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Emerging advanced exploration modalities such as property prediction, molecular recognition, and
molecular design boost the fields of chemistry, drugs, and materials. Foremost in performing these
advanced exploration tasks is how to describe/encode the molecular structure to the computer, ie.,
from what the human eye sees to what is machine-readable. In this effort, a chemical structure
information extraction method termed connectivity step derivation (CSD) for generating the full step
matrix (MSg) is exhaustively depicted. The CSD method consists of structure information extraction,
atomic connectivity relationship extraction, adjacency matrix generation, and MSg generation. For testing
the run speed of the MSg generation, over 54 000 molecules have been collected covering organic
molecules, polymers, and MOF structures. Test outcomes show that as the number of atoms in
a molecule increases from 100 to 1000, the CSD method has an increasing advantage over the classical
Floyd—Warshall algorithm, with the running speed rising from 28.34 to 289.95 times in the Python
environment and from 2.86 to 25.49 times in the C++ environment. The proposed CSD method, that is,
the elaboration of chemical structure information extraction, promises to bring new inspiration to data
scientists in chemistry, drugs, and materials as well as facilitating the development of property modeling
and molecular generation methods.

1. Introduction

In long-standing practice in the chemistry, drugs, and materials
fields, the development quantitative structure-property rela-
tionship (QSPR)" models has contributed to the reduction of
time and resource consumption compared to experimental
measurements of properties of interest and to the empirical
design of target substances.>* With the advancement of
machine learning (ML) and even deep learning® techniques,
QSPR shows tantalizing promise in the prediction of chemical,
drug, and material properties (e.g., density,® viscosity,® dissoci-
ation constants,” and conductivity®) as well as reaction kinetics,®
selectivity,'® yield," etc.

One of the universal paradigms for QSPR models”™ is
adopting algorithms such as artificial neural networks (ANN),
support vector machines, or multiple linear regression (MLR) to
capture the linear or non-linear relationships between chemical
structure descriptors and their target properties.”™ The
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descriptor is the numerical form of the chemical structure.” The
simplest is the 1D descriptor, which is based on molecular
formulae to represent molecules, such as the number of atoms,
atom type, and molar mass." Besides, there exist topological
descriptors, norm descriptors, physicochemical descriptors,
structural descriptors, quantum chemical descriptors, and so
on. Among them, the topological and norm descriptors could be
obtained by extracting the 2D structural information of mole-
cules and converting it into numerical form.

For instance, with the descriptor from Dragon, Sadeghi
et al.>® developed a quantitative structure-activity relationship
model for the half-maximal inhibitory concentration (ICs,) of
PI3Ky using MLR and ANN. Souyei et al.** utilized descriptors
computed with Dragon and established MLR analysis to
establish a model for predicting the thermal energy of aliphatic
aldehydes. The open-source cheminformatics toolkit RDKit
offers descriptor calculation functions. Innumerable works
have successfully developed QSPR models and designed novel
molecules adopting the descriptor from RDKit, and so on.
Recently, adopting the descriptor from RDKit, Yang et al.*?
established the ML-QSPR model for gas permeability of poly-
imide (PI) membranes to He, H,, O,, N,, CO,, and CH,, and
high-throughput screening of over 9 million hypothetical PIs to
obtain the novel ultra-permeable candidates. The norm
descriptor>® was proposed and refined during the long-term
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work of our group. Based on the norm descriptor, the QSPR
models of organic properties with considerable accuracies were
established, e.g., critical pressure, critical volume, and critical
temperature,* and further extended to specific systems' prop-
erty predictions like ionic liquids,* cyclodextrins,*® and PIs.*”

An essential part of computing descriptors, including the
norm descriptor, to describe key information about the
molecular structure is to obtain the connectivity relationships
between the atoms (or positional relationships of the atoms).
The full step matrix (MSg), see eqn (1), is considered as one of
the significant transformation forms for obtaining information
about the connectivity relations between atoms in the 2D
molecular structure.

s = o] -y o

i=)
where s;; represents the steps between atomic indices 7 and j.

