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Across the chemical sciences, synthesis planning is a key aspect for defining synthesis routes, starting from
idea generation, combining literature searches and laboratory experimentation, and including scaling-up
considerations for large scale manufacturing. This iterative process, which relies heavily on information
sharing, is crucial in pharmaceutical development, where drug candidates are transformed into
commercially viable Active Pharmaceutical Ingredients (APIs), impacting the access to medicines for
billions of people. In this work, we demonstrate that by capturing chemical pathway ideas digitally, at the
point of conception, we can systematically merge these ideas with synthetic knowledge derived from
predictive algorithms. This serves as a preliminary step for further route evaluation. To achieve this, we
introduce a new method for storing, analysing, and displaying chemical information using graph
databases and graph representations, illustrated with the commercial synthesis planning of the GLP-1

inhibitor Lotiglipron. Compared to traditional methods, graph databases naturally fit the substrate-arrow-

iizzgﬁ%iﬁs 95;122822;‘ product model traditionally used by chemists, offering a modern alternative to store and access
chemical knowledge. This framework facilitates a universal chemistry approach, allowing to share and

DOI: 10.1039/d4dd00120f combine data from many different sources and organisations, and enabling new ways to optimise the

rsc.li/digitaldiscovery complete route selection process.
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Introduction

In the field of synthetic organic chemistry, synthesis planning
has always been an important step to produce materials on
various scales. A structured approach to conceptualise new
routes was pioneered by Nobel laureate E. Corey in 1957, known
today as retrosynthetic analysis." In most cases this analysis is
still orchestrated by humans, often focusing on invention and
demonstration of individual creativity or intellect.> Even for
small molecules, multiple retrosynthetic suggestions can lead
to viable routes to synthesise a given compound, each with its
own advantages and drawbacks.® Selecting the best route
remains a complex process, often plagued by unconscious bias
due to the human limitation of handling large amounts of data.
A novel digital approach enabling collaboration and unbiased
decision making is presented in this paper, exemplified in the
context of pharmaceutical development. The same principles
can be applied across all chemical sciences where new synthetic
routes are needed.

In pharmaceutical development, the selection of a synthetic
route for commercial manufacturing of an Active
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Pharmaceutical Ingredient (API) can be a long iterative process.*
The search for an API (or target molecule) begins by identifying
the ‘pharmacophore’, defined by the IUPAC as “an ensemble of
steric and electronic features that is necessary to ensure the
optimal supramolecular interactions with a specific biological
target and to trigger (or block) its biological response”.® Starting
from this, research groups propose a diversity of targets (an
array of analogous molecules with similar therapeutic poten-
tial), which are used during the testing phases of the drug
discovery process,® and elaborate a simple synthetic route to
rapidly access them. From this process, an enabling chemistry
route emerges, often used to deliver early campaigns to fund
clinical and toxicological trials, typically in the kilogram
production range and under intense time constraints.

Once the API moves into the later stages of clinical devel-
opment (human trials), this route is seldom orientated toward
the objectives of a commercial manufacturing process, which
involves achieving commercial feasibility often at multi-tonne
scales and meeting the quality attributes required by regula-
tory agencies.”® As a result, the synthesis planning for the
commercial manufacturing stage starts with scarce data rele-
vant to the final objective.*®

To progress towards a more optimal synthetic route, all
possible theoretical ideas need to be gathered. This may include
full synthetic routes, fragments of routes, or individual reac-
tions that may be of use later. This step is often called ‘idea

© 2024 The Author(s). Published by the Royal Society of Chemistry
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generation’ or ‘brainstorming’,'® and it requires a large number
of contributors to achieve a diverse set of ideas, to ensure the
optimal solution is amongst this initial set.'* The number of
ideas generated at this stage is usually large (50 or more routes),
this hinders how data is displayed and makes decision making
difficult. Effective idea visualisation is essential to proceed to
the next step.

