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abled photonic nanostructure
discovery in arbitrarily large shape sets via linked
latent space representation learning†

Sudhanshu Singh,‡*a Rahul Kumar,‡*a Soumyashree S. Panda b

and Ravi S. Hegde c

The vast array of shapes achievable through modern nanofabrication technologies presents a challenge in

selecting the most optimal design for achieving a desired optical response. While data-driven techniques,

such as deep learning, hold promise for inverse design, their applicability is often limited as they typically

explore only smaller subsets of the extensive range of shapes feasible with nanofabrication. Additionally,

these models are often regarded as ‘black boxes,’ lacking transparency in revealing the underlying

relationship between the shape and optical response. Here, we introduce a methodology tailored to

address the challenges posed by large, complex, and diverse sets of nanostructures. Specifically, we

demonstrate our approach in the context of periodic silicon metasurfaces operating in the visible

wavelength range, considering large and diverse shape set variations. Our paired variational autoencoder

method facilitates the creation of rich, continuous, and parameter-aligned latent space representations

of the shape–response relationship. We showcase the practical utility of our approach in two key areas:

(1) enabling multiple-solution inverse design and (2) conducting sensitivity analyses on a shape's optical

response to nanofabrication-induced distortions. This methodology represents a significant

advancement in data-driven design techniques, further unlocking the application potential of

nanophotonics.
1 Introduction

Fundamental studies of the last decade investigating the light–
matter interaction in nanostructures have paved the way for
a multitude of applications, ranging from freespace meta-
optics1 to nanostructured building blocks for integrated
photonics.2 Leveraging modern nanofabrication techniques,
researchers now benet from unprecedented lateral resolution,
wide-area writing capabilities with high stitching accuracy, and
support for precision-aligned layering. Furthermore, the eld of
nanophotonics currently encompasses a diverse range of
materials, including plasmonic metals, high and low index
dielectrics, index-tunable metal oxides and chalcogenide
materials, and exotic 2D materials such as graphene. This
diversity underscores the vast array of fabrication-accessible
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designs and underscores the critical need for ‘inverse design’
methods in nanophotonics. Inverse design techniques are
aimed at discovering designs that closely match a targeted
response with reasonable computational burden, while also
exhibiting reduced sensitivity to fabrication imperfections.3

Formal inverse design methods essentially constitute searches4

within high-dimensional design parameter spaces. Tradition-
ally, such searches have been classied as either localized (e.g.,
topology optimization5) or global (e.g., various evolutionary
algorithms6 like genetic algorithms). However, the curse of
dimensionality accompanies the increase in degrees of
freedom, that is, the solution space expands exponentially with
each additional dimension. Consequently, obtaining optimal
designs from searches within such high-dimensional solution
spaces poses a formidable challenge. It is well established that
in high-dimensional spaces, localized searches oen become
trapped in local minima, while global searches necessitate
substantial computational resources and exhibit slow conver-
gence rates.

In the current landscape, the surge of activity in machine
learning, deep learning, and other data-driven7 techniques
aimed at overcoming the challenges posed by high dimen-
sionality warrants attention.8–15 These methodologies typically
involve training deep neural networks (DNNs) through super-
vised learning processes. Given sufficient training data, DNNs
© 2024 The Author(s). Published by the Royal Society of Chemistry
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can effectively map the empirical relationship between nano-
photonic geometries and their optical behavior. Once amodel is
trained, design methodologies can primarily be categorized16

into twomain streams: (1) surrogate optimization-based inverse
design and (2) all-DNN-based inverse design. In surrogate
optimization,17 a DNN capable of accurately predicting spectral
behaviors from given geometries (forming a one-to-one mani-
fold18) can serve as a surrogate for a full-wave electromagnetic
solver. Conversely, in the all-DNN method, the DNN directly
provides a solution without the need for an optimization
procedure. Both approaches offer dramatic speed improve-
ments compared to formal inverse design methods reliant on
electromagnetic solver calls. However, it is imperative that
expediting the search process does not compromise the
attainment of an optimal design. As researchers transition from
the initial exploration phase, where the feasibility of this
approach was convincingly demonstrated, critical attention is
now being directed towards addressing the shortcomings
inherent in the data-driven approach.17