Through the MSg, one can describe how an atom in the
molecule reaches all remaining atoms by the shortest step. It is
worth mentioning that the MSg contains the adjacency matrix,?
ie., the case where one atom reaches another atom via one
chemical bond. Some of the primary approaches to improve
further the precision of QSPR models include incorporating
information about the 3D spatial structure of atoms (e.g., coor-
dinates, angles) into the descriptors**" and using the expertise of
the predicted system to augment the descriptors. By extending the
MSg from the 2D molecular structure to the 3D molecular
structure,®** as well as superimposing the atomic property
information with the atomic connectivity information contained
in the MSyg, it is possible to achieve the aforementioned
approaches. The computer-generation process of the extended-
connectivity fingerprints (ECFP)** based on the Morgan algo-
rithm and simplified molecular input line entry system (SMILES)*
also includes reading the connectivity relationships between
atoms. More efforts have focused on providing clear explanations
for modelling QSPR and designing novel molecules®*>* by
descriptors. Descriptions of the process for converting from
molecular structure graphs (i.e., what the human eye sees) to the
adjacency matrix or even MSg. (i.e., what is machine-readable) are
rare. In this present effort, a generic chemical structure infor-
mation extraction method for MSy is well-described for reference
and flexible use by relevant researchers.

It is worth mentioning that the Floyd-Warshall***® algorithm in
graph theory is a dynamic programming algorithm for solving the
shortest paths between all pairs of nodes in a graph. The Floyd-
Warshall algorithm is applied to calculate the shortest paths
between all pairs of atoms in the molecular topology graph to
generate the MSg, as used in the RDKit'*" toolkit. A function that
qualitatively describes the running time of the Floyd-Warshall
algorithm, Ze. the time complexity, is O(n®) (1 is any size of the
input, where 7 is the number of atoms). Thus, as the number of
atoms in the topology graph increases, the MSg generation time
grows in a cubic manner. Adopting the Floyd-Warshall algorithm
to generate MSg for organic small molecule systems consisting of
mostly molecules with less than 100 atoms has an acceptable run-
time. Nevertheless, when applying it to molecular systems with
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repeating structures (e.g:, polymers, metal-organic frameworks),
the running time is non-negligible. Meanwhile, the large dataset in
the prediction task or the vast structural space in the molecular
design task will further increase the run-time consumption.

In this effort, a chemical structure information extraction
method termed connectivity step derivation (CSD) for gener-
ating MSr. is depicted, along with reduced runtime compared to
the classical Floyd-Warshall algorithm. The universal MOL file,
GJF file of the computational chemistry package Gaussian,*
and HIN file of the HyperChem software** are shown as exam-
ples for analyzing the whole process from the file structure to
the MSg generation. Moreover, to test the speed of MSg gener-
ation by the CSD and Floyd-Warshall methods, a total of more
than 54 000 molecular structures containing the three systems
of organic molecules, polymers, and MOF are collected from
NIST,* PubChem,* PolyInfo,”” and ToBaCCo* with 39469,
9397, 2588, and 3189 molecular structures, respectively.

2. Methodology

The CSD method consists of four main parts: structure infor-
mation extraction, atomic connectivity relationship extraction,
adjacency matrix generation, and MSy generation. The
complete method is presented in Fig. 1.

2.1 Structure information extraction

Opening the MOL, GJF, and HIN files with Notepad software,
the file contents will be as shown in the left, middle, and right
parts of Fig. 2, respectively. All three files contain atomic types,
atomic coordinates, and bonding relationships between atoms.
In the case of the MOL file (Fig. 2), the atomic types and their
coordinates are in lines 5 to 16; for the GJF and HIN files (Fig. 2),
they are in lines 6 to 17. The minor differences in atom infor-
mation are related to the storage of information at the front of
each file. For example, the “12 12” shown in line 4 of the MOL
file (Fig. 2) is the number of atoms and the number of chemical
bonds in the molecule, respectively.

