy locations. The high-throughput aspect is imple-
mented by instantiating this schematic for each of the thousands of
decorations.

Fig. 3 Schematic of a PerQueueworkflow for efficient data generation to
involves four steps, train-simulate-select-label, to explore the potential e
set at each cycle, which results in a progressively more accurate MLIP. Fi
ensemble for an initial MLIP. Then a CyclicalGroup is entered, which e
calGroup, the four steps are implemented as DynamicWidthGroups. With
of configurations, but using DynamicWidthGroups allows dynamically
iterations.

1836 | Digital Discovery, 2024, 3, 1832–1841

Digital Discovery Paper

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 0

8
A

ug
us

t 2
02

4.
 D

ow
nl

oa
de

d
on

 2
/3

/2
02

6
9:

16
:0

0
A

M
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d

L
ic

en
ce

.
View Article Online
In essence, the synergy between high-throughput computa-
tional screenings and advanced workow management tools
like PerQueue marks a signicant development in material
discovery methodologies. By automating repetitive tasks and
providing enhanced decision-making capabilities, these tools
not only expedite the screening process but also empower
researchers to explore novel material landscapes with greater
efficiency and precision.

3.2 Active learning for machine-learning interatomic
potentials using molecular dynamics

The use of machine learning in computational chemistry has
increased signicantly due to its ability to combine the accuracy
of ab initiomethods with the efficiency of classical force elds.14

The main requirement for these force elds is a high-quality
data set. This means additional tasks must be performed
before the ML model can be used to calculate properties of the
system with traditional computational methods. These extra
steps contain data generation, training of the ML model itself,
and oen relies on active learning which is a machine learning
algorithm that iteratively adds more data to the training set
which maximally benets the model, greatly cutting down the
total amount of data needed.15 This can lead to complex work-
ows, e.g., the methodology used in CURATOR16 for efficient
data generation, which can be effectively managed by PerQueue.

CURATOR is an autonomous batch active learning workow
for constructing Machine-Learned Interatomic Potentials
construct machine-learned interatomic potentials (MLIP). Themethod
nergy surface. These are run continuously, adding new data to the data
rst, a number of models are trained using a StaticWidthGroup giving an
nds when the MLIP reaches the accuracy criterion. Within the Cycli-
in an iteration the width of simulate-select-label is fixed to the number
updating the number of configurations and trained models between

© 2024 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00134f

Paper Digital Discovery

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 0

8
A

ug
us

t 2
02

4.
 D

ow
nl

oa
de

d
on

 2
/3

/2
02

6
9:

16
:0

0
A

M
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d

L
ic

en
ce

.
View Article Online
(MLIPs). The workow efficiently explores the potential energy
surface (PES) to generate training data by employing four steps.
First, a MLIP is trained on an initial data set, which is then used
to simulate the PES through methods such as Molecular
Dynamics (MD). This is done for a given number of congura-
tions, e.g., structures with different vacancy concentrations.
Using batch active learning, informative batches from the
exploration are selected to calculate the true DFT energy for these
images. The images are added to the training set, such that the
model can be retrained. This is continued for several iterations,
until the trained model reaches the required accuracy.

To provide a seamless user experience, these four steps,
train-simulate-select-label, can be encapsulated in a workow
using the PerQueue engine (Fig. 3). A priori, it is unknown how
many iterations are needed to reach the required accuracy,
which the CyclicalGroup solves by starting a new iteration if the
accuracy is not reached aer the model is trained on the new
data. Additionally, it might be benecial to dynamically change
which congurations to explore. For example, if the model is
extremely accurate for a given vacancy concentration, little new
information is gained by exploring that concentration, so it
should be stopped. By using a DynamicWidthGroup for the
simulate-select-label steps the exploration is stopped for well-
learnt congurations. Finally, it is common to use an
ensemble of models with different hyperparameters for the
MLIP to provide a measure of uncertainty. By also using
Fig. 4 Schematic for PerQueue workflow for Cluster Expansion (CE) mod
initiated with the system's structure file, CE parameters, MC parameters a
(DFT) or a trained machine learning potential – within a single Task. The
optimizations within a DynamicWidthGroup, such that the number of op
is used to re-train the CE model. The CyclicalGroup stops when the CE m
from the training. Following this, a StaticWidthGroup contains MC sim
simulate the dynamics of interest. The group width corresponds to eithe

© 2024 The Author(s). Published by the Royal Society of Chemistry
a DynamicWidthGroup for the train step, the ensemble size can
be updated during the workow, in case the user wishes so.