One glaring limitation of these approaches lies in the fact that
nearly all models are trained on relatively small subsets of the
extensive array of shapes accessible through fabrication. Most
reports in the literature have relied on easily parameterized
geometries like polygons. Typically, in such smaller subsets, the
range of optical responses is limited, potentially leading to an
overestimation of the technique's effectiveness. A rudimentary
approach to expanding the shape set involves considering binary
images where each pixel can be toggled on or off.19 However,
most shapes within this set do not yield feasible designs due to
the absence of coherent structure, rendering it impractical to
train accurate models with reasonably sized datasets. Liu and
colleagues20 have proposed a generative network approach
employing unsupervised learning to generate larger and mean-
ingful shape sets. However, the reliance on a separate network to
recognize feasible shapes limits the shape sets to single “blob”-
like shapes. Subsequent studies by Liu et al.21 have notably
extended the size of feasible subsets. Jiang et al.22 used GAN-
based inverse design techniques for metagratings,23 using
topology-optimized geometries24,25 to generate complex struc-
tures. Recent advancements, such as the Progressive Growing
GAN (PGGAN) method integrated with self-attention layers by
Wen et al.,26 show promise in producing fabrication-feasible and
robust shape sets; however these methods have complicated
workows and exhibit loss oscillations. The well-known chal-
lenges of adversarial training protocols27 and the need for
a handcraed network to guide the generation towards reason-
able shapes are a shortcoming of these techniques. Thus, the
challenge of training a DNN on a sufficiently broad shape set
while simultaneously ensuring sample efficiency17,28 continues to
be a signicant hurdle to the widespread applicability of data-
driven inverse design methods.

A second major challenge is that neural networks are
essentially black boxes where the interpretability of neural
network predictions remains a challenge.29 A crucial step in the
process is representation learning, which is when machine
learning algorithms take signicant patterns out of unpro-
cessed data to produce simpler representations. Some
© 2024 The Author(s). Published by the Royal Society of Chemistry
researchers have turned to the use of autoencoders,30 a form of
representation learning, to extract valuable insights from
trained models.18,31 Kiarashinejad and colleagues32 used
autoencoders to solve the difficulty of computational complexity
by reducing the dimensionality while also improving knowledge
of design parameter responsibilities. Zandehshahvar and
colleagues33 proposed a novel metric-learning technique
combining triplet loss and mean-squared error, which can
enhance machine learning methods for inverse design of
nanophotonic devices and knowledge discovery. However, the
work recognizes the need for additional research and optimi-
zation efforts for effectively addressing the issues related to
metric learning in nanophotonics. Furthermore, the work does
not specically address the incorporation of structural features
into the dataset, indicating a possible eld of additional
research. In the context of all-DNN-based inverse design, the
issue of design “dead zones” resulting from the one-to-many
nature of the response–structure mapping has been identi-
ed.34 The potential of conditionally trained generative adver-
sarial networks (cGANs) or conditional (adversarial)
autoencoders to dynamically encode multiple potential solu-
tions, along with the benets of representation learning,16,35

suggests that this approach warrants further renement to
facilitate inverse design within the all-DNN framework. In this
contribution, we propose linked latent space representational
learning to tackle the shortcomings mentioned above. The
motivation for this approach stems from a simple observation –

two structures, although geometrically different, may be
considered similar if their optical responses share similarities.

Latent space representations provide a notion of similarity
based on Euclidean distance between two shapes in the learned
latent space. By simultaneously training a latent representation
of shape and the optical response, and then linking them
through cross-training, our approach is able to grasp similarity
relationships not only in shape, but also in the optical response
axis. The method does not place any restriction on the shape set
used for training, allowing users to construct such a set based
on their intuition and knowledge. Furthermore, using varia-
tional autoencoding, continuous latent representations are
learned. We demonstrate that this approach leads to rapid
inverse design with possible multiple candidate solutions
ranked according to the sensitivity of each design to fabrication
imperfections. While this concept has not yet been exploited in
the context of inverse design, it is gaining foothold in other
data-science domains. Jo et al.36 introduced a groundbreaking
technique that merges cross-modal association with multiple
modal-specic autoencoders, enabling seamless integration of
various modalities while preserving their encoded information
within individual latent spaces. Their model's efficacy on
a modest dataset underscores its suitability for semi-supervised
learning applications (Yu and co-workers37 in natural language
processing, Stein and co-workers in conditioned image gener-
ation,38 and Radhakrishnan and co-workers39 in medical diag-
nostics using multiple modalities). Closer to our domain, two
reports deserve special mention. (1) Lu and co-workers40 intro-
duced a novel application of paired Variational Autoencoders
(VAE) for integrating 2D small-angle X-ray scattering (SAXS)
Digital Discovery, 2024, 3, 1612–1623 | 1613
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patterns and scanning electron microscopy (SEM) images; and
(2) Yaman41 and co-workers have reported a shared dual-VAE
approach to correlate the gold nanoparticle cluster geometry
with optical responses in hyperstructural darkeld microscopy.