The ideas are then organised and triaged, serving as the
basis for the execution of the synthesis plan in the laboratory.
The consequences of decisions made during this triage, where
limited experimental data is accessible, propagate through all
stages of development and even to the final commercial API
manufacturing process.*

In pharmaceutical development, a common approach used
for route selection is to apply the SELECT*>** criteria (or similar
standards used across the chemical industry'*). SELECT
includes a series of factors to account for Safety: including
process safety, and exposure to substances harmful to health;
Environmental: the volume of natural resources consumed, and
the generation of substances harmful to the environment;*
Legal: intellectual property rights to produce the drug, and legal
requirements for control and use of intermediates and reagents;
Economics: meeting the cost of goods targeted for commercial-
isation, and the investment required to support the desired
production; Control: including the chemistry and physical
process parameters (PP) and the control of the quality attributes
(QA);*® and Throughput: availability of raw materials, and time-
scale of the manufacturing process.™

The practical implementation follows a series of logical
steps, in which a multidisciplinary team is required to aggregate
multiple types and sources of information (theoretical,
semantic, qualitative, quantitative, etc.). Traditionally, the input
of experienced process scientists is needed to cover process
chemistry, process safety, regulatory compliance, process engi-
neering, and manufacturing considerations.”* Their input is
combined with initial laboratory trials, literature references,
and any other accessible source of information, such as results
from modelling tools regarding process safety’” and physical
property predictions like solubility.'® The objective is to deter-
mine the most promising routes, prioritising those with the
highest value and likelihood of success. Following a compre-
hensive scrutiny of these factors, directed by SELECT, a few
routes emerge as promising choices for subsequent investiga-
tion in the laboratory. Ultimately, a singular route is selected as
the commercial route for large scale manufacturing.

After the initial route selection, the work focuses on the
process development i.e. identifying the necessary unit opera-
tions and the process conditions for each step. During this
stage, the individual steps of the selected route may be refined,
this can include step reordering or the decision to telescope one
or more steps.” However, more often changes are limited to
unit operations, and reaction conditions (solvents, catalysts,
and reagent selection, temperature, etc.). Very occasionally,
a major drawback is identified that requires revisiting the route
selection process. In such instances, all the data collected up to
that point are not discarded but are utilised to (re)evaluate
alternative synthesis paths.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1A depict a flow diagram illustrating the complete
development process, while Fig. 1B shows the data flow of
a random molecule synthesis, illustrating the steps considered
by the described traditional approach. These network diagrams
show individual routes appearing as branches from the main
target molecule, formed by a group of single reaction steps and
the corresponding intermediate molecules.

The determination of an optimum route is a multi-factor
problem, and the human-led solution is vulnerable to bias,
even when applying the SELECT criteria rigorously.**® Lack of
supporting information or chemistry knowledge leads to some
ideas being left aside without adequate assessment and deci-
sions can align behind a single local optimum just because
more is known about this route.” One key barrier for the
traditional approach is the inherent human bias to gravitate
towards familiar methodologies and well-established proce-
dures.”” Decisions often draw from the experiences and
successes of the scientists involved in the process, leading to
a potential lack of diversity in the exploration of new synthetic
pathways. This gap is confirmed by the emergence of generics
into the market, appearing as soon as key patents have expired,
with alternative viable commercial routes in other branches of
the chemical space.*® Branches that may have even been present
in the original synthesis planning stage but were not explored.

Several challenges contribute to perpetuate this problem.
For instance, the lack of centralised data systems or access to
individual applications acting in isolation, and the absence of
common data formats and repositories,* currently act as
a barrier preventing a systematic analysis of the entire collec-
tion of ideas and data.>*?¢ In addition, the lack of utilisation of
equivalent information from past projects poses a significant
obstacle in chemical research.”” Despite differences in target
molecules, steps, and transformations, the potential for trans-
ferrable knowledge remains largely untapped due to the
absence of supportive systems.”®* This results in missed
opportunities for cross-project insights, leading to redundant
efforts and resource inefficiencies.

To overcome these barriers, there is a need to implement
supportive systems to enable the systematic capture, organisa-
tion, and dissemination of knowledge across
projects.*>** Such systems could take the form of centralised
databases, collaborative platforms, or knowledge management
tools designed to promote information sharing and collabora-
tion.*** In theory, as Fig. 1C illustrates, for synthesis route
planning these ideas could be programmatically enriched with
additional data e.g. data from additional experimental sources,
literature references, theoretical or predictive information, etc.;
subsequently enabling the calculation of metrics intrinsic to the
entire dataset.**** Moreover, algorithms could be applied across
the complete information network,*** potentially unveiling
unprecedented insights beyond the scope of conventional
human capabilities.

