Open Access Article. Published on 03 October 2024. Downloaded on 1/27/2026 6:35:17 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Digital
Discovery

#® ROYAL SOCIETY
PPN OF CHEMISTRY

View Article Online

View Journal | View Issue,

i ") Check for updates ‘

Cite this: Digital Discovery, 2024, 3,
2275

laboratories

AlabOS: a Python-based reconfigurable workflow
management framework for autonomous

Yuxing Fei, © +2° Bernardus Rendy, & 12 Rishi Kumar,+¢ Olympia Dartsi,®
Hrushikesh P. Sahasrabuddhe,® Matthew J. McDermott, &° Zheren Wang, @ 2°
Nathan J. Szymanski,alb Lauren N. Walters,@b David Milsted,@b Yan Zeng,*bd
Anubhav Jain*¢ and Gerbrand Ceder & *2°

The recent advent of autonomous laboratories, coupled with algorithms for high-throughput screening and
active learning, promises to accelerate materials discovery and innovation. As these autonomous systems

grow in complexity, the demand for robust and efficient workflow management software becomes

increasingly critical. In this paper, we introduce AlabOS, a general-purpose software framework for

orchestrating experiments and managing resources, with an emphasis on automated laboratories for
materials synthesis and characterization. AlabOS features a reconfigurable experiment workflow model

Received 13th May 2024
Accepted 30th September 2024

and a resource reservation mechanism, enabling the simultaneous execution of varied workflows

composed of modular tasks while eliminating conflicts between tasks. To showcase its capability, we

DOI: 10.1039/d4dd00129j

rsc.li/digitaldiscovery

1 Introduction

Computational and data-driven approaches have shaped a new
paradigm for materials discovery, leveraging recent advances in
high-performance computing and machine learning."” Despite
these advances, the experimental realization of computationally
predicted compounds remains a slow, yet essential step in
materials discovery and development.**® Substantial progress
has been made to increase experimental throughput while
reducing human involvement, as demonstrated by several
automated laboratories that utilize synthesis methods based on
flow chemistry,"** thin-film deposition,’>*® solution-based
synthesis,"”” and solid-state synthesis.'®** These laboratories
have also been integrated with predictive computational tools
such as high-throughput density functional theory (DFT)
calculations,"**** machine learning algorithms for automated
interpretation of characterization data,>*” and optimization
algorithms that can perform decision making.**** The

“Department of Materials Science & Engineering, University of California, Berkeley, CA
94720, USA. E-mail: gceder@berkeley.edu

*Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA
94720, USA. E-mail: yanzeng@Ibl.gov

‘Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, CA
94720, USA. E-mail: ajain@Ibl.gov

‘Department of Chemistry & Biochemistry, Florida State University, Tallahassee,
Florida 32306, USA. E-mail: zeng@chem.fsu.edu

T Equal contribution.

© 2024 The Author(s). Published by the Royal Society of Chemistry

demonstrate the implementation of AlabOS in a prototype autonomous materials laboratory, the A-Lab,
with around 3500 samples synthesized over 1.5 years.

integration of computational modeling and artificial intelli-
gence into autonomous laboratories gives rise to what is known
as self-driving laboratories (SDLs), which can explore material
spaces with minimal human intervention.**** The rising
prominence of SDLs has elevated the significance of robotics
and machine learning for materials research. To accommodate
this changing landscape from the human-centric experimenta-
tion diagram, improved tools are needed to manage robotics
and the data they rapidly produce.?¢3*

In designing workflow management software, one can learn
from the automated workflows developed for high-throughput
DFT calculations.**** These workflows provide a high-level
user interface from which materials and calculation types can
be specified, abstracting the lower-level tasks required to
perform such calculations.*»** These computational manage-
ment software need to effectively organize large datasets, a task
similarly required for experimental management. However,
orchestrating an autonomous laboratory creates additional
challenges, in particular, requiring the seamless integration of
tasks and data with physical hardware and experimental
samples, which is crucial for maintaining uninterrupted
operation.

Several workflow management programs have previously
been developed and implemented in different autonomous
laboratories with diverse applications. For example, ChemOS
2.0 (ref. 44) proposes an integral platform between DFT calcu-
lation, Bayesian optimization, and automated equipment
communicated through the SiLA2 protocol.** Helao* and

Digital Discovery, 2024, 3, 2275-2288 | 2275

http://crossmark.crossref.org/dialog/?doi=10.1039/d4dd00129j&domain=pdf&date_stamp=2024-11-03
http://orcid.org/0000-0002-1225-2083
http://orcid.org/0000-0001-8309-6279
http://orcid.org/0000-0002-4071-3000
http://orcid.org/0000-0002-2742-9451
http://orcid.org/0000-0002-9710-9146
http://orcid.org/0000-0003-0415-910X
http://orcid.org/0000-0001-9275-3605
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00129j
https://pubs.rsc.org/en/journals/journal/DD
https://pubs.rsc.org/en/journals/journal/DD?issueid=DD003011

Open Access Article. Published on 03 October 2024. Downloaded on 1/27/2026 6:35:17 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Digital Discovery

Helao-async”” present a highly modularized design by imple-
menting each component as a web server, enabling workflow
management across laboratories. Bluesky*® has been applied to
synchrotron facilities, with a strong emphasis on controlling
synchrotron characterization hardware, to improve data
collection efficiency but not targeted to materials synthesis.
Additional software packages have supported laboratories
involving automated experiments, featured with expandability
and reconfigurability across different experiment stations,*
standardized data specification and storage, and seamless
integration with other science tools as a “science factory”.”
These software solutions have successfully orchestrated exper-
iment workflows in autonomous laboratories within their
domains.

On the other hand, recent trends toward increased
throughput and greater complexity in autonomous laboratories
necessitate workflow software to manage more diverse work-
flows with a higher volume of autonomous devices. For
instance, in our use case as well as others aiming to boost
overall throughput, a laboratory can feature multiple equivalent
devices for a single task, such as several furnaces for heating or
two X-ray diffractometers for characterization. Due to the lack of
knowledge about the availability of devices during runtime, the
workflow management system must dynamically allocate the
devices to each task based on their needs, thereby maximizing
the utilization rate of the autonomous laboratory. Moreover, as
general-purpose research laboratories often run different
workflows with varied task sequences simultaneously, a recon-
figurable workflow model has become essential, with certain
parts of the workflow being executed in parallel. For example,
after a sample is synthesized, multiple characterizations can be
performed concurrently while storage operation has to wait
until all the characterizations are done. Depending on the
needs of the experiments, different experiment procedures need
to be executed in the same laboratory setting. Thus, an
expressive workflow model is required to effectively encode
such task order dependencies while preserving flexibility when
composing the workflow. Efforts have been made to handle
some of these challenges. For example, a scheduling strategy is
developed to tackle the multi-device problem, which requires an
accurate time model for each task to ensure efficiency.””
However, only by addressing all of these practical needs,
a workflow management software can fit better into an auton-
omous laboratory with increased complexity and throughput
and allow researchers greater freedom to push the boundaries
of autonomous experimentation.

Herein, we present AlabOS, a versatile and accessible work-
flow management framework for autonomous laboratories. The
system features a graph-based experimental workflow model
with tasks being the nodes and task dependencies being the
edge. A central resource manager is built into the system, to
track the status of devices and allocate resources properly to
each task, thus eliminating possible conflicts between tasks
running at the same time in the laboratory. Furthermore, Ala-
bOS proposes the concept of sample position, representing
a position in the laboratory that can hold one sample. By
tracking the sample's position, AlabOS makes it possible to

2276 | Digital Discovery, 2024, 3, 2275-2288

View Article Online

Paper

track individual samples in real time. This Python-based soft-
ware is platform-independent and designed to be user-friendly,
requiring basic knowledge about database and parallel
programming for community adoption. Considering the errors
and maintenance demands in the daily operations of an
autonomous laboratory, a status monitoring and notification
system is built into the software along with a browser-based
graphic user interface (GUI). AlabOS serves as a general
framework for managing workflows, designed to simplify the
programming required to establish an autonomous laboratory.
At the same time, it maintains the flexibility to accommodate
various workflows within the laboratory. Other features of Ala-
bOS include:

e Provide a solution for autonomous laboratory workflow
management, with common functionalities like resource
management, and notification built in.

e Built with MongoDB (NoSQL) backend, supporting a flex-
ible schema, and allowing standardized continuous develop-
ment of each task input, output, and data storage operations.

e A standard way to define devices and tasks with base
classes when setting up a new lab using AlabOS. A simulation
mode is also built in, allowing quick debugging of the devices
and tasks.

e Submission and status monitoring APIs with JSON format.
The users can set up scripts for job submission and queries on
top of AlabOS. The input and output of the experiments can be
validated by Pydantic® before being stored in the database.