Thus, PerQueue both reduces the work required by the user
through autonomous handling of task submission, while also
giving complete control and exibility to the user if the work-
ow has to be modied while in progress.
3.3 Cluster expansion for Monte Carlo simulations

Following the ML/MD workow presented above, one can
expand this to even larger system sizes. Considering a system of
micrometer scale, we would like to nd the most stable
conguration and model its dynamics. Doing so is possible
through either MD or Monte Carlo (MC) simulations.

Themost stable congurations of the system are required for
MD simulation to model the dynamics, while MC methods can
both nd the most stable conguration and model the
dynamics.17 Using purely ML would be too computationally
demanding, due to its nonlinear scaling, which is why this use
case employs another method called Cluster Expansion (CE),18

which shows linear scaling. With a trained CE model, each MC
will be performed in microseconds, making CE the ideal tool to
perform MC simulations of larger systems.

The workow illustrated in Fig. 4 is used to efficiently obtain
a trained CE model. The workow autonomously trains a CE
model for a particular system, only based on the structure le
for that system and the chosen CE model parameters.
el training and Monte Carlo (MC) simulation workflow. The workflow is
nd employed optimization method – either Density Functional Theory
next part of the workflow is done with a CyclicalGroup, with geometry
timizations in each iteration can be varied. Each geometry optimization
odel has reached convergence, defined by the cross-validation score

ulations for low energy structures and kinetic Monte Carlo (kMC) to
r several permuted systems or a single system.

Digital Discovery, 2024, 3, 1832–1841 | 1837

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00134f

Fig. 5 Schematic for the PerQueue workflow for segmentation with
active learning. A single Task is responsible for training the segmen-
tation model, and inside a CyclicalGroup, the main process of active
learning using the expert annotator for labeling is easily handled by just
three single Tasks.

Digital Discovery Paper

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 0

8
A

ug
us

t 2
02

4.
 D

ow
nl

oa
de

d
on

 2
/3

/2
02

6
9:

16
:0

0
A

M
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d

L
ic

en
ce

.
View Article Online
Importantly one can choose what method should be used to
perform geometry optimizations. That can either be pure DFT,19

which should be used for smaller sizes, or machine learning
interatomic potentials. These MLIPs can either be one like the
one described in Section 3.2 (CURATOR16) or a foundation
model.20

Using the dynamic nature of PerQueue for this workow
allows for on-the-y limiting the search space of the CE models
training. Implementation-wise, this means that the number of
randomly generated structures to optimize during each itera-
tion of a CG, as well as the convergence criteria, can be changed
dynamically during model training by using a DWG. The
dynamic framework also autonomously changes the method,18

used to generate structures for the training, based on the
convergence value. The CE model training method can also be
changed for each iteration. This makes the training dynamic,
which is needed since a purely autonomous CE model training
can be truly difficult. Obtaining an accurately trained CE model
initiates the MC simulation, where simulations for one or
several systems are run in parallel by employing a SWG. This
enables the annealing process to be performed efficiently by
minimizing the number of MC steps needed for each temper-
ature. A kinetic Monte Carlo (kMC) simulation, using the low
energy structure for a specic temperature from the MC simu-
lation, is then run to simulate the dynamics of the structure
based on the diffusion barriers of each movement.21

PerQueue manages all this within a single workow,
orchestrating the workow autonomously while allowing for on-
the-y human interaction when needed. Thus, PerQueue is able
to autonomously and efficiently train a CE model and perform
meso-scale simulations.
3.4 Active learning for efficient image segmentation

With 3D imaging techniques such as X-ray nano-holo-
tomography, high-resolution images of electrode material
microstructures can be obtained.22–24 Being able to quantify these
microstructures in terms of the proportions of active and inactive
material, their geometric organization, and the development of
cracks as the battery is cycled, is important to gain insights into
the electrochemical properties of the battery.

To do so, it is necessary to attribute each pixel in a slice to the
different phases, referred to as segmentation, with high accu-
racy. Unfortunately, this process is still reliant on expert anno-
tation. This is time-intensive and slows down research. Luckily,
deep learning methods for segmentation have reached high
accuracy and present a viable alternative. However, they also
require large amounts of data. For this task we use a U-Net
architecture and show that a U-Net trained on an extensive
dataset can reach human-level accuracy.25

Naturally, the workow includes alternating steps of model
training, selection of new samples to be added to the training
set and annotation of those samples by an expert.