This paper illustrates how introducing key digitalisation
elements can evolve the traditional route selection methods
into a more advanced approach. Storing chemical knowledge
directly on graph databases enables direct digitalisation of
human inputs, real-time access to scientists, holistic overviews

various
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(A) Traditional workflow from initial concept up to the commercial production of a pharmaceutical API; (B) the current methods usually

start from the target molecule, gathering a large number of ideas (retrosynthetic analysis), narrowing this down to fewer feasible routes, up to
selecting the most feasible by a panel of experts; (C) envisioned process: a data rich approach collating many synthesis ideas from different
sources, subsequently enriching the entire network with experimental and modelling data, and using an algorithmic approach to identify the

optimum route for commercial synthesis.

for decision makers, and the enrichment of the metadata by
direct application of software and algorithms on the database.
Finally, implementing advanced network metrics will facilitate
identification of the global optimum route, which in turn could
facilitate access and lower cost of medicines for patients
globally.

Next-gen approaches to commercial
organic synthesis planning
Graph databases for universal chemistry

Storing and accessing multi-layered process and chemical
information in a systematic manner remains an unresolved
challenge. For route design, the number of factors to consider
are too diverse and with different levels of abstraction that are
almost impossible to be organised and connected in a hierar-
chical or nested structure. Partial attempts have captured
specific layers,> but not yet defining a universal database
schema that can represent and maintain more complex multi-
dimensional relationships, particularly considering the
dynamic nature of chemical R&D.

1684 | Digital Discovery, 2024, 3, 1682-1694

Today, graph representations are emerging in a variety of
scientific fields.**> In chemistry, graph representations have
been used to visualise synthesis paths,****** and to create
representations of large chemical networks.****¢ These repre-
sentations have proved useful to tackle problems in risk
management of chemical threats,* and to organise results
delivered by predictive retrosynthesis software,*>*” in an acces-
sible way for chemists and data scientists.*® Building upon these
insights, this paper proposes advancing beyond mere visual-
isation to leveraging graph databases as comprehensive data
management systems.

A graph database is a management system that stores
information in the form of nodes (objects containing properties
or attributes that describe the data it represents) and relation-
ships or edges (arrows defining connections between nodes,
indicating the nature of the relationship and its direction),*
providing a powerful new method of storing highly complex and
variable information.**** Defining a graph database for chem-
istry is straightforward because the traditional representation of
chemical reactions, conceptually describing the transformation
of chemical substances from reactants to products as
a diagram, aligns naturally with a graph structure (this symbolic

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 (A) Chemical representation of a single reaction (substrates A
and B react to produce C) and its equivalent graph representation in
the context of graph databases; (B) basic data model showing the
relationships between molecule, reaction, and route nodes. In the
graph database, nodes can be used to store specific domain infor-
mation, creating a multidimensional data structure; (C) example of
large network of transformations (omitting route nodes), illustrating
possible paths from the starting materials to the target molecule, as
observed from a graph database.

translation is depicted in Fig. 2A). For instance, a starting
material (a molecule node) is transformed into a product
(another molecule node) by a chemical reaction (a reaction
node), in which the edges provide the relationship (if
a substrate is a precursor or a product).

Furthermore, in a graph database, molecule nodes can
contain specific properties such as names or identifiers
(SMILES representations, INCHI keys, IUPAC names, efc.), as
well as other fields capturing specific physical or chemical
information. In the same way, a reaction node can contain
specific properties such as rection conditions, yields, selectivity,
purity, and other scores. Additional nodes can be created rep-
resenting different objects without interfering with any of the
data and relationships established. In this work, a route node
was also created to be able to store individual route attributes
and introduce more advanced network analysis. Extra nodes
can be added to the graph database containing users, projects,
ideas information, etc.; which might be helpful to add addi-
tional management layers, but we omitted them in this paper
for clarity.

Some rules need to be established to preserve the logic of the
graph database. For instance, a molecule node must be unique,
which means if different representations are available for the
same molecule, all of these should be gathered under a single
node. This enables consistency and facilitate to implement

© 2024 The Author(s). Published by the Royal Society of Chemistry
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efficient searching strategies. Conversely, reaction nodes are
unlimited, allowing to capture all the possible options to do
a transformation.