The AlabOS system is actively deployed in the A-Lab," an
autonomous laboratory for inorganic materials synthesis
housed at Lawrence Berkeley National Laboratory (LBNL). At the
time of writing, it has synthesized and characterized over 3500
distinct samples under the control of AlabOS.

2 Key concepts and system design
2.1 Status representations

In AlabOS, a laboratory is represented as a combination of
samples, devices, tasks, and experiments entities (Fig. 1). Each
entity record is maintained in a separate collection in a Mon-
goDB instance and updated during runtime to synchronize with
the autonomous laboratory.

A sample entity describes its name, position, and other
metadata specified during submission (e.g., the composition of
the sample and the project that the sample belongs to). A
sample position is a space in the laboratory that can be occu-
pied by one sample at a time. The sample positions are defined
by operators before the system is up. When robots (or humans)
move samples, the positions of the samples in the database are
updated to track its physical location throughout the experi-
ments. Every sample is assigned a human-readable name and
a unique global ID for tracking purposes. Within autonomous
laboratories, transferring a sample from one container to
another is common. In this case, the old container will be
disposed of in the physical laboratory while the sample itself
will be updated to the position of the new container. When
a sample is completely removed from the laboratory, its

© 2024 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00129j

Open Access Article. Published on 03 October 2024. Downloaded on 1/27/2026 6:35:17 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper
(a) Samples o
Reserved position
Occupied by Reserved
sample 1 position

Empty position Empty position

(b) Devices
Name Status Task Type
furnace-1 Furnace
furnace-2 @ Reserved Task1 Furnace
arm-1 . Reserved Task 2 Arm
balance @ Paused None Balance
(c) Tasks
Completed
Completed Running

O

Running Waiting

Ready Waiting

(d) Experiments

- ,»,{ Task 1
[Samplet §o0 |

Py -
.

P
AN

[Sample 2 }";,,"/::{ Task 3]

—r

Fig. 1 Schematic representation of lab states managed within the
AlabOS system. The lab status is divided into four collections: (a) the
sample collection tracks the samples’ positions and identifies the task
reserving each position; (b) the device collection records the status of
the devices and the task assigned to each of them; (c) the task
collection records the order of execution for each task. The order of
tasks is encoded in a graph data structure to ensure sequential
execution is performed in the correct order; (d) the experiment
collection records a batch of samples and their associated tasks.

position will be set to null while the database entry describing
its position history is kept for future reference.

A device refers to a piece of hardware to process or collect
data from sample(s). Each device entity is linked to hardware in
the lab that can send commands, perform physical operations,
and collect data. Some examples of these operations in mate-
rials synthesis include sample dispensing, weighing, heating,
and grinding. In AlabOS, a device is defined in Python code that
provides the methods to communicate with the data transfer
protocols like MODBUS,** TCP/IP, and serial. Each device will

© 2024 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Digital Discovery

have an entry in the database that indicates its status: whether it
is occupied by a task, or whether it is paused for maintenance.

A task entity contains the procedure to execute a sequence of
operations on a set of samples using the specified device. In
a task, all relevant devices are orchestrated to achieve a high-
level objective. For instance, to carry out a Heating task, the
process begins by sending a request to the furnace to open its
door. Following this, a robotic arm moves the designated
samples into the now-open furnace. After the samples are
loaded, a program is activated to heat the furnace to a temper-
ature specified by the operator. Considering the parallel nature
of an autonomous laboratory, where multiple samples may be
processed simultaneously, a resource assignment mechanism
is used to avoid conflicts between tasks in resource assignment.
Before initiating control over one device or sample, each task
has to request devices and sample positions. Once the resources
are assigned, the task runs the procedures. After completion,
the associated resources are released, allowing other tasks to
request and use them. Apart from processing, a task could also
be used for data generation and analysis for characterization or
decision-making. In this case, the output of one task is directed
as an input for another task by utilizing sample metadata as an
information proxy.

An experiment is composed of one or multiple series of tasks
to obtain conclusions. When submitting an experiment, the
operator can specify a directed acyclic graph (DAG) of tasks to be
performed on each sample. The execution sequence is guaran-
teed by the directed edge in DAG, where each node represents
a task and each edge represents its order. A task can only be
started when it does not have any unfinished parent tasks,
which are defined to happen before this task. Relationships
among tasks are stored in the task collection, where each task
has a previous_tasks field and a next_tasks field. Whenever
a task is completed, the system will initiate, request resources,
and launch any descendent tasks when they are ready.

To maximize throughput, an autonomous laboratory often
processes samples in batches. In AlabOS, an experiment can
contain multiple samples and tasks. A task can accept one or
more samples as input, depending on its predefined capacity.
For example, if a furnace has a capacity for up to eight samples
at a time, the Heating task will not accept more than eight
samples.

2.2 AlabOS architecture

AlabOS is designed to be a manager-worker architecture (Fig. 2).
When a task is ready to run within this architecture, a worker
object (named task actor) is instantiated in a new process by
a task manager that executes the task logic. The managers
monitor the status of the task actors and respond to each actor's
requests for resources in the laboratory. Since the task actors
only communicate with the managers, the interaction between
ongoing laboratory tasks is eliminated. As a result, no conflicts
between concurrent tasks (race conditions) need to be consid-
ered when defining the tasks' logic. The core services also run
a dashboard server, which provides operators with a browser-
based GUI and a set of APIs. The lab operator (Fig. 2a) can

Digital Discovery, 2024, 3, 2275-2288 | 2277

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00129j

Open Access Article. Published on 03 October 2024. Downloaded on 1/27/2026 6:35:17 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

View Article Online

Digital Discovery Paper
()
(a) H 1. Launch Worker
task
O Processes
Q b o ¢ Task
Server Manager [
Operators (j) Task Actor Python
(f) 8 2. Resources script
@{B request (
8 Request lab resources
Experiment Resource L
(b) o Manager Manager
A\ ==
b - - - - - ---- - (9) E 3. Send
i commands
Physical | Operate the devices
Laboratory . |
Manager MDeV'Ce
Processes anager
4. Log data
b and send
(h) Logger L user request (Send user request and log
L data |
(i) User Request L(P -

Fig.2 Anarchitecture diagram for AlabOS. (a) Human operators submit experiments, monitor the laboratory state, and manage user requests. (b)
The physical laboratory performs these tasks via manager processes. These include (c) the dashboard server that hosts the user interface and APIs
for monitoring and controlling the experiment workflows; (d) the experiment manager that transforms high-level requests into specific tasks; (e)
the task manager that launches each task and monitors its status; (f) the resource manager that assigns and tracks the status of available lab
devices and sample positions; (g) the device manager that directs traffic between task actors and physical lab devices. Outside the manager
processes, (h) a logger module logs the runtime information and saves task results into a central database; (i) a user request module requests user
interventions and sends user responses back to the requester. In the worker processes, each task is carried out within (j) a task actor that can
request resources, send commands to devices, log data, and initiate user requests.

easily submit, view, and cancel experiments in the autonomous
laboratory using these interfaces.

There are four manager processes used to monitor and
manipulate the status of the physical laboratory Fig. 2b at
different levels: experiments, tasks, devices, and resources (the
assignment of sample positions and devices). In addition,
a dashboard server is working as the manager process to receive
commands from the operators. All the managers communicate
with one another through a database instance that is hosted on
either a local computer or a cloud-based server. The experiment
manager (Fig. 2d) receives experimental submissions from the
dashboard server (Fig. 2c) and parses them into task graphs.
The task manager (Fig. 2e) verifies and launches these tasks
ready in the laboratory. It also monitors the status of each task
as it is carried out. The task manager is alerted when a task is
completed, or an error is encountered. It then marks all
subsequent tasks as being ready or canceled accordingly. The
resource manager (Fig. 2f) responds to the tasks' requests to
occupy certain devices and sample positions in the lab. When
a request is received, the manager checks the availability of all
requested devices and sample positions. If the request can be
met, the resource manager assigns the devices and sample
positions to the task. The assignment will be valid until the

2278 | Digital Discovery, 2024, 3, 2275-2288

signal is received that the task's resources are released. The
device manager (Fig. 2g) is the intermediate layer between each
task and the physical lab device it affects. When a task requests
the device manager to send a command to some device, it first
checks whether the device is occupied before sending the
commands required to complete the task.