In this process, the deep learning model is initially trained
with roughly annotated data. Once the model has converged to
a good accuracy on this data, new data points where the model
is highly uncertain are chosen to be annotated and added to the
1838 | Digital Discovery, 2024, 3, 1832–1841
training set. The expert annotator then has to annotate the
samples, aer which training is re-initiated. The training
continues until the model has converged and the new accuracy
is calculated. The entire workow is shown in Fig. 5.

By utilizing a CG, PerQueue allows repeating the process until
the model is as accurate as required for the subsequent task
without needing to set a xed number of repetitions in advance.
The process alternately requires GPU resources and an action by
the expert annotator. By being able to switch between processes,
GPU resources can be reserved only when they are needed for
training and not in the time intensive step of labeling. If multiple
networks are to be trained for an ensemble of neural networks,
this can easily be done without needing to restructure the process
by simply introducing a SWG and a DWG in the workow.

Since the annotation is reliant on a human expert, the task
called Label would currently involve a waiting loop that checks
whether the annotations have been added to the respective
folder. If the task were to involve both a human and computa-
tional resources, e.g., to utilize a pre-trained model for
segmentation with anchor points to accelerate the high-
accuracy segmentation, it would be advantageous to have the
human task incorporated explicitly in the workow.26 Similarly,
it would be necessary if the human task has an expected waiting
time exceeding the maximally allowed process time.
4 Outlook

Beyond the examples shown above, which comprise materials
modeling and articial intelligence, the design of PerQueue is
able to leverage the power of Materials Acceleration Platforms
(MAPs). MAPs disruptively accelerate the materials discovery by
© 2024 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00134f

Paper Digital Discovery

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 0

8
A

ug
us

t 2
02

4.
 D

ow
nl

oa
de

d
on

 2
/3

/2
02

6
9:

16
:0

0
A

M
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d

L
ic

en
ce

.
View Article Online
AI-orchestrating theoretical and experimental capabilities from
many different sources and sites.27,28 In MAPs, the next experi-
ment or simulation depends on the result of the previous step.
This means that, to be efficient, MAPs require a dynamic
workow able to interact with different techniques and to
handle data from various sources.29 PerQueue is one of the rst
examples of this. Among many examples of MAPs, FINALES is
a battery problem-agnostic framework for preparation and
characterization of electrolytes, cell assembly and testing, early
lifetime prediction, and ontologized data storage.30 PerQueue
could be used to increase the autonomy of the whole system by
having complex workows run dynamically with minimally
required user interaction.

As can be seen from the above sections, PerQueue is already
a quite capable piece of soware for managing and running
exible and dynamic workows, but it could be improved
further.

One of the things that could still be implemented into the
program is the concept of a ManualTask, in which the workow
pauses and waits for user input. This could be very powerful in
connection with workows that contain both computational
resources and laboratory or other manual labor, where a human
is required to be in the loop. Currently, this can be handled by
a waiting loop within the task that only exits when the user gives
it some input – the result of the manual task.

Additionally, PerQueue is a young piece of soware, and
where its competitors can run asynchronously with many
service providers to get results from many different places,
PerQueue is stuck on its local system, which makes remote calls
impractical. Allowing PerQueue to live as a service that can
communicate with many providers could be very interesting. At
the moment, PerQueue is also very much tailored for single user
workows, so it could use better capabilities for multi-user
workows. In conjunction with this, the scaling capabilities of
PerQueue have not been tested yet, so it could be of interest to
stress-test the soware for its ability to support large-scale
concurrency in the future.

5 Conclusions

Here, we have introduced the soware PerQueue, which is a new
workow manager written in Python3. PerQueue is a highly
exible workow manager that focuses deeply on dynamic
workows, whose structure is dened up front to reduce the
number of mistakes generally encountered in dynamic work-
ows. The concept of PerQueue, and the method by how it
achieves its goals, is by treating the workow setup as a building
blocks session, where predened modular blocks connect to
make a full workow.

These building blocks allow PerQueue workows to exhibit
cyclicity, dynamic width of parallel sub-workow and powerful
conditional control, with ltering workows natively supported.

All this is backed by a local database that stores the state and
returned data of all the tasks of the workow and keeps track of
the dependency graphs that prescribe the order of operations.