Currently, most of the retrosynthesis software packages
available use this type of graph representation,* and translating
this into a graph database schema results in a basic data model
(Fig. 2B). A graph data model could become extremely complex
depending on the numbers of nodes and relationships defined,
the extent of the layers, and the processes modelled.>* Applying
the basic data model proposed allows for connecting different
molecule nodes to various reaction nodes, potentially resulting
in large interaction networks (an example is given in Fig. 2C),
from which the path from any molecule to any desired product
can be established. The proposed schema was successfully used
in a number of internal projects at Pfizer. An example is given
for the route selection of Lotiglipron (PF-07081532), a GLP-1
(Glucagon-Like Peptide-1) receptor agonists developed for
indications including type-2 diabetes and obesity.** The results
obtained are used to illustrate some of the concepts introduced,
and specific details are presented in the ESI Section.}

In the context of commercial route selection, node properties
were customised to include specific aspects concerning the
SELECT criteria. A summary table for each of the nodes defined
for this work is presented in Fig. 3A. Each type of node contains
specific properties associated to the particular domain it
represents (molecule, reactions, routes). During the data
capture process, the scientists can provide insights in any form:
chemical drawings, captured by the molecule nodes; reaction
conditions and metadata captured by the reaction nodes;
rankings, scores, comments, and suggestions, all of them
channelled accordingly to the most appropriate graph structure
aligned with any of the SELECT aspects.

Subsequently, the types of nodes defined can capture any
information relevant to the process. For instance, labels for
impurities and side products can be incorporated within the
relationships or the reaction nodes. While impurities and side
products are strictly molecules, their role within a specific
reaction determines their labelling. Occasionally, an impurity
may serve as the desired product in a different process, and vice
versa. Therefore, capturing this information should focus on
the specific chemical transformation rather than the molecules
themselves. This example aligns with the proposed data model.

Fig. 3B shows a small network from which two routes can be
identified, illustrating how specific information can be stored in
the corresponding route nodes. From a higher-level perspective
this approach allows connections to all the different multidis-
ciplinary aspects in a single data structure, in a similar way as
applied in a variety of other graph databases applications.>**¢

Human retrosynthetic analysis and digital idea capture

Across the chemical sciences, retrosynthetic analysis is
a collaborative effort unfolded through an iterative process,
where initial ideas serve as the foundation for generating new
ones. Chemists usually engage in a dynamic exchange of
concepts, building upon existing strategies and fostering crea-
tivity to develop viable routes, ensuring that the alternatives are

Digital Discovery, 2024, 3,1682-1694 | 1685
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B) Network example
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(A) Example of nodes attributes for molecules, reactions, and routes, aligned with the SELECT criteria. Other attributes can also be stored

such as names, identifiers, etc. without interfering with the data model and other elements already stored (HEFGs stands for high-energy
functional groups); (B) example of a small graph database network, illustrating the route identification with two possible paths linked to a route

node (green). Some edges labels (arrows) were removed for clarity.

not only innovative but also strategically sound.** This human-
driven approach generates a substantial volume of ideas, and
the complexity made imperative to implement an effective
knowledge management system, ensuring that valuable
insights are captured, preserved, and available for future
reference and refinement.

In this context, once a suitable storage solution was identi-
fied (the graph database), the focus was placed on capturing the
information directly from the scientists, and at the same time,

1686 | Digital Discovery, 2024, 3, 1682-1694

enhancing the process by allowing them to construct over other
scientist's contributions. In order to achieve this dynamic
construction, we proposed a standardised three step procedure
including: (a) the idea capture at source (using a scientist user
interface, or by accessing insights already digitalised); (b)
a translation layer to enrich and transform the captured data to
fit the graph data model (algorithm layer); and (c) the storage of
this information into the graph database. Fig. 4A illustrates the
complete process.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig.4 (A) Idea capture process starts with ideas obtained directly from

the scientist or ingested from other data systems. Next, a translation layer

parses and query the data in other databases to capture additional metadata (enrichment), with the results categorised to fit the data model.
Finally, the data is queried for consistency into the graph database before being stored permanently. (B) Example of graphical user interface (GUI),
with an embedded drawing canvas to introduce chemical ideas directly from the scientist (left). The resulting fragments are extracted and
queried programmatically into the graph database, building a dynamic graph visible to the scientist (contribution preview). Once the idea is
submitted, the data is registered into the graph database (Neo4J backend representation on right side).