The descriptions of bonding relationships between atoms
are different in the MOL, GJF, and HIN files. In the MOL file, the
atomic relationships are extracted in groups of three characters.
Like the one illustrated in Fig. 2, lines 17 to 28, the key block
consists of key rows, where each row represents a key and
follows the format of the first nine characters: aaabbbcce. When
the number of atoms in the molecule is less than 1000, the ‘aaa’,
‘bbb’, and ‘ccc’ characters correspond to the meanings listed in
Table 1. For GJF and HIN files, the atom connection informa-
tion between atoms is separated by the empty strings with the
symbol numbers of the two atoms and their chemical bond
types. For example, line 19 in the GJF file and the end of line 6 in
the HIN file indicate that atom 1 is connected to atoms 2, 6, and
7, corresponding to aromatic, aromatic, and single bonds,
respectively. Note that the three files are not identical in their
schematic representation of bond types. In the MOL file, the
bond types are labeled as shown in the meaning of ‘ccc’ in Table
1; for the GJF file, the aromatic bond appears to be marked as
‘1.5’, the single bond is marked as ‘1.0’, and the double bond is
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Fig. 1 Schematic diagram of the CSD method.
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11 -1.2902 -0.1867 0.0004 000000000000 11 -1.43784296 1.97355149 -0.00068200 11 | atom] E— **-0-1.4378 1.9736-0.0007 51 1aS5al2s])
12 1.2042 -0.1869 0.0013 000000000000 12 -1.29021996 -0.18674151 0.00045000 12 [atom]7 &1/ **-0-1.2902-0.1867 0.0004}]1 1 s H
13 24519 1.9734 0.0006 000000000000 13 1.20420704 -0.18693751 0.00131500 13 |atomis | 11 **-0 1.2042-0.1869 0.0013}1 2 s H
14 1.2048 4.1340 -0.0013 000000000000 14 2.45191704 1.97340649 0.00063400 14 alomi F %20 24519 1.9734 0.000611 3 s E
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18 116410000 8 | 18 | endmol I~========n"unoos
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21 | 128110000 21 (i3 4 159 1.0 i B number of atoms
22 |1344l0000 2 (145151010 1 R " H
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25 | 1410 10000 25 (17 i B atom index - "
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27 | 1511110000 27 o 1 ; : A
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Fig.2 Taking the benzene molecule as an example, the information in its MOL (left), GJF (middle), and HIN (right) files is shown, and the storage
of adjacent atoms in the form of a list L is schematically illustrated.

1844 | Digital Discovery, 2024,

3, 1842-1851

© 2024 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00125g

Open Access Article. Published on 08 August 2024. Downloaded on 1/14/2026 2:56:24 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

View Article Online

Paper Digital Discovery
Table 1 Meaning of 'aaa’, ‘bbb’ and ‘ccc’ used to represent atomic bonding relationships in the MOL file

Area Definition Content

aaa First atom index Starting from 1, less than 1000

bbb Second atom index Starting from 1, less than 1000

cce Bond type (1) Single bond; (2) double bond; (3) triple bond;

marked as ‘2.0’; whereas for the HIN file, the single bond is
labeled as ‘s’, the double bond is labeled as ‘d’, the triple bond is
labeled ‘t’, and the aromatic bond is labeled ‘a’.

2.2 Atomic connectivity relationship extraction

Encoding the atomic connectivity relationships in a molecular
structure into a computer-readable form, such as the list, is an
indispensable step in generating the adjacency matrix and the
MSg. One way of encoding atomic connectivity relationships is
shown in eqn (2).

Le = [LM] LM; = [m] (2)

where L. stores the adjacent atom and m; is the index of atoms
adjacent to atom index m;.

In the MOL file, the first three characters on line 4 represent
n,, while characters 3-6 denote n,. The connection relation-
ships of the atoms are saved from line n, + 5 to line n; + n,. Each
line contains a group of three characters. The first two digits of
each line are recorded by iterating through these lines to obtain
the connection relationships of all atoms. For example, within
line 17 of the MOL file data, “1 2...” (refer to Fig. 2), the number
2 is first stored in the LM;, followed by the storage of the
number 1 in LM,.

In the GJF file, the file content blocks are separated by blank
lines, and the 3rd to 4th blocks are related to atomic connec-
tivity. When extracting connectivity information from each line,
the contents are split by empty spaces. Specifically, if the first
element m; is a number, the subsequent pairs of elements store
the neighboring atoms' information with m;. For example,
within line 19 of the MOL file data “1 2 1.5 6 1.5 7 1.0” (see
Fig. 2), the numbers 2, 6, and 7 are first stored in the LM,
followed by the storage of the number 1 in LM,, LMg, and LM5.