Having introduced this new piece of soware for workow
management, its usage in four different computational use
© 2024 The Author(s). Published by the Royal Society of Chemistry
cases has been showcased. These deliberately cover multiple
scales encountered within materials discovery. They go from
a high-throughput study with DFT over MLIPs trained with
active learning for MD and kMC applications within extended
systems, and ending with image segmentation of microstruc-
tures of synthesized materials accelerated by active learning
ML.

In summary, the authors hope that PerQueue will aid
multiple researchers in accelerating their work processes in
a simple but powerful way, leveraging easily accessible dynamic
functionality and data passing between each task.

Data availability

The source code of PerQueue is available as a repository on
GitLab (https://gitlab.com/asm-dtu/perqueue). PerQueue is
licensed through the GPL-v3 license due to its use of MyQueue.8

Author contributions

Benjamin H. Sjølin: conceptualization, methodology, soware,
writing – original dra, visualization. William S. Hansen: vali-
dation, investigation, writing – original dra, visualization.
Armando A. Morin-Martinez: validation, investigation, writing –
original dra, visualization. Martin H. Petersen: validation,
investigation, writing – original dra, visualization. Laura H.
Rieger: investigation, writing – original dra, visualization. Tejs
Vegge: resources, supervision, funding acquisition, writing –

review & editing. Juan M. G. Lastra: supervision, funding
acquisition. Ivano E. Castelli: conceptualization, visualization,
supervision, project administration, funding acquisition,
writing – review & editing.

Conflicts of interest

There are no conicts to declare.

Acknowledgements

BHS, AAMM, IEC, MHP, and JMGL acknowledge extensive
support from the Independent Research Fund Denmark (BHS,
IEC: Research Project 1, project “Rational Design of High-
Entropy Oxides for Protonic Ceramic Fuel Cells”, HERCULES,
grant no. 1032-00269B. AAMM, IEC: Research Project 2, project
“Nano-Engineered Solid State Ionic Metal Oxides for Near-
Room Temperature Oxygen Conductivity”, NEMO, grant no.
1032-00261B. MHP, JMGL: Research Project 2, project “Data-
driven quest for TWh scalable Na-ion battery”, TeraBatt, grant
no. 2035-00232B). WSH and JMGL acknowledges that this
project has received funding from the European Research
Council (ERC) under the European Union's Horizon 2020
research and innovation programme (grant agreement no.
101054572). LHR acknowledges support from the Energy
Technology Development and Demonstration Programme
(“ViPES2X: Fully AI-driven Virtual Power Plant for Energy
Storage and Power to X”). TV acknowledges funding from the
Pioneer Center for Accelerating Materials Discovery (CAPeX),
Digital Discovery, 2024, 3, 1832–1841 | 1839

https://gitlab.com/asm-dtu/perqueue
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00134f

Digital Discovery Paper

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 0

8
A

ug
us

t 2
02

4.
 D

ow
nl

oa
de

d
on

 2
/3

/2
02

6
9:

16
:0

0
A

M
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d

L
ic

en
ce

.
View Article Online
DNRF Grant P3. This project has received funding from the
European Union's Horizon 2020 research and innovation pro-
gramme under grant agreement no. 957189 (BIG-MAP). It is also
part of BATTERY 2030+ initiative under grant agreement no.
957213.

References

1 J. Schaarschmidt, J. Yuan, T. Strunk, I. Kondov, S. P. Huber,
G. Pizzi, L. Kahle, F. T. Bölle, I. E. Castelli, T. Vegge,
F. Hanke, T. Hickel, J. Neugebauer, C. R. C. Rêgo and
W. Wenzel, Adv. Energy Mater., 2021, 12, 2102638.

2 P. Amstutz, M. Mikheev, M. R. Crusoe, N. Tijanić and
S. Lampa, Existing workow systems, Common Workow
Language Wiki, 2024, https://s.apache.org/existing-workow-
systems, accessed July 2024.

3 S. P. Huber, S. Zoupanos, M. Uhrin, L. Talirz, L. Kahle,
R. Häuselmann, D. Gresch, T. Müller, A. V. Yakutovich,
C. W. Andersen, F. F. Ramirez, C. S. Adorf, F. Gargiulo,
S. Kumbhar, E. Passaro, C. Johnston, A. Merkys,
A. Cepellotti, N. Mounet, N. Marzari, B. Kozinsky and
G. Pizzi, Sci. Data, 2020, 7, 300.