The creation of a basic rendering tool was required to
capture direct ideas from scientists (using commercial drawing
packages such as Chemdraw or Biovia draw), producing outputs
that were channelled to the graph database across an intranet
network. In this case, a drawing canvas was embedded, auto-
matically loading a molecule selected by the scientist from the
network being created (which served as the basis for the
upcoming idea). Within this canvas, the scientist could make
any change or disconnection, adjusting fragments or synthons
into molecules feasible to exist (without undefined atoms).
Upon submission, the different fragments were incorporated
into the graph database and the relationships created (an
example of such rendering interface is shown in Fig. 4B). If the
desired starting point was not present already in the graph,
disconnections should be made from any other suitable mole-
cule linked to the main target, ensuring all the ideas are con-
nected (no isolated nodes are allowed). If a more appropriate
connection is introduced later, this will be automatically re-
flected on the graph structure.

From a system perspective, when the scientist proceeds to
submit, an algorithm picks all the individual fragments from
the canvas (extracted as SMILES or INCHI keys), individually

© 2024 The Author(s). Published by the Royal Society of Chemistry

searching for them in the graph database. If the fragment is not
found, a new molecule(s) and reaction nodes are created, with
the corresponding ‘relationships’ established (substrate to
reaction node, reaction to product node, or any other edge).
Conversely, if the fragment is available already in the database,
only the reaction node is created with the corresponding rela-
tionships. While this process takes place, an additional data
enrichment step can be implemented by using the individual
identifiers and querying them in other accessible systems
(Fig. 4A, centre).

In addition of capturing the scientist rendering, a form was
deployed alongside to include additional metadata, such as
reaction conditions, chances of success, scalability, etc. Simi-
larly, this information was parsed, channelled, and stored
directly into the properties of the corresponding nodes (an
example is provided in ESI Section 1).f Moreover, additional
automated mechanisms could also be implemented to gather
ideas from various sources, including ingesting data from other
database systems, extracting ideas from literature references, or
retrieving previously registered ideas in the chemistry sections
of ELNs. After performing validation checks to preserve the
graph integrity, such as confirming that the molecules remain

Digital Discovery, 2024, 3,1682-1694 | 1687
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unique in the database and that the corresponding encoding is
correct (done by a preliminary cross-validation search), as well
as including the potential enrichment of the nodes and rela-
tionships, the data is subsequently written into the graph
database. Fig. 4B shows a resulting network (small) as seen from
a graph database (in this case using Neo4]).

Depositing the data in a centralised graph allowed other
scientists to visualise the contributions as they were created,
being able to add on top of them (introducing additional met-
adata in already created nodes), or use this information to
generate new ideas. For Lotiglipron, a summary is provided in
ESI Section 2,1 also showing the raw visualisation of the data in
the graph database.

Integrating predictive algorithms

Over the last ten years, cross-disciplinary research involving
chemists, cheminformatics, chemical engineers, and data
engineers has resulted in a variety of algorithms to predict not
just steps but completed synthesis routes. These efforts have
been captured in variety of commercial and open-source soft-
ware packages such as IBM Rxn for chemistry, ASKCOS,
Chemairs, Synthia, Reaxis, SciFinderN, amongst others, easily
available to the whole chemistry community.*”** While these
packages have been primarily designed for helping during the
drug development phases, predicted routes can also be used to
increase the idea diversity in commercial route selection. In
terms of format, graphs generated using these packages share
similar principles for capturing chemical information. The only
missing elements are standardisation and transfer of these into
the graph database.

For Lotiglipron, a first attempt to enrich the human-
generated network of ideas consisted in capturing some inter-
esting routes generated by predictive software, and adding them
manually into the graph. For this, we used the software package
ASKCOS,* which is currently under development by the
Machine Learning for Pharmaceutical Discovery and Synthesis
(MLPDS) consortium.®® ASKCOS is a retrosynthesis package
designed to generate machine learning-driven synthesis routes,
allowing users to input a target molecule, and then generating
potential synthetic routes based on models that have been
trained with a variety of different chemical databases. Imple-
mentation details can be found on ESI Section 3.7 In this case,
ideas were manually transferred to the graph database, and we
anticipate this process will be straightforward in the future by
ingesting data automatically from any of those tools.