To interface with the manager processes in a user-friendly
way, a dashboard server (Fig. 2c) with a GUI is provided. This
allows the operator to control and monitor the progress of any
experiments running in the laboratory, while also showing the
current states of all devices in the lab. In addition to the GUI,
this dashboard provides an API that can receive new experiment
submissions in a JSON format.>* Each experiment submission is
validated using Pydantic>* models to ensure the correctness of
all formats and values.

In the worker processes, many task actors (Fig. 2j) run
simultaneously to execute different tasks in the laboratory. In
AlabOS, each task is configured in advance before the start of
a new experiment. All tasks are defined as Python objects
inherited from the BaseTask class available in the AlabOS
package, providing universal methods for interacting with
manager processes, the logger, and the user request module. To
execute lab operations, the task actor must first request to

© 2024 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00129j

Open Access Article. Published on 03 October 2024. Downloaded on 1/27/2026 6:35:17 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

occupy some devices and sample positions from the resource
manager. When the request is approved, it continues to send
commands to devices via the device manager while also
updating each sample's position in the database. The data and
device signal (e.g., the real-time temperature in a furnace)
generated during the task will be logged to the database by the
logger module (Fig. 2h). If the task requires any human inter-
vention (for example, recovering a robot arm from error, or
replacing consumables), it will generate a notification via the
user request module, which the human operators can
acknowledge once it is resolved.

3 Features and implementations

Several features are incorporated into AlabOS for resource
management, human-machine interaction (HMI), lab device
control, and data organization to ensure the autonomous
laboratory runs efficiently and smoothly. These are detailed in
the next few sections.

3.1 Resource management

Unlike traditional materials research laboratories, where
human experts perform various tasks (like sample preparation,
heating, and characterization) serially, autonomous laborato-
ries usually take a more distributed and parallelized approach.
For example, a robot may dispense and weigh precursor
powders while an automated furnace is heating a separate batch
of samples that have already been weighed. There is typically
a queue of pending tasks that the laboratory must plan and
account for. To ensure the lab's continuous and successful
operation without requiring human intervention, the system

class Heating(BaseTask):
skipping some initialization code

main method to execute task logic
def run(self):

with self.request_resources({BoxFt

View Article Online

Digital Discovery

should avoid any possible conflicts between these tasks while
also maximizing the overall throughput by organizing the
distribution of tasks in a parallel fashion.

In AlabOS, resource management is carried out using
a cooperative multitasking schema.*® Before tasks perform any
operations in the laboratory, it has to request the necessary
resources from the AlabOS system. All the resource requests are
handled by a module named resource manager, which will
parse each request and check if there are any idle devices and
sample positions that can fulfill the request. Once the request
can be fulfilled, the resource manager will mark the assigned
devices and sample positions as occupied and let the task know
which devices and sample positions it can use. The task can
then send commands to the assigned devices and move
samples into the assigned sample positions. Once those oper-
ations are finished, the associated resources are released to be
assigned to other tasks. To avoid the occurrence of “dead
resources” where tasks are completed without releasing their
resources properly, the system introduces a with-statement
context for all requests, as shown in Fig. 3. Once resources are
assigned to a task, they are recorded in a resource request
context. All operations involving these resources need to be
performed within this context to avoid a permission error.
When the task is completed and exits the request context, it will
automatically release all the requested resources, regardless of
the task’s success or failure.

A resource request can contain multiple devices and sample
positions. In an autonomous laboratory, it is sometimes
common to have multiple devices operating with the same
functions (e.g., multiple furnaces for heating) to increase the
lab's throughput. A task can operate on equivalent devices to
obtain the desired results. In the task definition, a request can

irnace: {"inside": 8}}) as req_1:

now the task has the ownership of one furnace,
eight positions inside the furnace

with self.request_resources({Rol

ootArm:

{11) as req_2:

now the the task owns the robot arm
move samples into the furnace

the task release the robot arm but can still use furnace

run heating program
furnace.heat()

with self.request_resources({RobotArm:

the the task owns the robot

{}}) as req_3:
arm again

move samples out of the furnace

the task releases all the resources

return some_data

Fig. 3 A code example of the resource request in the task definition. In this example, the Heating task initiates three resource requests with their
contexts highlighted in different colors. The requested resources are assigned by the resource manager when entering Python's “with” context. It

will be automatically released when exiting the context.

© 2024 The Author(s). Published by the Royal Society of Chemistry

Digital Discovery, 2024, 3, 2275-2288 | 2279

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00129j

Open Access Article. Published on 03 October 2024. Downloaded on 1/27/2026 6:35:17 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Digital Discovery

either specify the name of an exact device to use (e.g., Furnace A)
or a type of device (e.g., muffle furnace). If a device type is
specified, the resource manager will find any available device(s)
under that type. The sample position request is then attached to
the specific device. For example, one task may want to reserve
the sample positions inside one furnace chamber. In this case,
the sample positions request will be handled once the device
request can be satisfied. When the resource manager finds an
available combination of devices that can satisfy the request, it
will advance to solve the available sample positions based on
the proposed devices. Once both the devices and sample posi-
tions requests can be met, a request will be fulfilled and
assigned to the corresponding tasks. With such a non-
preemptive resource allocation strategy, the resource request
serves in a “first-come-first-serve” strategy with the task priority
taken into consideration. This does not need additional infor-
mation like how long the task will occupy these resources.
However, it also assumes that all the tasks do not occupy
resources for an unreasonably long time which would lead to
sample pileups in the lab. It is generally recommended for the
laboratory developer to have a good knowledge of the bottle-
necks and throughput of the laboratory and set up the right
amount of tools to avoid this. On the other hand, it is always
a good idea to break the resource request into many small
pieces to avoid booking some resources for too long a time.
Before the task definition is deployed in the physical laboratory,
the lab developer should fully test the workflow definition in the
simulation mode described in Section 3.3 to ensure the ex-
pected behavior of a task definition. More sophisticated
scheduling of equipment reservation techniques® could be
integrated within AlabOS to further optimize the throughput.
When initiating a resource request, a priority can also be
attached to determine the urgency of the request. The resource
request's priority is kept the same as the priority of the task,
which is specified by the user during submission as a task
parameter (default to “NORMAL” priority). The resource
requests’ priority can also be overridden by supplying
a customized value when creating a resource request inside the

2.0
@ & °

- 7.407 msltask (]

£15 ®

% .

é 1.0 :

[5)

S

© 0.5

:% 50 Devices
0.0 1000 Sample Positions

-0 200 400

Number of concurrent tasks

View Article Online

Paper

task. It is sometimes useful to force a higher priority to the post-
processing operations in a task. For example, the sample must
be unloaded from the X-ray diffractometer before the next
sample can be loaded. In this case, it is necessary to prioritize
the unload operation to avoid gridlock in the laboratory. The
priority is encoded as an ordinal number ranging from 1 to 100.
The priority is used to establish a ranking between resource
requests, without any implication of proportional difference
between the values. The default priority of all the tasks is 20,
which indicates normal priority. When the resource manager
polls the pending requests, it will first rank them by their
priority and then, if they have the same priority number, by
their submission time. The pending request that has a higher
priority and was submitted earlier will generally be handled
first.