4 M. Uhrin, S. P. Huber, J. Yu, N. Marzari and G. Pizzi, Comput.
Mater. Sci., 2021, 187, 110086.

5 W. Cunningham, A. Esquivel, C. Jao, S. Sanand, F. Hasan,
V. Bala, P. Venkatesh, A. S. Rosen, M. Tandon, O. E. Ochia,
D. Welsch, J. Kanem, A. Prabaharan, A. Ghukasyan,
H. Horowitz, R. Li, S. W. Neagle, V. Kostadinov, S. Dutta,
P. U. Rao, F. Boltuzic, U. Kulkarni, A. Hughes, R. Gurram,
A. Mukesh and A. R. Kashyap, AgnostiqHQ/covalent:
v0.232.0, 2024, DOI: 10.5281/zenodo.5903364.

6 A. Jain, S. P. Ong, W. Chen, B. Medasani, X. Qu, M. Kocher,
M. Brafman, G. Petretto, G. Rignanese, G. Hautier, D. Gunter
and K. A. Persson, Concurrency and Computation: Practice and
Experience, 2015, vol. 27, pp. 5037–5059.

7 A. S. Rosen, M. Gallant, J. George, J. Riebesell,
H. Sahasrabuddhe, J.-X. Shen, M. Wen, M. L. Evans,
G. Petretto, D. Waroquiers, G.-M. Rignanese, K. A. Persson,
A. Jain and A. M. Ganose, J. Open Source Sow., 2024, 9, 5995.

8 J. J. Mortensen, M. Gjerding and K. S. Thygesen, J. Open
Source Sow., 2020, 5, 1844.

9 R. F. da Silva, R. M. Badia, V. Bala, D. Bard, P.-T. Bremer,
I. Buckley, S. Caino-Lores, K. Chard, C. Goble, S. Jha,
D. S. Katz, D. Laney, M. Parashar, F. Suter, N. Tyler,
T. Uram, I. Altintas, S. Andersson, W. Arndt, J. Aznar,
J. Bader, B. Balis, C. Blanton, K. R. Braghetto, A. Brodutch,
P. Brunk, H. Casanova, A. C. Lierta, J. Chigu, T. Coleman,
N. Collier, I. Colonnelli, F. Coppens, M. Crusoe,
W. Cunningham, B. d. P. Kinoshita, P. Di Tommaso,
C. Doutriaux, M. Downton, W. Elwasif, B. Enders,
C. Erdmann, T. Fahringer, L. Figueiredo, R. Filgueira,
M. Foltin, A. Fouilloux, L. Gadelha, A. Gallo, A. G. Saez,
D. Garijo, R. Gerlach, R. Grant, S. Grayson, P. Grubel,
J. Gustafsson, V. Hayot-Sasson, O. Hernandez, M. Hilbrich,
A. Justine, I. Laotte, F. Lehmann, A. Luckow, J. Luettgau,
K. Maheshwari, M. Matsuda, D. Medic, P. Mendygral,
M. Michalewicz, J. Nonaka, M. Pawlik, L. Pottier,
1840 | Digital Discovery, 2024, 3, 1832–1841
L. Pouchard, M. Putz, S. K. Radha, L. Ramakrishnan,
S. Ristov, P. Romano, D. Rosendo, M. Ruefenacht,
K. Rycerz, N. Saurabh, V. Savchenko, M. Schulz,
C. Simpson, R. Sirvent, T. Skluzacek, S. Soiland-Reyes,
R. Souza, S. R. Sukumar, Z. Sun, A. Sussman, D. Thain,
M. Titov, B. Tovar, A. Tripathy, M. Turilli, B. Tuznik, H. van
Dam, A. Vivas, L. Ward, P. Widener, S. Wilkinson,
J. Zawalska and M. Zulqar, Workows community
summit 2022: a roadmap revolution, arXiv, 2023, preprint,
arXiv:2304.00019, DOI: 10.48550/ARXIV.2304.00019.

10 B. Settles, Active Learning Literature Survey, University of
Wisconsin–Madison Computer Sciences Technical Report,
2009, vol. 1648.

11 G. Henkelman and H. Jónsson, J. Chem. Phys., 2000, 113,
9978–9985.

12 F. T. Bölle, N. R. Mathiesen, A. J. Nielsen, T. Vegge,
J. M. Garcia-Lastra and I. E. Castelli, Batteries Supercaps,
2020, 3, 488–498.