The rest of the paper is organized as follows: aer this
introduction, in Section 2, we summarize the salient points of
the methodology; in Section 3, we rst examine the character-
istics of the linked latent space representations. Finally, we
showcase the utility of our method for rapid inverse design
before concluding in Section 4.
2 Methodology
2.1 Shape and spectrum encoding, training dataset

To demonstrate the methodology, we consider the design of
periodic metasurfaces with arbitrarily shaped subwavelength
unit-cells, specically, crystalline silicon (material properties42)
metasurface on a glass (SiO2) substrate. The unit cell geometries
are represented as a (64 × 64) binary distribution of pixels,
where ‘1’ indicates the presence of silicon and ‘0’ indicates its
absence (see Fig. 1A). We consider a shape library comprising 21
classes of shapes depicted in Fig. 1B (see ESI Fig. S1† for the
complete details of the construction of the shape set). We illu-
minate the metasurface with linearly polarized (s and p) white
light and record the transmittance and reectance spectra over
the wavelength range of 400 nm to 700 nm, with a spacing of
5 nm. Given that the lattice constant is subwavelength (340 nm),
the metasurface does not exhibit any diffraction. The recorded
spectra encoded in a 2D tensor constitute the response. The
lattice size and substrate height of the unit cell are xed to be
340 nm and 90 nm, respectively. The shapeset uses a wide
diversity of shapes including single and multiple nanoantenna
shapes (and the complimentary void shapes). The magnetic and
electric multipoles of each resonator can interact via the near-
eld and coherently interact with other unit cells also. This
provides a rich diversity in the optical response.
2.2 Model architecture

Fig. 1C depicts the neural network architecture employed in this
study, which centres around two variational autoencoders:
a shape variational autoencoder and a spectrum variational
autoencoder, tailored to handle the shape and spectrum
tensors, respectively. Each autoencoder employs a bottleneck
architecture, reducing the dimensionality of the shape and
spectrum tensors to an 8-dimensional latent vector, thereby
generating latent spaces, LSgeometry, and LSspectrum. Once
trained, the rst half of the network serves as an ‘encoder,’
encoding the shape/spectrum into an 8-dimensional tensor,
while the second half functions as a decoder, reconstructing the
shape/spectrum from the encoded 8-dimensional tensor. It's
noteworthy that the input formats for the shape and spectrum
encoders, and the output formats of the shape and spectrum
decoders, are distinct. Specically, the shape is encoded as
a (64, 64, 1) tensor, while the spectrum is encoded as a (60, 4, 1)
tensor. These specications dictate the sizes of the various
convolutional and fully-connected layers in the corresponding
1614 | Digital Discovery, 2024, 3, 1612–1623
encoders and decoders. The network architecture hyper-
parameter optimization is discussed in Fig. S2 of the ESI.†