In the HIN file, the atom connectivity is delineated with the
character “atom” at the beginning, and each element is separated
by empty strings. Thus, splitting by the empty strings yields a set of
elements, where the second element holds the current atom index
as m;, the 11th element stores the count of atoms adjacent to the
atomic index m;, and the subsequent elements store information
about the neighboring atoms. For instance, for line 6 (see Fig. 2) in
the HIN file, the numbers 2, 6, and 7 are recorded into LM, and the
number 1 is stored in LM,, LMg, and LM,.

2.3 Adjacency matrix generation

The adjacency matrix (MS,) of a molecule can be generated by
storing the atomic connectivity relationships in computer-
readable form (see eqn (3)).

© 2024 The Author(s). Published by the Royal Society of Chemistry

(4) aromatic bond; (5) single or double bond; (6)
single or aromatic bond; (7) double or aromatic
bond; (8) any bond

o _ 1 SiJ = 1
MS, = [a'J] dij = {0 otherwise (3)

where s;; = 1 represents the step between atomic indices i and j
as 1, i.e., only one chemical bond between atom 7 and j.

The adjacency matrix is a square matrix with dimensions
equal to the number of atoms in the molecule, where the
indexes of both rows and columns correspond to atomic
symbols. As an example, the H-suppressed benzene molecule is
illustrated in detail with the adjacency matrix generation
process, which is displayed in Fig. 3. After the extraction of
structural information completes, the computer-readable list L.
containing information about the atomic connectivity rela-
tionships is stored. For the L. shown for the H-suppressed
benzene molecule, it is indicated that atoms 2 and 6 are con-
nected to atom 1, and similarly, atoms 1 and 3 are connected to
atom2...... After that, the atom connectivity stored by L. is filled
into an all-zero matrix with dimensions equal to the number of
atoms in the molecule. Specifically, taking the numbers of the
two bonded atoms as row and column numbers, respectively,
number “1” in the MS, represents a direct bonding between two
atoms. Based on the rule above, the atom connection relation-
ship information of all atoms stored in L. is filled into the all-
zero matrix, ie., the adjacency matrix. The generation of the
adjacency matrix for benzene molecules containing hydrogen
atoms is illustrated in Fig. S1.}

2.4 The full step matrix generation

On the basis of generating the adjacency matrix, the list of steps
for MSg generation in the CSD method is given as follows and is
illustrated in Fig. 4, where the step size (k) denotes the step
passed from one atom to another.

(1) Obtain the adjacency matrix (matrix initially containing
only 0 and 1, and k is 1).

(2) Identify atom pairs with the step size of k in the MSg and
store the coordinates of matrix in the C (i.e., (i1, j1), ({2, J2), ---)s
representing directly connected atoms pairs.

(3) If the C is empty, indicating the current MSg has been
fully generated, end the entire process, else continue to proce-
dure (4).

(4) Iterate through the C to get the element ;.

(5) Find all atoms adjacent to atom index m;, and record
them in the LM; (i.e., mq, m,, ...).

(6) If the LM; is empty, indicating there is no atom adjacent
to atom index my, currently, continue to procedure (10), else
continue to procedure (7).

(7) Iterate through the LM; to get element my,.

Digital Discovery, 2024, 3,1842-1851 | 1845
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All-zero matrix

Adjacency matrix

Fig.3 Complete process of extracting atomic connectivity relationships from the H-suppressed structure of the benzene molecule and storing
them in list form (i.e., L) which in turn generates the adjacency matrix. Note: The adjacency matrix is converted from the relationship between
two atoms in a molecule connected by a chemical bond. Thus, the adjacency matrix of the benzene molecule is populated with 1 in row 1,
columns 2 and 6 because atom 1 is connected to atoms 2 and 6 by an aromatic bond.

(8) Record the a;4(i # h) from MSg as sy, m,.