13 B. H. Sjølin, P. B. Jørgensen, A. Fedrigucci, T. Vegge,
A. Bhowmik and I. E. Castelli, Batteries Supercaps, 2023, 6,
e202300041.

14 O. T. Unke, S. Chmiela, H. E. Sauceda, M. Gastegger,
I. Poltavsky, K. T. Schütt, A. Tkatchenko and K.-R. Müller,
Chem. Rev., 2021, 121, 10142–10186.

15 M. Wu, C. Li and Z. Yao, Appl. Sci., 2022, 12, 8103.
16 X. Yang, M. H. Petersen, R. Sechi, W. S. Hansen,

S. W. Norwood, Y. Krishnan, S. Vincent, J. Busk,
F. R. J. Cornet, O. Winther, J. M. Garcia Lastra, T. Vegge,
H. A. Hansen and A. Bhowmik, CURATOR: building robust
machine learning potentials for atomistic simulations
autonomously with batch active learning, ChemRxiv, 2024,
preprint, DOI: 10.26434/chemrxiv-2024-p5t3l.

17 X. Zhang and M. H. F. Sluiter, J. Phase Equilib. Diffus., 2015,
37, 44–52.

18 J. H. Chang, D. Kleiven, M. Melander, J. Akola, J. M. Garcia-
Lastra and T. Vegge, J. Phys.: Condens. Matter, 2019, 31,
325901.

19 J. Hafner, J. Comput. Chem., 2008, 29, 2044–2078.
20 I. Batatia, P. Benner, Y. Chiang, A. M. Elena, D. P. Kovács,

J. Riebesell, X. R. Advincula, M. Asta, M. Avaylon,
W. J. Baldwin, F. Berger, N. Bernstein, A. Bhowmik,
S. M. Blau, V. Cărare, J. P. Darby, S. De, F. Della Pia,
V. L. Deringer, R. Elijošius, Z. El-Machachi, F. Falcioni,
E. Fako, A. C. Ferrari, A. Genreith-Schriever, J. George,
R. E. A. Goodall, C. P. Grey, P. Grigorev, S. Han,
W. Handley, H. H. Heenen, K. Hermansson, C. Holm,
J. Jaafar, S. Hofmann, K. S. Jakob, H. Jung, V. Kapil,
A. D. Kaplan, N. Karimitari, J. R. Kermode, N. Kroupa,
J. Kullgren, M. C. Kuner, D. Kuryla, G. Liepuoniute,
J. T. Margraf, I.-B. Magdău, A. Michaelides, J. H. Moore,
A. A. Naik, S. P. Niblett, S. W. Norwood, N. O'Neill,
C. Ortner, K. A. Persson, K. Reuter, A. S. Rosen,
L. L. Schaaf, C. Schran, B. X. Shi, E. Sivonxay,
T. K. Stenczel, V. Svahn, C. Sutton, T. D. Swinburne,
J. Tilly, C. van der Oord, E. Varga-Umbrich, T. Vegge,
M. Vondrák, Y. Wang, W. C. Witt, F. Zills and G. Csányi, A
foundation model for atomistic materials chemistry, arXiv,
© 2024 The Author(s). Published by the Royal Society of Chemistry

https://s.apache.org/existing-workflow-systems
https://s.apache.org/existing-workflow-systems
https://doi.org/10.5281/zenodo.5903364
https://doi.org/10.48550/ARXIV.2304.00019
https://doi.org/10.26434/chemrxiv-2024-p5t3l
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00134f

Paper Digital Discovery

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 0

8
A

ug
us

t 2
02

4.
 D

ow
nl

oa
de

d
on

 2
/3

/2
02

6
9:

16
:0

0
A

M
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d

L
ic

en
ce

.
View Article Online
2024, preprint, arXiv:2401.00096, DOI: 10.48550/
ARXIV.2401.00096.

21 P. Canepa, ACS Mater. Au, 2022, 3, 75–82.
22 T. Nguyen, J. Villanova, Z. Su, R. Tucoulou, B. Fleutot,

B. Delobel, C. Delacourt and A. Demortière, Adv. Energy
Mater., 2021, 11, 2003529.

23 S. De Angelis, J. Villanova, P. S. Jørgensen, V. Esposito and
J. R. Bowen, Acta Mater., 2024, 273, 119965.

24 J. Villanova, J. Laurencin, P. Cloetens, P. Bleuet, G. Delette,
H. Suhonen and F. Usseglio-Viretta, J. Power Sources, 2013,
243, 841–849.