Following the training phase, it is essential to highlight the
numerous possibilities for data ow, as depicted in Fig. 1C.
Data path 1–2 solely utilizes a top variational autoencoder for
the reconstruction of the input geometry image, while data path
5–6 solely employs a bottom variational autoencoder for the
reconstruction of the input spectra data. The key innovation of
our work lies in the dataow paths 4–2 and 3–6. Path 3–6
enables us to retrieve the spectrum of a given shape via its latent
vector, while 4–2 enables the recovery of a shape via a spectrum
latent vector. Although a given shape possesses a denite and
unique spectral response, a given response may be attributable
to one or more shapes. The neighboring points of a given latent
vector in the spectral latent space may thus decode to one or
more shapes dynamically. In the shape variational autoencoder,
shapes are arranged in the geometry latent space to ensure that
similar shapes are positioned close to each other. Similarly,
similar-looking spectra are neighbors in the spectrum latent
space. However, the inclusion of cross-linkages enables the
network to associate two distinct shapes that may still yield
similar optical responses. Without training the cross-linkages,
we would only be able to group shapes based on their
geometric similarity. However, by incorporating the cross-
linkages, we are now able to introduce a similarity metric
based on the similarity of their responses as well. This
enhancement allows for a more comprehensive understanding
of the relationship between shapes and their optical responses,
thereby enriching our ability to analyze and manipulate nano-
photonic structures effectively. Fig. 1D illustrates the use-case of
the trained encoders and decoders in nanophotonics inverse
design. First, given a targeted spectral response, we can rapidly
recover potentially multiple solution shapes. Second, each
shape can then be assessed for the sensitivity of its optical
response to fabrication-induced imperfections. Specically, by
sampling in the latent space neighbourhood of a given shape,
we can simulate shape distortions and subsequently determine
the variance in the spectral response. From a given set of target
shapes, we can identify a shape least susceptible to fabrication-
induced imperfections. This approach enables us to optimize
the design of nanophotonic structures with enhanced robust-
ness to fabrication constraints.
2.3 Model training

We use the well-known variational autoencoder formalism43–45

in our work which is known to create a smooth and continuous
latent space representation.

Encoder: the input of shape/spectra data is processed by the
encoder network and transformed into a probability distribu-
tion within the latent space. This means that the VAE encodes
the data as a range of possible values rather than a single point,
allowing it to capture a variety of possible representations of the
input shape/spectra data. To ensure that the latent space
matches the desired distribution, usually a standard normal
distribution, variational inference is employed to approximate
the posterior distribution of the latent space representation. For
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Overview of the proposed methodology (linked latent space representation learning) and its use cases in photonics inverse design. (A)
Schematic of the unit cell of a periodicmetasurface considered in the study, encoded in a binary pixellated format. s and p-polarizedwhite light is
incident on the metasurface, and the transmittance and reflectance spectra for both polarizations in the form of a 2D tensor encode the
response. (B) Shape library – exemplar shapes of the 21 classes considered in the study. (C) Schematic of the cross-linked autoencoder neural
network architecture used in this study (with size details) highlighting the various data-flow pathways. (D) and (E) Use-case of the trained neural
networks specifying the relevant data-flow pathways for each task. Targeted spectrum and resultant multiple solutions are seen in the inverse
design use in (D). (E) Rapid sensitivity analysis of a design geometry involving the generation of a set of perturbed shapes for a base shape and the
resulting spectrum variance.
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this purpose, random sampling is performed to generate latent
space points, and the distribution parameters, i.e., m (mean)
and s (standard deviation), are optimized using KL divergence
loss. Due to the presence of this sampling node (stochastic) in
© 2024 The Author(s). Published by the Royal Society of Chemistry
the computational graph, backpropagation is not feasible. To
allow smooth optimization during training, the reparameteri-
zation trick is utilized, which allows gradients to backpropagate
through the sampling process:
Digital Discovery, 2024, 3, 1612–1623 | 1615
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z = m(x) + s(x) × 3 (1)

where 3∼ N(0, 1) is drawn from a standard normal distribution.
This step ensures that the latent variables z keep the probabi-
listic nature of the encoder, setting the VAE apart from a stan-
dard autoencoder.

Decoder: the decoder network obtains samples from the latent
distribution to reconstruct the original input shape/spectra data.
During training, themodel adjusts both the encoder and decoder
to minimize reconstruction loss, which measures the difference
between the original input and the reconstructed output. It also
shapes the latent space to adhere to a specied distribution. This
process balances two key components: reconstruction loss and
the regularization term (oen Kullback–Leibler divergence).
Reconstruction loss ensures faithful input reproduction, while
regularization molds the latent space to match the chosen
distribution. By iteratively adjusting these parameters, the VAE
learns to represent input data effectively, enabling accurate
reconstructions and the generation of new samples by sampling
from its learned latent distribution.