Additional manual filtering steps were needed to remove the
noise accompanying suitable predictions. Usually, these algo-
rithms work well with simpler molecules, but when facing
complex transformations, as those found in the pharmaceutical
industry including heterocycle formation, bypassing unwanted
or unsafe chemistry, or providing alternatives to generate
desired chiral species (as in Lotiglipron case), these still tend to
fail. This noise can also affect the human creativity and decision
making by overwhelming the graph, and masking areas of
interest that could be expanded. For this reason, we proposed
a separate process, gathering and filtering synthetic ideas in

1688 | Digital Discovery, 2024, 3, 1682-1694
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parallel, and merging with human contributions only at the end
of a brainstorm cycle. The direct value of these algorithms is
still under scrutiny,* and current failures are justified by the
lack of appropriated data training repositories. Current datasets
available are reactions stored in ELNs (still requiring individual
curation), information captured in public repositories such as
patents (for instance, datasets created from USPO data), or
extracted automatically from literature sources. Most of these
cases still contain biases towards positive data (only successful
cases reported). We suggest this situation could be completely
overturned by using the graph database itself as a source of
curated data for algorithm training.

Fig. 5 shows the resulting network obtained for Lotiglipron.
In Fig. 5A, the ‘scientist view’ integrates both human and
ASCKOS predicted ideas. It is designated ‘scientist view’ since
this shows how the data is presented to the scientist on a user
interface, where duplicate molecules are allowed for clarity,
aiding in the identification of individual branches of the tree
structure. Below, Fig. 5B shows the corresponding native graph
database representation, illustrating how the data is organised
and stored within the database. While the information pre-
sented in both views is the same, the scientist visualisation
differs from the graph database representation, where mole-
cules nodes are unique.

When the database contains a significant number of trans-
formations, specific graph features begin to appear such as
cycling recurrences. In these, a substrate A feeds into a reaction
to produce substrate B, which then feeds back into substrate A.
Also, key reactions and key intermediates can be identified by
observing ‘hubs’ nodes, where many relationships are pointing
(an example of this are intermediates 211 and 294 in the graph
database diagram, Fig. 5B).

The Lotiglipron graph was subjected to an automated algo-
rithm designed to identify individual synthesis routes. This
algorithm works by transforming the initial cyclic graph, which
represents all possible synthesis pathways, into an acyclic type
of graph (this operation is performed outside the database, on
a duplicated dataset). In the acyclic form, pathways do not loop
back on themselves, simplifying the structure and making it
easier to analyse. By converting the graph, straightforward and
well-known methods such as depth-first search (DFS) and
breadth-first search (BFS),** are applied to identify and extract
the individual synthesis routes efficiently. These methods
systematically explore the nodes and edges, traversing the
entire network and assigning specific nodes identifiers as sug-
gested in Fig. 2 and 3.

As Fig. 6 shows, the algorithm identified six routes obtained
from human suggestions, and six additional routes obtained
from artificial suggestions. These nodes were subsequently
enriched with further annotations and data concerning to the
specific route properties, and this higher-level layer allowed the
optimisation of the route selection. After this step, the graph
database was ready to be interrogated (ESI Section 4t provides
instructions to reconstruct the full Lotiglipron network in
a graph database).

The native Neo4] language Cypher was directly used for
querying the database. This approach differs to others

© 2024 The Author(s). Published by the Royal Society of Chemistry
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A) Scientist visualisation
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Fig. 5 GLP1 (Lotiglipron) Network — (A) scientist view, combining human ideas (left side, no overlaying colour), with synthetic ideas from
predictive software ASKCOS (right side, yellow overlaid). The resulting network observed from the scientist interface shows linear branches with
duplication of substrates and products for user clarity. (B) Equivalent back-end graph database representation obtained from native graph
database (Neo4J), showing unique molecule nodes. In both cases, the target molecule is indicated by a square.