In an autonomous laboratory, many tasks can request
resources at the same time. It is necessary to handle the large
amount of possible resources on time so that the task can be
executed faster. To understand the performance of the resource
manager, a virtual lab with M devices, each of which has 20
associated sample positions, is defined. At each step, there
are N tasks that request one device with one to twenty sample
positions. Such configuration simulates the situation when the
laboratory has a heavy workload. At each step, the resource
manager will try to assign resources to each task. The CPU wall
time is collected at different conditions. As shown in Fig. 4a,
when the number of devices is fixed, the processing time for all
the tasks' requests scales linearly with the task number at small
task numbers (=120). The average processing time for one task
is 7.407 ms obtained from the slope of the fitted line. When the
number of tasks continues to increase, the processing time
deviates down from the fitted line. This may be attributed to
a saturation of the resources. When there are way more tasks
requesting resources compared to the available devices, most
tasks' requests cannot be fulfilled in one step, leading to a pro-
cessing time shorter than the time predicted by the linear
relationship. The performance of the resource manager on
different numbers of devices is shown in Fig. 4b. Similar to the

4
(b) 5

) . i {

23 14.073 ms/device . .

® ¢

(_%’uzz

[0)

(0]

g1

(0]

>

< 0 200 Concurrent Tasks

0 100 200 300

Number of devices

Fig.4 The execution time of processing resource requests under different numbers of tasks, devices, and sample positions. The time to process
all the resource requests (a) with varied numbers of tasks in a virtual lab with 50 devices and 1000 sample positions (20 sample positions per
device), (b) with fixed 200 tasks in a virtual lab with varied number of devices and sample positions (20 sample positions per device). The test is run
on a Macbook Pro 2021 with M1 Pro CPU, 32 GB RAM. Each point is run 10 times repeatedly to obtain the error bar. The top and bottom of the

error bar represent the 25th and 75th quantile of all the runtime data.

2280 | Digital Discovery, 2024, 3, 2275-2288

© 2024 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00129j

Open Access Article. Published on 03 October 2024. Downloaded on 1/27/2026 6:35:17 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

performance under varied task numbers, with the number of
devices increasing, the processing time first follows a linear
relationship with a slope of 14.073 ms/device and then becomes
flat due to the saturation of the tasks. When the devices are
much more than the tasks, most devices remain idle and do not
cost any time for resource assignment.

Compared to the time required for completing a normal
operation in the laboratory for solid-state synthesis, which
usually takes several minutes to hours, the time for assigning
resources is nearly negligible, thus ensuring a higher turnover
rate in the laboratory. In some cases, multiple operations can be
short and complete in a few seconds, while requiring different
resources to complete. If that is the case, it is generally rec-
ommended to combine these short operations and request the
resources all at once to minimize the waiting time.

View Article Online

Digital Discovery

3.2 User interaction

To better facilitate daily maintenance and monitoring of
experimental progress, AlabOS interacts with the operators
through a web-based dashboard server (Fig. 5). In the dash-
board, the operators can check the real-time status of each
sample, device, and task running or queued in the lab. It also
provides a variety of interfaces for human-machine interaction.
These are detailed below.

3.2.1 Status monitoring. The dashboard shows the real-
time status of all experiments, tasks, devices, and samples
running or queued in the lab (Fig. 5a). An experiment will
appear in the dashboard as soon as it is submitted to the
system. The samples and tasks belonging to the experiment will
also be shown in a scroll-down table. The sample position will
be displayed next to each sample's name. Each task entry has

(a) Name # Samples Submitted At Progress
~ 20240501_PG_alpha_batch_20 20 5/1/2024,12:20:41 PM —
~ Samples
~ Tasks
Name Status Message
PowderDosing COMPLETED Workflow has been completed.
PowderDosing COMPLETED Workflow has been completed.
Heating at 900.00C for 60.00 minutes
Heati RUNNING
eating Temperature: 376.0 C...
Heating COMPLETED Samples are cooled down. Heating task is finished
RecoverPowder REQUESTING_RESOURCES
(b) Task Prompt Send Response
Ending Remove PG_3443_1_1 in filled_vial_storage_bin_A/1 and place in Note (Optional)

long-term storage.

DeviceRequest

Only 39 mg was recovered. Please recover the sample manually
from the crucible at slot 19 of the Buffer Rack.The sample is
PG_4047_1_1, the corresponding plastic vial is at position

SUCCESS v OPTIONS

Note (Optional)

filled_vial_rack/5.Dispose the crucible into the waste bin OK v OPTIONS
afterwards. Click OK when done.
(C) Name Samples Message Pause
box_a Heating at 900 C for
- 5 - PAUSE
BoxFurnace 60 minutes
box_b
N 4 v PAUSE
BoxFurnace
BoxFurnace

box_d
BoxFurnace

Fig. 5

RELEASE

Images of three pages associated with different tabs in the dashboard. (a) The main tab shows the status of ongoing experiments. Each

experiment has a progress bar with different colors, including blue (all tasks are running normally, shown here), green (all tasks are completed),
and red (at least one task encountered an error). (b) The notification page shows messages from the system and its tasks. The operators can
choose from the options provided and take action as instructed for maintenance and error recovery. (c) The device page shows the status of each
device. When the operators wish to perform maintenance on a device, they can pause it from this page so that it will no longer be assigned to any
tasks.

© 2024 The Author(s). Published by the Royal Society of Chemistry Digital Discovery, 2024, 3, 2275-2288 | 2281

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00129j

Open Access Article. Published on 03 October 2024. Downloaded on 1/27/2026 6:35:17 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Digital Discovery

a name, status, and message that provides human-readable
information about what the task is currently doing. The
message is designed by operators in the task definition with
a set_message method in the base task class.

In addition to monitoring the real-time status of the lab, the
dashboard also provides a cancellation button for each ongoing
experiment and task, which can force the wunfinished
experiments/tasks to stop running. When the task receives
a cancellation signal but has not started, it will be canceled
directly. If the task is running, an error will be raised in the task
process, where it is automatically decided how to halt the
process without causing a sudden interruption of the lab's
robotic operation.

3.2.2 Notification. Human interaction in an autonomous
laboratory is essential to maintain a smooth operation. When
something unexpected is detected in the laboratory (e.g:,
increased environment temperature, or the robot arm failing to
pick up a sample), the autonomous lab should notify the
operators in time to avoid further damage. Clear instructions
should be given so that it requires minimal knowledge to act
according to the notification.

In AlabOS, the notification can be initiated by either the
system (manager instances) or the task processes. It can be used
whenever a human action is needed. Each notification contains
a prompt field and a list of possible options for the operators to
select. The notification requires a receipt of acknowledgment
from the operators with one option selected. Once that option is
selected and the operator has completed the necessary tasks,
the program will be carried out according to the selected
actions. With clear notification messages designed when
defining the tasks, the notification can be handled by the users
without much knowledge about the autonomous laboratory.
Thus, the maintenance jobs can be distributed among the lab
developers and lab users.

Apart from the dashboard messages, notifications can also
be configured to send over Slack bot or email. Further exten-
sions can be made to other notification platforms, such as
IFTTT,” with minor programming efforts.

3.2.3 Exception handling. Because autonomous laborato-
ries are generally used for research purposes, exceptions in
hardware and software are inevitable. For example, the robot
arm encountering an unexpected object can lead to a hardware
exception, while the driver code failing to communicate with
the robot arm would be considered a software exception. In
AlabOS, errors are raised as standard Python exceptions in the
task actor process. The exceptions are classified as recoverable
or unrecoverable. Recoverable exceptions refer to issues caught
in the task process, usually in Python's “try-except” block. The
raised error will not lead to the exiting of a program. Instead,
there will be a handling routine that either retries or notifies
human operators to check and recover manually. In contrast, an
unrecoverable exception will lead to the failure of an entire task.
These are not caught by the “try-except” block. AlabOS provides
a default handling routine to notify human operators of all
unrecoverable exceptions. They can then remove and replace
any affected samples, reset the occupied devices, and resume
the system to complete any other remaining samples.

2282 | Digital Discovery, 2024, 3, 2275-2288

View Article Online

Paper

3.3 Device control

The AlabOS system uses a centralized manager to monitor and
control all devices in a laboratory. The task actors do not
communicate directly with the physical equipment to execute
commands and read data. Instead, they send all commands to
the device manager through a remote procedure call (RPC).*® In
each task, an identical RPC proxy class will be created as an in-
place replacement for the task to send commands. In this way,
the RPC communication will not change the way driver
methods are called in the task definition, as opposed to directly
calling the devices' methods.

Instead of creating the device driver objects in the task
process, the indirect method call ensures the global singleton of
each device. This helps to avoid the conflicts that can arise from
multiple commands. Furthermore, the device manager checks
the ownership of the requested devices and prevents them from
being operated by tasks that do not reserve them. This mini-
mizes the chance of conflicts and accidents in the laboratory.