A Variational Autoencoder (VAE) not only converts the input
data x into a latent space representation z and reconstructs it
back to ~x, but it also adds a regularization technique to the
encoder. A prior distribution p(z) of the latent space is included
in this regularization process. The purpose of this regulariza-
tion is to restrict the latent representations to a particular
distribution. Using an encoder function z ∼ Enc(x) = q(zjx)
(posterior distribution of the latent variable z given the input
variable x), the VAE learns how to encode input data x into
latent variables z during training. The decoder ~x ∼ Dec(z) =
p(xjz) (ref. 46) (p(xjz) represents the likelihood of the input data
x given the latent variable z) takes a latent variable z to recon-
struct the original input data. Typically, these functions are
designated as Enc for encoding and Dec for decoding. The
reconstruction loss and the regularization term obtained from
the prior distribution form the loss function of the VAE, which
is represented by the symbol LVAE:

LVAE ¼ �EqðzjxÞ½ln pðxjzÞ� þ b�KLðqðzjxÞkpðzÞÞ; (2)

where EqðzjxÞ represents an expectation over the learned distri-
bution of latent variables given the input x. ln p(xjz) represents
the likelihood of x given z is measured by the log-likelihood of
the data given the latent variables, and negative sign indicates
that minimizing the negative log-likelihood ensures the better
reconstruction of the original input data. The Kullback–Leibler
divergence (DKL) includes weights denoted by b, which regulate
the contribution of the divergence term in the overall loss
function of the VAE. Eqn (2) is the general form of VAE. We use
a coupling variational autoencoder framework in our study.
With this method, we can develop a coupling VAE that is
specically designed to extract a linked latent space that works
well with heterogeneous data. So, the losses of shape and
spectrum VAE's are given by:

LVAE1
¼ C1kX1 � ~X 1k þ b1 �KL1

�
N
�
mx1

; sx1

�
; N ð0; IÞ�

LVAE2
¼ C2kX2 � ~X 2k þ b2 �KL2

�
N
�
mx2

; sx2

�
; N ð0; IÞ�;

(3)
1616 | Digital Discovery, 2024, 3, 1612–1623
where LVAE1
represents the loss of the shape variational

autoencoder and LVAE2
represents the loss of the spectrum

variational autoencoder. The rst term represents the recon-
struction loss between the input and output data, while the
second term represents the Kullback–Leibler (KL) divergence
loss, weighted by b. This term is associated with the standard
Gaussian distribution N ð0; IÞ. mx and sx are the mean and
variance of the Gaussian distribution. The two autoencoders are
trained simultaneously to minimize the following custom loss:

LTotal loss = LVAE1
+ LVAE2

+ D1‖X1

− ~X1(Z2)‖ + D2‖X2 − ~X 2(Z1)‖. (4)

In training the model, we have six loss terms. These include
two reconstruction losses, the KL divergences for both shape
and spectrum, and two cross-reconstruction losses. The third
term of eqn (4) represents the cross-reconstruction loss from
shape to spectrum. Specically, X1 is the input shape data, and
~X1(Z2) is the reconstructed shape data. In this reconstruction,
we sample random points from the learned latent space (Z2) of
the spectrum and pass them through the shape decoder (see ESI
Fig. S3†). The fourth term of eqn (4) represents the cross-
reconstruction loss from spectrum to shape. Here, X2 is the
input spectrum data, and ~X2(Z1) is the reconstructed spectrum
data. We sample random points from the learned latent space
(Z1) of the shape and pass them through the spectrum decoder.
This cross-sampling technique ensures that each latent space
can effectively reconstruct data from the other domain,
enhancing themodel's ability to handle heterogeneous data. C1,
C2, D1, D2, b1 and b2 are the regularization coefficients of each
loss term. We found C1= 1, C2= 1, D1= 1, D2= 1, b1= 1× 10−6

and b2 = 1 × 10−5 in our implementation as the well suited
values for these weights are determined through experimenta-
tion. The detailed description of the training procedure is given
in Fig. S4 of the ESI.†

3 Results and discussion

The study was conducted using the Keras deep learning
framework with a Tensorow backend, executed on a worksta-
tion featuring an Intel™ i9–7920X CPU and 128 GB RAM,
(access to the source code, datasets, and stored models will be
provided to the public upon acceptance of the research). The
Stanford Stratied Structure Simulator (S4),47 which uses the S-
matrix algorithm and the Rigorous Coupled Wave Analysis
(RCWA) technique to solve Maxwell's equations in layered
periodic structures, was used to generate the ground truth. The
number of basis function parameters in the S4 solver was set to
50 for generating ground-truth spectra. Additional details of
training dataset generation for both shape and spectrum are
given in the ESI Section S-1.†