(9) If the sy, ,, is 0, indicating that the current position has
never been filled before, fill the value of s, ,,, with k + 1, then
proceed to procedure (6). If the s, ,, is not 0, continue to
procedure (6).

(10) If the C is empty, indicating the traversal of current atom
pairs with the step size of k in MSg is complete, continue to
procedure (11), else continue to procedure (4).

(11) & plus 1 and continue to procedure (1).

3. Results and discussion
3.1 Datasets

For testing the generating speed of the MSg, molecular struc-
tures containing three systems: organic molecules, polymers,
and MOFs, are collected. More than 70 000 organic molecules
are collected from the NIST database. Also, compounds with
CIDs 1 to 10000 are retrieved from the PubChem database.
Polymer structures mostly originated from the PolyInfo data-
base with 2640 PIs. Over 30 000 MOF structures (CIF files) have
been generated employing ToBaCCo. The datasets from NIST,
PubChem, and PolyInfo were validated using RDKit. However,
since the CIF structures cannot be recognized by RDKit, the
MOF data validation was conducted using the provided MOFX-
DB database.*® The dataset ultimately used for testing consisted
of 39469 organic molecules originating from NIST, 9397
compounds from the PubChem database, 2588 unique poly-
imide ring repeating unit” structures, and 3188 MOF
structures.

Fig. 5 illustrates the distribution of the number of atoms in
the structures from the four sources. Among them, the
substances in the NIST database consist of 3 to 93 atoms, with
a concentration between 5 and 40 atoms. Collected from the

1846 | Digital Discovery, 2024, 3, 1842-1851

PubChem database, compounds range from 3 to 186 atoms,
with a central concentration between 20 and 100 atoms. The
number of atoms in the polyimide repeat unit ranges from 10 to
127 and concentrates between 20 and 100 atoms. Of note, in the
MOF structures, there exist MOF molecules with the number of
atoms ranging from 30 to 900. Those MOF structures collected
for testing have a major distribution of atoms between 100 and
800.

3.2 Runtimes of the CSD method

The time complexity of the Floyd-Warshall algorithm is O(r’),
while the CSD algorithm is approximately O(r%), where n represents
the atom numbers. Therefore, with the increase in the number of
atoms, the calculating time of MSg generated by the Floyd-War-
shall algorithm increases cubically, while the calculating time of
the CSD algorithm is close to quadratic. This becomes especially
evident when the number of atoms is large, where the gaps
between the two algorithms become extremely apparent.

To evaluate the generation speed of MSg across the collected
datasets, the performance of self-implemented Floyd-Warshall
algorithm and CSD algorithm programs in the Python envi-
ronment is compared and the performance of RDKit and CSD
algorithm programs for the same task in the C++ environment
is evaluated. Additionally, given that RDKit is implemented in
C++, the CSD algorithm is also implemented in C++ to ensure
a fair comparison of performance across the collected datasets
in the C++ environment. Furthermore, due to RDKit not being
able to generate MSg from CIF files, a C++ program is imple-
mented for the Floyd-Warshall algorithm as an alternative for
testing purposes in the MOF dataset in the C++ environment. To
illustrate the results, a fitting of the structure results is per-
formed using the equation y = a x n?, and the fitting curves and
coefficient can be seen in Fig. 6 and 7, and Tables 2 and 3.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Flowchart of the steps to generate the MSg in the CSD method (left) and illustration of MSg generation from the H-suppressed benzene
molecule (right). A schematic illustration of the generation of the MSg from the adjacency matrix of the H-added benzene molecule is shown in
Fig. S2.1 Fig. S3 and S41 show the MSg generated from H-suppressed poly(1,3-phenylene pyrrolidone) molecules and cubane molecules. Note:
The MSk is converted from the relationship between two atoms in a molecule that are bonded together by a minimum number of chemical
bonds. That is, if atoms are regarded as nodes and chemical bonds are regarded as edges, the MSg is converted from the shortest path between
two nodes. Thus, the MS of the benzene molecule is padded with 2 in row 1 and column 3 because a minimum of 2 aromatic bonds needs to be
passed between atom 1 and atom 3. The process of generating MSg of the three-dimensional structure*” is demonstrated using cubane as an

example.