To facilitate the rapid integration of new workflows in the
autonomous laboratories, each device can be switched to
simulation mode to allow tasks to run without connecting to the
actual equipment. In the simulation mode, the operators can
select to skip some methods (usually related to communication
with the equipment) by applying a “mock” decorator to the
method in the device definition. A mocked object with certain
attributes will be specified as the return value in the “mock”
decorator. In this way, the task can still proceed with the return
values to test its functionalities, without requiring to talk with
the hardware and their corresponding device drivers.

3.4 Data storage

The system provides a logger object for tracking and storing
data. Each piece of data is saved as a document in MongoDB,
with some metadata that includes information such as the data
source and its time of logging. The logged data is classified as
device signal, sample amount, characterization result, system
log, and “other” which includes all the data that do not fall into
the previous four catalogs. The classification of logged data
improves the organization of the database. Apart from the
classification, each logged data also has a level to indicate its
importance, ranging from 10 to 50. In this scheme, level 10 is
intended for debugging, while level 50 is intended for fatal
errors. In each task actor process, a logger object will be created
at the beginning of the task. During runtime, it can be called
conveniently to log the data. For example, it can be used to
record the real-time temperature of the oven at a regular interval
during the Heating task, which can be read afterward from the
database for debugging and post-analysis.

Despite the logger's ease of use, logged data can still become
unstructured and scattered in the database. For example, each
point of the real-time temperature of the furnace can be a single
log document in the database. To make the data more acces-
sible to researchers, we also provide a “result” field for each
task. At the end of each task, the task can gather data generated
during the run and return them as a Python dictionary. AlabOS
stores all returned data in the result field. For example, one can

© 2024 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00129j

Open Access Article. Published on 03 October 2024. Downloaded on 1/27/2026 6:35:17 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

return the temperature-time curve at the end of the Heating
task, which is especially useful when troubleshooting failed
syntheses. If a large file needs to be stored in the database,
AlabOS also provides a “LargeResult” object to handle the large
file with MongoDB GridFS backend. The large file will be stored
as chunks, with a reference ID generated and linked to the
result collection.

When an experiment is completed, all data involving sample
information, task results, and metadata can be copied to
a backup database. This can be configured as a remote database
on a cloud server. After being copied, no change will be made to
these data. The operators can later query the data needed from
this backup database. In this way, AlabOS ensures data safety
and alleviates concerns about any potential file loss in the local
database.

3.5 Experiment submission

In AlabOS, all the experiments are submitted through the
dashboard server, where an API is exposed to receive all the
experiment submissions. The format of the experiment is first
validated to ensure the correct processing afterward. The
validated experiment is then dumped into an experiment
collection, where the experiment manager instance keeps
polling and builds samples and task graphs according to the
experiment specifications. The raw input format is in JSON
format, which includes the sample and task information.
Although it is easy for the system to parse the JSON format, it is
usually not straightforward for the users to compose the input
file directly. An experiment builder class is introduced to help
users to define experiments in a Python script. When an
experiment builder is created, the name and metadata of the
experiment should be provided. With an “add_sample”
method, the users can create and add samples to the experi-
ments. Then the tasks are created and attached to the samples.
The experiment builder will record the sequence of the tasks
added to each sample and build the task graph with the
dependency specified in the sequence. Finally, the experiment
can be converted to a JSON format string and submitted to the
submission API with a “submit” method. The users can also
query the experiment status and results from the experiment
information API.

The submission API and the experiment builder serve as
a high-level abstraction to the autonomous laboratory. It
resembles the queue management system in high-performance
computing (HPC) clusters. When submitting jobs to HPC, the
users do not need to pay attention to how and where their jobs
are run. Similarly, when an experiment is submitted to AlabOS,
the users can focus on designing experiments with proper
parameters without knowing the details of how the experiment
will be run.

The submission infrastructure of AlabOS opens up the
possibility of conducting a close-loop experiment campaign
inside an autonomous laboratory, where AI agents analyze the
results and make plans for future experiments. With a struc-
tured input format that is sent to an API endpoint, there is no
distinction between experiments submitted by humans and by

© 2024 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Digital Discovery

AL When designing a close-loop experiment campaign, the user
can wrap the submission and result query script into an
objective function with the inputs and outputs to be explored.
The objective function can be directly used in various experi-
ment planning software for self-driving laboratories like
Chimera® and Altas.®

4 AlabOS in practice: orchestrating
an autonomous laboratory for solid-
state synthesis

AlabOS is actively used to orchestrate the A-Lab,"™ an autono-
mous synthesis platform for inorganic material synthesis. The
A-Lab focuses specifically on preparing samples in powder form
using solid-state synthesis and characterizes them using X-ray
diffraction. A typical workflow of the A-Lab's operations is
shown in Fig. 6a. The workflow is divided into several tasks,
which are the building blocks of each experiment in the A-Lab.
A PowderDosing task weighs certain amounts of precursor
powders and mixes them using ball-milling. A Heating task
sends the samples into a box furnace, which is heated according
to a pre-defined temperature profile. Similarly, a HeatingWi-
thAtmosphere task uses tube furnaces to heat the samples
under a controlled gas flow atmosphere. After the samples are
heated, they are sent to the RecoverPowder task to be ground
into fine powders. A small portion of the sample powder is
extracted and sent to an X-ray diffractometer to measure the
powder X-ray diffraction (XRD) spectrum in the Diffraction task.
At the end of one experimental cycle, the Ending task notifies
the operators to store each completed sample in a designated
position, and this position is updated in the database
accordingly.

To set up the A-Lab workflows using AlabOS, a project folder
is first created. A toml format configuration file is made to store
all the connection information to the database, the notification
service, and the message queue service. The devices' driver
codes are stored in a devices folder. Each type of device is
defined in a Python object class inherited from BaseDevice to
include some basic functions like connecting and status
checking. Apart from these, one can define as many methods as
needed to operate the device. We also define the associated
sample position names in the device. They are read by AlabOS
and recorded in the database when launching. To build an
automated lab for solid-state synthesis and powder XRD char-
acterization, there are in total 16 types of devices with 28 device
instances and 289 device-related sample positions. The full list
of defined devices, their communication protocols, the number
of associated sample positions, and numbers of handled
exceptions are listed in Table 1. Most devices communicate with
the control PC through Ethernet, with various protocols
including HTTP, MODBUS, XML-RPC, etc. Each device (and
control PC) is assigned to a unique IP within an intranet. The
control PC can send commands to the devices by specifying the
IP addresses of the devices. The box furnaces, as an exception,
are connected directly to the control PC through its serial
interfaces, with a COM port assigned to each furnace.

Digital Discovery, 2024, 3, 2275-2288 | 2283

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00129j

Open Access Article. Published on 03 October 2024. Downloaded on 1/27/2026 6:35:17 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Digital Discovery

(@)

PowderDosing

Heating

View Article Online

Paper

-

Recover

Powder Diffraction

Ending

HeatingWith
Atmosphere

® PowderDosing

Heating
RecoverPowder
Diffraction
Ending

TN

HeatingWithAtmosphere (C)

2023 Q1
2023 Q2
2023 Q3
2023 Q4
2024 Q1
2024 Q2
2024 Q3

From March 2023

By the end of July 2024

0 200 400 600 800
Number of samples

Fig. 6 The typical tasks, workflows, and sample throughput in the A-Lab. (a) In a typical workflow, one powder sample can be heated either in
a box furnace (Heating task) or in a tube furnace where the atmosphere is controlled (HeatingWithAtmosphere task). (b) A batched task graph
with 16 samples, including eight samples sent to the box furnace and eight to the tube furnace. (c) The number of distinct samples processed by

the A-Lab by quarter between March 2023 and July 2024.

After the devices are set, another folder named tasks is
created to store all the task procedures. Each task inherits from
BaseTask in AlabOS, which implements methods to report
progress, reserve resources, and get samples' information. In
each task, the device and sample position resources are reserved
before any actions are taken in the A-Lab. A device handle is

returned after the resource is assigned in AlabOS. The task can
call any method in the device class to perform operations.
Finally, the system can be launched via a terminal's command
line interface (CLI). If any changes are made to the task defi-
nition, the system will need to be restarted to take the changes
into effect.