3.1 Visualization of the learned latent space

We begin by visualizing the structure of the learned latent
spaces, aiming to understand both their global and local
structures, which is crucial for comprehending how shapes
cluster together, with their distances indicating similarity. To
© 2024 The Author(s). Published by the Royal Society of Chemistry
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achieve this, we employ Uniform Manifold Approximation and
Projection (UMAP), a robust algorithm for nonlinear dimen-
sionality reduction that preserves meaningful distances
between data points, facilitating the visualization and clus-
tering of high-dimensional datasets.48 We opt for the Euclidean
distance metric to construct the nearest neighbour graph due to
its efficacy in capturing correlation features. By ne-tuning the
parameters, including setting the number of neighbours to 10
and theminimum distance to 0, we enhance the performance of
UMAP, facilitating better separation and clustering of the vali-
dation dataset.49

Fig. 2 shows a scatter-plot visualization of the 2D projection
of the 8-dimensional shape and spectral latent spaces colour-
coded by the 21 classes (refer to this GitHub link which
provides the latent representation for all 21 classes individually:
https://github.com/22510064/UMAP-Representation-) of shapes
considered in this study (see Fig. S5† for better visualization). A
clustering of similar shapes and spectra, contrasted with the
distinct separation of dissimilar ones within the embedding
space51 is observed, underscoring the model's adeptness in
capturing the intricate intra- and inter-relationships between
shapes and spectra, effectively segregating them into distinct
clusters. In the examination of the shape latent space,
Fig. 2 Visualization of the 8-dimensional shape and spectrum latent sp
latent space and (B) corresponding spectrum latent space. Both visualiz
shape and spectral latent space are colour-coded using 21 shape classe

© 2024 The Author(s). Published by the Royal Society of Chemistry
a cohesive clustering of various geometric entities is observed,
including ellipses (blue), double ellipses (orange), Perlin noise
(pink), 2-fold (cyan), plus shapes (magenta), triangles (salmon),
half moons (gold), and their corresponding cavities. These
entities coalesce into a unied cluster with overlapping
boundaries, signifying shared geometric characteristics, see ESI
Fig. S5A.†However, distinct clusters emerge for rings (green), L-
shapes (light gray), and C-shapes (lime), revealing multiple
clusters that intertwine with other shapes. Furthermore, upon
closer inspection, two distinct subclusters are identied within
the H-shape (dark olive green), delineated by the arrangement
of transverse lines. Similarly, the polygon shape (black) displays
two distinct subclusters, one for symmetrical polygons and
another for asymmetrical polygons. This differentiation
underscores the unique characteristics inherent within subsets
of the H and polygon shapes, with each subcluster demon-
strating clear separation, indicative of diverse structural
congurations. Additionally, a small subcluster featuring
multiple concentric rings is observed within the ring category,
further accentuating its unique shape characteristic within the
latent space, see ESI Fig. S5B.† We have added plots using t-
distributed Stochastic Neighbor Embedding52 (t-SNE) in
Fig. S5C.† t-SNE is known for effectively revealing local
aces projected into a 2-dimensional space. (A) Showcases the shape
ations utilize UMAP projection techniques.50 (C) Display points in both
s.
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neighbourhoods, offering a potentially clearer picture of local
clusters than UMAP.

Transitioning to the spectral latent space, a well-dened
clustering pattern is discerned, encompassing spectral
proles such as ellipses (blue), double ellipses (oranges), 2-fold
shapes (cyan), plus shapes (magenta), half moons (gold), and
their corresponding cavities, alongside rings (green), triangle
cavities (violet) and H-shapes (dark olive green). Delineating
discrete category boundaries proves more challenging for
spectral proles like Perlin noise (pink) and its cavities, L-
shapes (light gray), C-shapes (lime), ring cavities (brown), and
triangles (salmon). Furthermore, the polygon (black) exhibits
two subclusters that manifest clear distinctions from other
clusters, mirroring the clustering patterns observed in the
shape latent space. This divergence underscores the inherent
complexity in spectral signatures, where distinct shapes may
yield similar spectra, as evidenced by instances where multiple
shapes correspond to the same spectrum.