25 O. Ronneberger, P. Fischer and T. Brox, Medical Image
Computing and Computer-Assisted Intervention – MICCAI
2015, Springer International Publishing, Cham, 2015, pp.
234–241.

26 R. Docherty, I. Squires, A. Vamvakeros and S. J. Cooper,
SAMBA: a trainable segmentation web-app with smart
labelling, arXiv, 2023, preprint, arXiv:2312.04197, DOI:
10.48550/ARXIV.2312.04197.

27 M. M. Flores-Leonar, L. M. Mej́ıa-Mendoza, A. Aguilar-
Granda, B. Sanchez-Lengeling, H. Tribukait, C. Amador-
Bedolla and A. Aspuru-Guzik, Curr. Opin. Green Sustainable
Chem., 2020, 25, 100370.
© 2024 The Author(s). Published by the Royal Society of Chemistry
28 S. Stier, C. Kreisbeck, H. Ihssen, M. A. Popp, J. Hauch,
K. Malek, M. Reynaud, J. Carlsson, L. Gold, F. Goumans,
I. Todorov, A. Räder, S. T. Bandesha, W. Wenzel,
P. Jacques, O. Arcelus, F. Garcia-Moreno, P. Friederich,
M. Maglione, S. Clark, A. Laukkanen, M. C. Cabanas,
J. Carrasco, I. E. Castelli, H. S. Stein, T. Vegge, S. Nakamae,
M. Fabrizio and M. Kozdras, The Signicance of Accelerated
Discovery of Advanced Materials to Address Societal
Challenges, 2023, https://zenodo.org/record/8012140.

29 I. E. Castelli, D. J. Arismendi-Arrieta, A. Bhowmik, I. Cekic-
Laskovic, S. Clark, R. Dominko, E. Flores, J. Flowers,
K. Ulvskov Frederiksen, J. Friis, A. Grimaud, K. V. Hansen,
L. J. Hardwick, K. Hermansson, L. Königer, H. Lauritzen,
F. Le Cras, H. Li, S. Lyonnard, H. Lorrmann, N. Marzari,
L. Niedzicki, G. Pizzi, F. Rahmanian, H. Stein, M. Uhrin,
W. Wenzel, M. Winter, C. Wölke and T. Vegge, Batteries
Supercaps, 2021, 4, 1803–1812.

30 M. Vogler, J. Busk, H. Hajiyani, P. B. Jørgensen, N. Safaei,
I. E. Castelli, F. F. Ramirez, J. Carlsson, G. Pizzi, S. Clark,
F. Hanke, A. Bhowmik and H. S. Stein, Matter, 2023, 6,
2647–2665.
Digital Discovery, 2024, 3, 1832–1841 | 1841

https://doi.org/10.48550/ARXIV.2401.00096
https://doi.org/10.48550/ARXIV.2401.00096
https://doi.org/10.48550/ARXIV.2312.04197
https://zenodo.org/record/8012140
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00134f

	PerQueue: managing complex and dynamic workflowsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00134f
	PerQueue: managing complex and dynamic workflowsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00134f
	PerQueue: managing complex and dynamic workflowsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00134f
	PerQueue: managing complex and dynamic workflowsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00134f
	PerQueue: managing complex and dynamic workflowsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00134f
	PerQueue: managing complex and dynamic workflowsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00134f
	PerQueue: managing complex and dynamic workflowsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00134f
	PerQueue: managing complex and dynamic workflowsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00134f
	PerQueue: managing complex and dynamic workflowsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00134f
	PerQueue: managing complex and dynamic workflowsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00134f
	PerQueue: managing complex and dynamic workflowsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00134f
	PerQueue: managing complex and dynamic workflowsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00134f

	PerQueue: managing complex and dynamic workflowsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00134f
	PerQueue: managing complex and dynamic workflowsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00134f
	PerQueue: managing complex and dynamic workflowsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00134f
	PerQueue: managing complex and dynamic workflowsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00134f
	PerQueue: managing complex and dynamic workflowsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00134f

	PerQueue: managing complex and dynamic workflowsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00134f
	PerQueue: managing complex and dynamic workflowsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00134f
	PerQueue: managing complex and dynamic workflowsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00134f
	PerQueue: managing complex and dynamic workflowsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00134f
	PerQueue: managing complex and dynamic workflowsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00134f
	PerQueue: managing complex and dynamic workflowsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00134f