Table1l Allthe devicesimplemented in the A-Lab within AlabOS framework. Each device type represents a Python class definition inherited from
the AlabOS' BaseDevice class. The physical devices used in the A-Lab are listed. The communication protocol indicates how the device object
communicates with the physical device in the A-Lab. If the protocol is N/A, it indicates that the device is not linked to any physical devices and
only exists in the AlabOS system to manage some status of the lab. For example, the XRDDispenserRack is used to monitor the number of clean
XRD sample holders and will notify users when there are no more clean XRD holders. The number of devices and the associated sample positions

for each device are also listed

Communication Number Number of associated sample
Device type Physical device protocol of devices positions per device
BallDispenser Arduino HTTP 1 1
BoxFurnace Thermo Scientific F4805560 MODBUS over serial 4 8
CapDispenser Arduino HTTP 1 3
CappingGripper Arduino HTTP 1 1
Diffractometer Malvern Panalytical Aeris Mineral Edition ~ Socket 1 1
LabmanQuadrant Labman powder dosing system HTTP 4 48
ManualFurnace N/A N/A 4 8
RobotArmCharacterization ~ Universal robot 5e Socket & SSH 1 1
RobotArmFurnaces Universal robot 5e Socket & SSH 1 1
Scale OHAUS Scout HTTP 1 1
Shaker Arduino HTTP 1 1
TransferRack N/A N/A 1 6
TubeFurnace MTI OTF1200X5ASD XML-RPC 4 4
VialDispenserRack N/A N/A 1 0
VialLabeler Reiner jetStamp 1025 Serial 1 1
XRDDispenserRack N/A N/A 1 0

2284 | Digital Discovery, 2024, 3, 2275-2288

© 2024 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00129j

Open Access Article. Published on 03 October 2024. Downloaded on 1/27/2026 6:35:17 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

View Article Online

Digital Discovery

Table 2 The maximum capacity of each task name and the number of tasks in the A-Lab by the time of writing. The numbers of exception
handling routines in each task definition, indicated by the try-except blocks with user inputs requested, are shown in the table. Among all the
tasks, the percentage of tasks with exceptions and with unrecoverable exceptions are also shown in the last two columns, respectively

Number of Exception handling routines % With % With

Task name Capacity tasks in the definition exceptions unrecoverable exceptions
PowderDosing 16 333 1 1.20 1.20

Heating 8 403 2 4.96 4.22

ManualHeating 8 75 0 0 0
HeatingWithAtmosphere 4 27 0 22.22 7.41

RecoverPowder 1 2818 15 4.19 0.99

Diffraction 1 2658 11 4.74 1.20

Ending 1 2574 3 0.12 0.04

To optimize the throughput, several tasks in the A-Lab can
handle multiple samples, with the capacity of each task and the
number of successfully completed tasks shown in Table 2. For
example, samples are loaded into a ceramic rack with eight slots
in the Heating task. A robot arm then inserts this entire ceramic
rack into a box furnace. Such batch processing approach gives
the Heating task a maximum capacity of eight. When submit-
ting the experiment, one node in the task graph can take
multiple samples, which indicates that they are processed in the
same batch. For example, an experiment with sixteen samples
has the task graph shown in Fig. 6b. All of the sixteen samples
are processed in one PowderDosing task. The samples are then
divided into three heating batches with four, four, and eight
samples, respectively. These are heated in different furnaces
according to the specified heating profiles. Samples with
different heating profiles cannot share the same furnace.

While a common workflow of tasks is shown in Fig. 6a, many
other workflows are possible in the A-Lab. Several of these are
shown in Table 3. For example, when the operators wish to heat
samples manually while still using the rest of the automated
processes in the A-Lab, a ManualHeating task can inform the
operators (via the notification system) of the position of each
sample after the PowderDosing task is completed. It will also
notify the operators where to place the heated samples so that
any downstream tasks can process them. As another example, if
the operators wish to obtain the XRD pattern of the precursors
used in the A-Lab, they can skip the Heating tasks and move the
sample (precursor powders) directly to the RecoverPowder and
Diffraction tasks. Also, if the operators would like to process
a set of samples that are heated outside of the A-Lab, they can

use a Starting task to create the record of the sample in the
database and specify the position of the sample so that tasks
can find the sample.

By the time of writing, AlabOS has been driving the A-Lab to
synthesize and characterize over 3500 distinct samples over
a period of approximately one and half years, as shown in
Fig. 6c. The maximum number of samples submitted in one
single day was 149 samples on Feb 9, 2024. The system is
designed to be able to handle a large amount of sample
submissions at a time. By dividing the experiments composed
of many samples into modular tasks, AlabOS is able to schedule
and manage experiments at a finer granularity, thus ensuring
the high efficiency of completing the complicated workflows.

To maintain smooth operation, the A-Lab task definitions
incorporate handling routines for common exceptions. The
number of tasks with exceptions with each of the A-Lab task
name is listed in Table 2. Depending on the complexity of the
task, different exception-handling codes are inserted into the
task definitions. Among them, RecoverPowder and Diffraction
require the most exception handling as many steps are involved
in the operation. The number of exception-handling routines
also aligns with the percentage of recovered tasks in all the
exceptions-raised ones. RecoverPowder and Diffraction
demonstrate a higher exception recovery rate of 76% and 75%,
respectively. On the contrary, Heating and PowderDosing have
a lower recovery rate of 15% and 0% due to limited exception
handling. The lack of routines to address exceptions in these
tasks can be attributed to the fact that some are due to hardware
that is worn out, or to newly emerged software communication
exceptions, which were not detected in the soak test. Over time,

Table 3 Other frequently used workflows in the A-Lab. The workflow column shows the sequence of the tasks. The note column describes the

use cases of each workflow

Workflow Note

1 PowderDosing - ManualHeating - Heat the samples in the external furnaces for
RecoverPowder — Diffraction - Ending higher throughput

2 PowderDosing — RecoverPowder -Diffraction - Skip the heating to characterize the precursors
Ending

3 Starting — RecoverPowder - Diffraction - Ending Process samples that are made outside of the A-

© 2024 The Author(s). Published by the Royal Society of Chemistry

Lab

Digital Discovery, 2024, 3, 2275-2288 | 2285

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00129j

Open Access Article. Published on 03 October 2024. Downloaded on 1/27/2026 6:35:17 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Digital Discovery

these tasks will suffer less from unrecoverable errors in the
future with more exception-handling routines included.

5 Conclusion and outlook

We have outlined the development and application of AlabOS as
an orchestration software for managing workflows in autono-
mous laboratories. This package is designed to meet the fast-
changing requirements of a typical materials research
program. With the graph-based experiment input format, inde-
pendent task actor design, and the resource occupation mech-
anism, human operators can define and submit workflows in
AlabOS without concerning themselves with possible conflicts
between concurrent tasks. The dashboard and notification
system provide a general solution for human-machine interac-
tion in the laboratory, which becomes especially useful when
performing maintenance and error recovery jobs. With the
public availability of AlabOS, we hope that researchers will no
longer need to write complex workflow management codes but
instead focus their time on developing high-level logic followed
by autonomous laboratories for accelerated materials discovery
and optimization. Only in this way, the autonomous laboratory
can be more accessible to general researchers and become
a more powerful tool for accelerating material discovery.

Data availability

The code for AlabOS is available at https://github.com/
CederGroupHub/alabos. The version of the AlabOS code
employed for this study is v1.0.1. The online document is
hosted at https://cedergrouphub.github.io/alabos/. The
implementation of device communication driver is available
at https://github.com/CederGroupHub/alab_control. The A-
Lab-specific device and task definitions are available at
https://github.com/CederGroupHub/alabos/tree/main/
examples/alab_example.