As depicted by NIST in Fig. 6(a) and Table 2, the Floyd-
Warshall algorithm demonstrates a computation time 0.19n"*?
times that of the CSD algorithm for MSg calculation. This
disparity becomes pronounced, reaching 29.45 times when the
atom count comprises 90. In PubChem, as shown in Fig. 6(b)
and Table 2, a similar phenomenon emerges, with the Floyd-
Warshall algorithm requiring 0.33n°% times that of the CSD
algorithm, notably evident as the atom count approaches 180,
resulting in an increase of approximately 53.81 times in
computation time. In Polymer, as shown in Fig. 6(c) and Table
2, the Floyd-Warshall algorithm's computation time is 0.21n"
times that of the CSD algorithm, particularly noticeable as the
atom count encompasses 120, showing 34.04 times the
computational time. Finally, in MOF, as shown in Fig. 6(d) and
Table 2, the Floyd-Warshall algorithm takes 0.277"°" times that
of the CSD algorithm to compute the MSg, which escalates to
260.68 times as the atom count climbs to 900. Additionally, as
depicted in Fig. 6(e), within the NIST, PubChem, Polymer, and

© 2024 The Author(s). Published by the Royal Society of Chemistry

MOF datasets, the computational time of the Floyd-Warshall
algorithm closely approximates a linear multiple relationship
with that of the CSD algorithm.

Hence, in the Python environment, the Floyd-Warshall
algorithm remains feasible for small molecule computations,
while its efficiency significantly diminishes for large molecular
structures, rendering it impractical. Conversely, the CSD algo-
rithm consistently exhibits exceptional performance and
stability, even with increasing atom count.

As illustrated by NIST in Fig. 7(a) and Table 3, RDKit (based
on the Floyd-Warshall algorithm) exhibits a computation time
2.74n°" times that of the CSD algorithm (in the C++ environ-
ment, and the following is in the same environment) for
calculating MSg. This difference becomes evident, reaching 5.39
times when the atom count is 90. In PubChem, as depicted in
Fig. 7(b) and Table 3, a similar trend emerges, with RDKit
requiring 0.157%7° times that of the CSD algorithm, notably
evident as the atom count approaches 180, resulting in 7.18
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Finally, according to MOF, as shown in Fig. 7(d) and Table 3,
RDKit takes 0.04n°°° times that of the CSD algorithm to
compute MSg, which escalates to 23.06 times as the atom count
climbs to 900. Furthermore, in Fig. 7(e), across the PubChem
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Fig. 6 Time-test results for generating the MSg of structures from the four sources with the CSD algorithm and the Floyd—Warshall algorithm
encoded in the Python environment. (a) NIST, (b) PubChem, (c) Polymer, (d) MOF, and (e) compute the multiplicative difference in time in the

NIST, PubChem, Polymer and MOF datasets.
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Table 2 The fitting coefficient table of CSD algorithm and Floyd—Warshall algorithm in the Python environment®

CSD (Python)

Floyd-Warshall (Python)

The number of

Datasets a, b, a, b, fn) atoms scope
NIST 2.14 x 10°° 1.87 4.08 x 1077 2.99 0.19n*? n e [3,90]
PubChem 1.36 x 107° 1.99 4.51 x 1077 2.97 0.33n%%8 ne [3,186]
Polymer 2.09 x 10°° 1.91 4.24 x 1077 2.98 0.20n""” n e [10, 127]
MOF 1.36 x 10°° 2.00 3.68 x 1077 3.01 0.27n™°" n € [30, 900]
a . . an®
Note: n is the number of atoms, and f(n) = —-.
an
Table 3 The fitting coefficient table of the CSD algorithm and Floyd—Warshall algorithm in the C++ environment®
CSD (C++) Floyd-Warshall (C++)
Datasets a; b, a, b, fin) Scope
NIST 1.69 x 1077 1.54 4.63 x 1077 1.69 2.74n%"° n e [3, 90]
PubChem 1.11 x 1077 1.69 1.62 x 10°° 2.44 0.15n%7° n e [3,186]
Polymer 1.43 x 1077 1.63 2.81 x 1077 1.88 1.97n°% n e [10, 127]
MOF 1.55 x 1078 2.01 5.58 x 10 ° 2.96 0.04n%%° n € [30, 900]
a . azn’72
Note: n is the number of atoms, and f'(n) e
an

and MOF datasets, the computation time of the Floyd-Warshall
algorithm closely aligns with a linear multiple relationship
observed with the CSD algorithm. As the quantity of molecules
rises, the discernible gap in computation widens. In the NIST
and Polymer datasets, the difference in computational time
between the two algorithms is relatively small in terms of the

multiple relationships.