suggested in literature, where programming languages have
been created to interact with chemical information.** Decou-
pling the query language from the chemistry language intro-
duce robustness and allow experts from other fields to
manipulate the data without any prior chemistry knowledge.
An example query that the graph database is optimised to
answer is ‘find the shortest route from the target molecule up to
the starting materials under specific constrains’. This is also
known as Dijkstra’s algorithm. This query can deliver the route
with the minimum number of steps, which at the same time

© 2024 The Author(s). Published by the Royal Society of Chemistry

minimise the weight of any of the constrains imposed. Elabo-
rating the queries and constraints goes beyond the scope of this
paper, but we envisioned the calculation of additional metrics
cascaded across the entire network during the enrichment phase,
and using those values for resolving the query. As an example,
some of the network metrics considered are listed below:

- Environmental metrics,*** for instance estimating the
process mass intensity (PMI) of each step and determining the
routes with the lowest cumulative PMI value (cPMI).
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Human suggested routes

Predicted routes

Fig. 6 GLP1 (Lotiglipron) Network — automated route identification algorithm returned twelve routes: 1-6 human generated; 7-12 from
predictive algorithm. Route 1 corresponds to the enabling chemistry route. The shortest path query implemented without any constraint
returned routes 11 and 12. These two transformations are possible but without real commercial value since the routes are partially developed (the
starting materials cannot be purchased). Overlaying additional data, including layers aligned to the SELECT criteria, can help to determine an
optimum commercial route.
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- Safety,”® determining the potential flammability and
explosiveness of all the substrates and intermediates, and
obtaining the average route safety by pondering the accumu-
lated hazards across all the route steps.

- Cost of syntheses,*® determining the costs of the individual
steps (observed or estimated), and applying rules such as
excluding the use of precious metals that would make the large
scale process unviable.

- Legal right to operate,* identifying disconnections in the
network which are common to industrial patents.

The shortest path query implemented without any constrain
returned routes 11 and 12 (Fig. 6), using the Dijkstra's algo-
rithm. However, this result only considered the number of steps
and not the full SELECT criteria. Upon careful examination,
both suggested transformations are theoretically possible but
there is a lack of scalability information. For instance, route 11
is impractical because the starting materials are not commer-
cially available in the required form. A similar problem is
observed with route 12. In these cases, the predictive algorithm
did not further expand the starting materials, only adding
partial information. This highlights an important point: queries
like this are useful only if they include information on
commodities or commercially available materials. To make
meaningful comparisons, all routes should be traced back to
compounds of similar complexity to assess their respective
potential effectively. The same point is valid for all the param-
eters covered by SELECT criteria.

Discussion and outlook
Impacting the production of modern medicines

The strategy suggested in this paper can be used directly to
identify a global optimum synthetic route by taking in to
account many conflicting priorities. A significant impact to the
global access of medicines could be achieved by enabling more
cost-effective production methods and by accelerating their
development. Additionally, the strict regulation of the phar-
maceutical industry requires the manufacturer to implement
a sound control strategy to limit the presence of undesired
compounds in the API. The design of the synthetic route is
a fundamental aspect of this strategy. Thus, it is imperative to
incorporate impurity control filters as one of the fundamental
layers throughout the decision-making process, and the
proposed approach is a step towards this.

Another area where this holistic approach could aid is in the
environmental and carbon footprint of the process. Incorpo-
rating factors such as chemical hazards, waste minimisation,
and energy consumption as part of the decision-making process
will help processes move towards net zero and further lower
production costs. Some aspects of Green Chemistry could be
applied today across an entire graph network, such as PMI as
previously described.

Regarding material costs and availability, accuracy during
the synthesis planning is difficult to achieve. Often decision
makers turn to non-specialised catalogue companies for a guide
price and then apply an economy of scale factor. Here is another
opportunity of connected graph database, historical and up-to-

© 2024 The Author(s). Published by the Royal Society of Chemistry
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date pricing for raw materials, pre-GMP’ intermediates and
transformations® can be built into the graph allowing predictive
algorithms to make better cost estimates of these new entities.
This layer enables the optimisation of realistic productions
costs, which may raise the priority of other route options often
overlooked based purely on synthetic characteristics. Realising
new synthetic routes based on cost and synthetic novelty offers
companies options either to protect intellectual property or to
allow freedom to operate. Thus, protecting or disclosing
different routes is based on different weightings of the design
parameters. A weighting that may change over the lifecycle of
the product as new information becomes available and is added
to the graph.