Author contributions

Y. F. and B. R.: conceptualization, software, writing - original
draft, writing - review and editing. R. K.: conceptualization,
software, writing - review and editing. O. D., H. P. S., and M.
J. M: software, writing - review and editing. Z. W., N. J.
S.,, L. N. W, and D. M.: investigation, writing - review and
editing. Y. Z.: methodology, supervision, writing - review and
editing. A. J.: methodology, supervision, resources, writing —
review and editing. G. C.: resources, supervision, methodology,
project administration, writing - review and editing.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was primarily financed by the U.S. Department of
Energy, Office of Science, Office of Basic Energy Sciences,

2286 | Digital Discovery, 2024, 3, 2275-2288

View Article Online

Paper

Materials Sciences and Engineering Division under contract no.
DE-AC02-05-CH11231 (D2S2 programme, KCD2S2), the Labo-
ratory Directed Research and Development Program of Law-
rence Berkeley National Laboratory, and Materials Project.
Work done at UC Berkeley was supported by Umicore Specialty
Oxides and Chemicals.

References

1 A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards,
S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder and
K. A. Persson, APL Mater., 2013, 1, 011002.

2 J. Schmidt, M. R. G. Marques, S. Botti and M. A. L. Marques,
npj Comput. Mater., 2019, 5, 83.

3 K. Choudhary, B. DeCost, C. Chen, A. Jain, F. Tavazza,
R. Cohn, C. W. Park, A. Choudhary, A. Agrawal,
S. J. L. Billinge, E. Holm, S. P. Ong and C. Wolverton, npj
Comput. Mater., 2022, 8, 59.

4 K. T. Butler, D. W. Davies, H. Cartwright, O. Isayev and
A. Walsh, Nature, 2018, 559, 547-555.

5 G. R. Schleder, A. C. Padilha, C. M. Acosta, M. Costa and
A. Fazzio, J. Phys.: Mater., 2019, 2, 032001.

6 D. Morgan and R. Jacobs, Annu. Rev. Mater. Res., 2020, 50, 71—
103.

7 S. Kirklin, J. E. Saal, B. Meredig, A. Thompson, J. W. Doak,
M. Aykol, S. Rihl and C. Wolverton, npj Comput. Mater.,
2015, 1, 1-15.

8 B. G. Sumpter, R. K. Vasudevan, T. Potok and S. V. Kalinin,
npj Comput. Mater., 2015, 1, 15008.

9 J. R. Chamorro and T. M. McQueen, Acc. Chem. Res., 2018, 51,
2918-2925.

10 Z. Wang, Y. Sun, K. Cruse, Y. Zeng, Y. Fei, Z. Liu,
J. Shangguan, Y.-W. Byeon, K. Jun, T. He, W. Sun and
G. Ceder, Nat. Synth., 2024, 3, 527-536.

11 S. Steiner, J. Wolf, S. Glatzel, A. Andreou, J. M. Granda,
G. Keenan, T. Hinkley, G. Aragon-Camarasa, P. J. Kitson,
D. Angelone and L. Cronin, Science, 2019, 363, eaav2211.

12 N. Hartrampf, A. Saebi, M. Poskus, Z. P. Gates, A. J. Callahan,
A. E. Cowfer, S. Hanna, S. Antilla, C. K. Schissel,
A. J. Quartararo, X. Ye, A. J. Mijalis, M. D. Simon, A. Loas,
S. Liu, C. Jessen, T. E. Nielsen and B. L. Pentelute, Science,
2020, 368, 980-987.

13 J. S. Manzano, W. Hou, S. S. Zalesskiy, P. Frei, H. Wang,
P. J. Kitson and L. Cronin, Nat. Chem., 2022, 14, 1311-
1318.

14 J. Bennett, N. Orouji, M. Khan, S. Sadeghi, J. Rodgers and
M. Abolhasani, Nat. Chem. Eng., 2024, 1-11.

15 B. P. MacLeod, F. G. Parlane, T. D. Morrissey, F. Hése,
L. M. Roch, K. E. Dettelbach, R. Moreira, L. P. Yunker,
M. B. Rooney, J. R. Deeth, et al., Chem, 2021, 7, 2541-2545.

16 A. G. Kusne, H. Yu, C. Wu, H. Zhang, J. Hattrick-Simpers,
B. DeCost, S. Sarker, C. Oses, C. Toher, S. Curtarolo,
A. V. Davydov, R. Agarwal, L. A. Bendersky, M. Li, A. Mehta
and I. Takeuchi, Nat. Commun., 2020, 11, 5966.

17 B. Burger, P. M. Maffettone, V. V. Gusev, C. M. Aitchison,
Y. Bai, X. Wang, X. Li, B. M. Alston, B. Li, R. Clowes, et al.,
Nature, 2020, 583, 237-241.

© 2024 The Author(s). Published by the Royal Society of Chemistry

https://github.com/CederGroupHub/alabos
https://github.com/CederGroupHub/alabos
https://cedergrouphub.github.io/alabos/
https://github.com/CederGroupHub/alab_control
https://github.com/CederGroupHub/alabos/tree/main/examples/alab_example
https://github.com/CederGroupHub/alabos/tree/main/examples/alab_example
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00129j

Open Access Article. Published on 03 October 2024. Downloaded on 1/27/2026 6:35:17 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

18 N. J. Szymanski, B. Rendy, Y. Fei, R. E. Kumar, T. He,
D. Milsted, M. J. McDermott, M. Gallant, E. D. Cubuk,
A. Merchant, H. Kim, A. Jain, C. J. Bartel, K. Persson,
Y. Zeng and G. Ceder, Nature, 2023, 624, 86-91.

19 J. Chen, S. R. Cross, L. J. Miara, J.-J. Cho, Y. Wang and
W. Sun, Nat. Synth., 2024, 1-9.

20 J.-P. Correa-Baena, K. Hippalgaonkar, J. van Duren, S. Jaffer,
V. R. Chandrasekhar, V. Stevanovic, C. Wadia, S. Guha and
T. Buonassisi, joule, 2018, 2, 1410-1420.

21 J. E. Saal, S. Kirklin, M. Aykol, B. Meredig and C. Wolverton,
Jom, 2013, 65, 1501-1509.

22 B. Liu, J. Zhao, Y. Liu, J. Xi, Q. Li, H. Xiang and Y. Zhou, J.
Mater. Sci. Technol., 2021, 88, 143-157.

23 N. J. Szymanski, C. J. Bartel, Y. Zeng, Q. Tu and G. Ceder,
Chem. Mater., 2021, 33, 4204-4215.

24 V. Stanev, V. V. Vesselinov, A. G. Kusne, G. Antoszewski,
I. Takeuchi and B. S. Alexandrov, npj Comput. Mater., 2018,
4, 43.

25 D. Chen, Y. Bai, S. Ament, W. Zhao, D. Guevarra, L. Zhou,
B. Selman, R. B. van Dover,]J. M. Gregoire and
C. P. Gomes, Nat. Mach. Intell., 2021, 3, 812-822.

26 J. Liu, M. Osadchy, L. Ashton, M. Foster, C. J. Solomon and
S. J. Gibson, Analyst, 2017, 142, 4067-4074.

27 F. Oviedo, Z. Ren, S. Sun, C. Settens, Z. Liu, N. T. P. Hartono,
S. Ramasamy, B. L. DeCost, S. I. Tian, G. Romano, et al., npj
Comput. Mater., 2019, 5, 60.

28 N.]J. Szymanski, P. Nevatia, C. J. Bartel, Y. Zeng and G. Ceder,
Nat. Commun., 2023, 14, 6956.

29 M. Aykol, J. H. Montoya and J. S. Hummelshgj, J. Am. Chem.
Soc., 2021, 143, 9244-9259.

30 F. Strieth-Kalthoff, H. Hao, V. Rathore, J. Derasp, T. Gaudin,
N. H. Angello, M. Seifrid, E. Trushina, M. Guy, J. Liu, X. Tang,
M. Mamada, W. Wang, T. Tsagaantsooj, C. Lavigne,
R. Pollice, T. C. Wu, K. Hotta, L. Bodo, S. Li,
M. Haddadnia, A. Wolos, R. Roszak, C.-T. Ser, C. Bozal-
Ginesta, R. J. Hickman, J. Vestfrid, A. Aguilar-Granda,
E. L. Klimareva, R. C. Sigerson, W. Hou, D. Gahler, S. Lach,
A. Warzybok, O. Borodin, S. Rohrbach, B. Sanchez-
Lengeling, C. Adachi, B. A. Grzybowski, L. Cronin,
J. E. Hein, M. D. Burke and A. Aspuru-Guzik, Science, 2024,
384, eadk9227.