Given that the MOF dataset involves a wide range of the
number of atoms in the structure, we have counted the changes
in the computation time of the CSD algorithm and the Floyd-
Warshall algorithm in the C++ and Python environments for
every increase of 100 atoms in the molecule from 100 to 800
atoms as listed in Table 4. Clearly, the order of calculation of the

two algorithms in the two environments is CSD (C++) < Floyd-
Warshall (C++) < CSD (Python) < Floyd-Warshall (Python) at the

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 4 The CSD algorithm and the Floyd—Warshall algorithm calculate the time of change in the number of equally spaced atoms in the MOF

dataset under C++ and Python environments

Number of atoms

Algorithm (environment) 100 200 300 400 500 600 700 800

CSD (C++) 0.0002 0.0007 0.0015 0.0026 0.0041 0.0059 0.0081 0.0106
CSD (Python) 0.0136 0.0544 0.1224 0.2176 0.3400 0.4896 0.6664 0.8704
Floyd-Warshall (C++) 0.0005 0.0036 0.0120 0.0281 0.0544 0.0933 0.1473 0.2187
Floyd-Warshall (Python) 0.3853 3.1042 10.5192 25.0062 48.9494 84.7390 134.7699 201.4414

same level of number of atoms. Moreover, even if the calcula-
tion time of the CSD algorithm in the Python environment
increases with the number of atoms in the molecule, it is
acceptable compared to the calculation time of applying the
Floyd-Warshall algorithm in the Python environment. When
the number of atoms in the molecule increases to 600 atoms,
the Floyd-Warshall algorithm calculates the MSg of one mole-
cule in the Python environment in more than 1 min, which may
consume valuable time of the researchers. Overall, the calcu-
lation time of the Floyd-Warshall algorithm in the C++ envi-
ronment is considered manageable for small molecule datasets,
but it is much longer for large molecule datasets. Nevertheless,
the CSD algorithm consistently shows outstanding performance
and stability, even as atom counts increase.

4. Conclusions

In this contribution, a generic chemical structure information
extraction method, the CSD method, is elaborately presented
for the generation of MSg, subsequently allowing flexible
calculation descriptors. Taking MOL, GJF, and HIN files as
examples, the complete process of structural information
extraction, atomic connectivity relationship generation, adja-
cency matrix generation, and MSg generation was described. It
was tested on more than 54 000 molecular structures encom-
passing organic molecules, polymers, and MOF systems,
showing that the CSD method enhances the classic Floyd-
Warshall algorithm for improved speed. In the Python envi-
ronment, within the collected dataset, the computational speed
of the CSD algorithm demonstrates an advantage over the
Floyd-Warshall algorithm when the number of atoms exceeds
5. When the number of atoms reaches 900, the advantage
increases significantly, reaching up to 260.68 times faster.
Similar trends are observed in the C++ environment, where for
datasets with more than 13 atoms, the CSD algorithm consis-
tently outperforms the Floyd-Warshall algorithm. Particularly,
when the number of atoms reaches 900, the advantage can be as
high as 23.06 times faster. In datasets containing fewer than 13
atoms, only a few cases show slightly slower performance for the
CSD algorithm.

The proposed CSD method, that is, the elaboration of
chemical structure information extraction, promises to bring
new inspiration to data scientists in chemistry, drugs, and
materials. Meanwhile, understanding the process of chemical
structure information extraction may give rise to the birth of
new critical molecular representation methods to facilitate the

1850 | Digital Discovery, 2024, 3, 1842-1851

development of property modeling and molecular generation
techniques.
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NIST (https://webbook.nist.gov/chemistry) and PubChem
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