Just considering the API alone, large pharmaceutical
companies typically cover a significant proportion of the busi-
ness space. This operational model requires large resource
investments to operate. To become more agile some companies
are becoming more modular and outsourcing activities to
contract research organisations (CROs), universities and
research institutes. In this paradigm, a key limitation is the
efficiency of data and knowledge transfer between organisa-
tions. Domain specific information lacks standardisation and
its application is not systematic. Inevitably data is lost, trans-
ferred in a non-digital manner, or not shared at all. In the
proposed approach, specific graphical user interfaces could be
designed to allow controlled portions of the graph to be shared
with these third parties, allowing enrichment of the chemical
information directly in the database. Access control would be
exercised based on centralised polices of data protection.

Besides, chemical process development traditionally relies
on inputs from chemists, scientists, and engineers following
well-established workflows. However, decisions are still
subjective and lacking algorithmic support. Critical data from
large-scale manufacturing and other sources remain discon-
nected. Our approach introduces a method to define commer-
cial synthesis routes. Furthermore, it can be expanded to
encompass various engineering and operational aspects,
including unit operations and physical transformations, effec-
tively bridging the gap between route formulation and
manufacturing.

Towards the design of an ideal chemistry platform

It is difficult to provide a clear assessment about the future
possibilities. The number of tools reported in literature is so
vast and diverse that it is only possible to focus on specific
aspects of the ideal requirements. Firstly, there is the scientist's
perspective, they need specialised tools to cater for the unique
needs specific to their workflow, for example experimental data
handling, analytical data, procedural information and equip-
ment data. Secondly, there is the business needs, where tools
that help to prioritise, enable the generation of metrics, and
facilitate decision making using simple user-friendly interfaces
are required. Thirdly, there is the perspective of platform and
software providers who develop and supply these systems. In
this case, the market tends to segment itself based on user
needs; targeting niche markets where the demand for
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specialised features is high. Conversely, platforms focusing on
business-oriented data and decision-making target a broader
audience, including managers and executives. As a result,
a holistic integration that bridges the gap between technical
details and high-level business decisions seems almost
unrealistic.

The irruption of graph databases is opening completely new
horizons for chemical sciences. At the molecular level tradi-
tional chemistry representations can be directly represented as
a graph. Graph databases excel in representing and storing
complex relationships between entities, making them well-
suited for capturing the intricate structures of molecules, and
at the same time, providing a suitable place to store individual
domain properties. At the synthetic route level the ability to
identify relationships between various chemical entities, reac-
tions, and properties, and to enable simple query and data
retrieval would satisfy to a large extent many scientist's needs.

Capturing chemical data in graph databases empowers data
reusability, offering access to knowledge from past projects. It
transforms the dynamics of the decision-making by providing
a contemporaneous picture, which changes with new informa-
tion. Such platforms emerge as a way of training advanced Al
models, addressing one of the main problems these tools are
facing today.

Finally, a long-term proposal involves creating a universal
chemistry data framework centred around graph database
technology, accessible to all. Identifying the most suitable
agency, forum, or legal body to establish these standards poses
challenges. IUPAC stands out as a natural candidate due to its
international recognition and expertise in chemical sciences.
However, implementation is complex, requiring data sharing
and cooperation among organisations. Commercial entities can
also contribute significantly by providing necessary infrastruc-
ture. For instance, platforms similar to Wikipedia, which are
privately funded but open to the public, could serve as models
for facilitating widespread data sharing and collaboration.
Alternatively, a consortium of companies, universities, and
institutions could financially support the creation of a global
centralised repository, resembling the features described in this
paper. This repository could host public and private layers,
allowing each company private access while enabling disclosure
of legally protected or obsolete parts of their explored chemical
space to the public. Such centralised repository could bring an
unprecedented level of collaboration across the chemical
sciences and bridge the gap to many other disciplines.

Data availability

The datasets supporting this article have been uploaded as part
of the ESI.T There is no code required and only specific Neo4]
queries are used to create a graph database instance (using
neo4j available at https://www.neo4j.com). For the specific
demonstration provided in the paper, all the commands and
queries to reproduce step-by-step the graph database (using
the specific network of molecules supplied) can be found in
Section 4 of the ESI Section.f
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