31]. M. Granda, L. Donina, V. Dragone, D.-L. Long and
L. Cronin, Nature, 2018, 559, 377-381.

32 Y. Xie, K. Sattari, C. Zhang and J. Lin, Prog. Mater. Sci., 2023,
132, 101043.

33 M. Abolhasani and E. Kumacheva, Nat. Synth., 2023, 2, 483—
492.

34 H. G. Martin, T. Radivojevic, J. Zucker, K. Bouchard,
J. Sustarich, S. Peisert, D. Arnold, N. Hillson,
G. Babnigg, J. M. Marti, et al., Curr. Opin. Biotechnol.,
2023, 79, 102881.

35 Y. Xie, K. Sattari, C. Zhang and J. Lin, Prog. Mater. Sci., 2023,
132, 101043.

36 P. Raccuglia, K. C. Elbert, P. D. Adler, C. Falk, M. B. Wenny,
A. Mollo, M. Zeller, S. A. Friedler, J. Schrier and
A. J. Norquist, Nature, 2016, 533, 73-76.

© 2024 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Digital Discovery

37 M. D. Zimmerman, M. Grabowski, M. J. Domagalski,
E. M. MacLean, M. Chruszcz and W. Minor, Structural
Genomics and Drug Discovery: Methods and Protocols, 2014,
1-25.

38 L. Talirz, S. Kumbhar, E. Passaro, A. V. Yakutovich,
V. Granata, F. Gargiulo, M. Borelli, M. Uhrin, S. P. Huber,
S. Zoupanos, et al., Sci. Data, 2020, 7, 299.

39 A. Jain, S. P. Ong, W. Chen, B. Medasani, X. Qu, M. Kocher,
M. Brafman, G. Petretto, G.-M. Rignanese, G. Hautier, et al.,
Concurr. Comp.-Pract. E, 2015, 27, 5037-5059.

40 L. Himanen, A. Geurts, A. S. Foster and P. Rinke, Adv. Sci.,
2019, 6, 1900808.

41 S. Curtarolo, W. Setyawan, G. L. Hart, M. Jahnatek,
R. V. Chepulskii, R. H. Taylor, S. Wang, J. Xue, K. Yang,
O. Levy, et al., Comput. Mater. Sci., 2012, 58, 218-226.

42 K. Mathew, J. H. Montoya, A. Faghaninia,
S. Dwarakanath, M. Aykol, H. Tang, I.-h. Chu, T. Smidt,
B. Bocklund, M. Horton, et al., Comput. Mater. Sci.,
2017, 139, 140-152.

43 S. P. Huber, E. Bosoni, M. Bercx, J. Broder, A. Degomme,
V. Dikan, K. Eimre, E. Flage-Larsen, A. Garcia, L. Genovese,
et al., npj Comput. Mater., 2021, 7, 136.

44 M. Sim, M. G. Vakili, F. Strieth-Kalthoff, H. Hao,
R. Hickman, S. Miret, S. Pablo-Garcia and A. Aspuru-Guzik,
Matter, 2024, 7, 2959-2977.

45 D. Juchli, Adv. Biochem. Eng./Biotechnol., 2022, 182, 147-174.

46 F. Rahmanian, J. Flowers, D. Guevarra, M. Richter,
M. Fichtner, P. Donnely, J. M. Gregoire and H. S. Stein,
Adv. Mater. Interfaces, 2022, 9, 2101987.

47 D. Guevarra, K. Kan, Y. Lai, R. J. Jones, L. Zhou, P. Donnelly,
M. Richter, H. S. Stein and J. M. Gregoire, Digital Discovery,
2023, 2, 1806-1812.

48 D. Allan, T. Caswell, S. Campbell and M. Rakitin, Synchrotron
Radiat. News, 2019, 32, 19-22.

49 H. Fakhruldeen, G. Pizzuto, J. Glowacki and A. I. Cooper,
2022 International Conference on Robotics and Automation
(ICRA), 2022, pp. 6013-6019.

50 I. M. Pendleton, G. Cattabriga, Z. Li, M. A. Najeeb,
S. A. Friedler, A. J. Norquist, E. M. Chan and]. Schrier,
MRS Commun., 2019, 9, 846-859.

51 R. Vescovi, T. Ginsburg, K. Hippe, D. Ozgulbas, C. Stone,
A. Stroka, R. Butler, B. Blaiszik, T. Brettin, K. Chard, et al.,
Digital Discovery, 2023, 2, 1980-1998.

52 J. Zhou, M. Luo, L. Chen, Q. Zhu, S. Jiang, F. Zhang,
W. Shang and]. Jiang, A multi-robot-multi-task scheduling
system for autonomous chemistry laboratories, ChemRxiv,
2024, preprint, DOI: 10.26434/chemrxiv-2024-0g4sz.

53 The Pydantic development team, Pydantic, https://
github.com/pydantic/pydantic, 2024, accessed: 2024-02-05.

54 1. C. Bertolotti and T. Hu, Embedded Software Development,
2017, 29, 343-374.

55 F. Pezoa, J. L. Reutter, F. Suarez, M. Ugarte and D. Vrgoé,
Proceedings of the 25th International Conference on World
Wide Web, 2016, pp. 263-273.

56 K. Jeffay, D. F. Stanat and C. U. Martel, IEEE real-time systems
symposium, 1991, pp. 129-139.

Digital Discovery, 2024, 3, 2275-2288 | 2287

https://doi.org/10.26434/chemrxiv-2024-0g4sz
https://github.com/pydantic/pydantic
https://github.com/pydantic/pydantic
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00129j

Open Access Article. Published on 03 October 2024. Downloaded on 1/27/2026 6:35:17 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

View Article Online

Digital Discovery Paper

57 X. Mi, F. Qian, Y. Zhang and X. Wang, Proceedings of the 2017 60 R. Hickman, M. Sim, S. Pablo-Garcia, I. Woolhouse, H. Hao,

Internet Measurement Conference, 2017, pp. 398-404. Z. Bao, P. Bannigan, C. Allen, M. Aldeghi and A. Aspuru-
58 R. Srinivasan, RFC1831: RPC: Remote Procedure Call Protocol Guzik, A Brain for Self-driving Laboratories, ChemRxiv,
Specification Version 2, 1995. 2023, preprint, DOI: 10.26434/chemrxiv-2023-8nrxx.
59 F. Hise, L. M. Roch and A. Aspuru-Guzik, Chem. Sci., 2018, 9,
7642-7655.

2288 | Digital Discovery, 2024, 3, 2275-2288 © 2024 The Author(s). Published by the Royal Society of Chemistry

https://doi.org/10.26434/chemrxiv-2023-8nrxx
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00129j

	AlabOS: a Python-based reconfigurable workflow management framework for autonomous laboratories
	AlabOS: a Python-based reconfigurable workflow management framework for autonomous laboratories
	AlabOS: a Python-based reconfigurable workflow management framework for autonomous laboratories
	AlabOS: a Python-based reconfigurable workflow management framework for autonomous laboratories
	AlabOS: a Python-based reconfigurable workflow management framework for autonomous laboratories

	AlabOS: a Python-based reconfigurable workflow management framework for autonomous laboratories
	AlabOS: a Python-based reconfigurable workflow management framework for autonomous laboratories
	AlabOS: a Python-based reconfigurable workflow management framework for autonomous laboratories
	AlabOS: a Python-based reconfigurable workflow management framework for autonomous laboratories
	AlabOS: a Python-based reconfigurable workflow management framework for autonomous laboratories
	AlabOS: a Python-based reconfigurable workflow management framework for autonomous laboratories
	AlabOS: a Python-based reconfigurable workflow management framework for autonomous laboratories
	AlabOS: a Python-based reconfigurable workflow management framework for autonomous laboratories
	AlabOS: a Python-based reconfigurable workflow management framework for autonomous laboratories

	AlabOS: a Python-based reconfigurable workflow management framework for autonomous laboratories
	AlabOS: a Python-based reconfigurable workflow management framework for autonomous laboratories
	AlabOS: a Python-based reconfigurable workflow management framework for autonomous laboratories
	AlabOS: a Python-based reconfigurable workflow management framework for autonomous laboratories
	AlabOS: a Python-based reconfigurable workflow management framework for autonomous laboratories
	AlabOS: a Python-based reconfigurable workflow management framework for autonomous laboratories