Next, we examine the continuity aspects of the learned latent
space representations. Continuity in the learned latent spaces is
crucial to ensure that latent vectors decode tomeaningful shapes or
spectra. This continuity allows for the generation of novel and
meaningful shapes and spectra beyond the original training dataset
while also facilitating smooth interpolation between designs. We
test the continuity at a local scale as well as a global scale.53–55

We utilised local interpolation within the latent space of
shapes by focusing on a specic data point and its near
neighbouring points. This procedure entails sampling data
points from a distribution centred around the chosen point,
typically utilising a normal distribution with a slight standard
deviation, as illustrated in Fig. 3A for the 2-fold image. These
sampled data points are then decoded using shape and linked
spectrum decoders. Through this process, we can observe
similar shapes and their corresponding reconstructed spectral
responses for reection in s and p-polarized light as depicted in
Fig. 3B, validating the reconstructed spectra against the original
spectra (generated using the S4 solver). This illustrates the
efficacy of the training model in reconstructing spectra close to
the original and highlights the smoothness and continuity of
the latent space at the local level. By delving into the variability
and diversity within this local region of the shape latent space,
we can generate new shapes and corresponding spectra that
maintain similarities to the original data points while intro-
ducing minor variations. This methodology facilitates the
creation of diverse and novel samples, enriching the generative
capabilities of the model and deepening our understanding of
the underlying data distribution.16,56

For global interpolation, we select two distinct data points
representing images with the half-moon cavity and L shapes,
intentionally chosen to be distant in the latent space. Employ-
ing a linear interpolation algorithm,57,58 we sample the latent
variables between these two points and subsequently decode
the resulting sampled points using both the shape and linked
spectrum decoders, as illustrated in Fig. 3C. The reconstruction
of the interpolation between latent vectors of two geometrical
shapes and their corresponding spectra reveals a smooth tran-
sition from one shape to another. Given that the Variational
1618 | Digital Discovery, 2024, 3, 1612–1623
Autoencoder latent space follows a Gaussian distribution, it is
expected to yield smoother and more diverse transitions
between two geometrical shapes. Fig. 3D showcases the recon-
structed shapes and corresponding predicted spectra alongside
the original spectra (generated using the S4 solver) between the
latent vector of the actual half-moon cavity and the L shape. As
depicted, with each step, the cavity gradually shis towards
the L shape with slight noise at step 4 due to a small gap in the
latent space. This suggests that the model has learned to
disentangle the underlying factors of variation rather than
merely memorising the training dataset.16,54 Similar continuity
is also observed in the spectrum latent space at the local and the
global levels (see ESI Fig. S6 and S7†). Due to the one-to-many
mapping between the response and structure, neighborhood
points in the spectral space can correspond to varying classes of
shapes within the cross-link data path.
3.2 Multiple-solution inverse design

The inverse design59,60 aims to nd a geometry that yields an
optical response close to the specied target. Specically, we
can independently specify the reectance and transmittance
spectra for each linear polarization. The inverse design here is
purely DNN-based and does not require an external optimizer.
Predicting geometry from a given spectral behavior inherently
faces the challenges of non-uniqueness, as a single spectral
behavior can correspond to multiple geometries. To address
this, we provide a given target spectrum (60 × 4 × 1), and we
generate its latent representation (8 × 1). By introducing
random noise into this latent representation, we explore the
adjacent neighborhood around this latent space. These per-
turbed latent points are then passed through a geometry
decoder. Addition of this noise results in predicting multiple
geometries that exhibit identical spectral behavior. This will
yield one or many solution shapes, which are then veried using
full-wave electromagnetic solvers. Specically, here we show-
case the design of polarization-independent and polarization-
dependent, transmission, and reection mode spectral lters.

Fig. 4A and B showcase the results of an inverse design
process for polarization-independent spectral lters. The spec-
tral responses of the output geometry are compared with the
target spectra, both predicted (given by DNN) and actual (eval-
uated using S4). Two sets of results are presented: one where the
input tensor is the same for both Fig. 4A(i) and (ii), resulting in
different classes of geometries (cross and ring shapes). Another
set (Fig. 4A(iii) and (iv)) demonstrates a similar study but with
only reection spectra as input, generating two distinct classes
of shapes. Moving to Fig. 4B, it illustrates the inverse design of
a polarization-independent dual-band reection lter (dual-
band notches in transmittance) with Gaussian target spectra.
Finally, Fig. 4C showcases the results of an inverse design for
polarization-dependent color lters. A single geometry set
produces bandpass and band-stop lter characteristics for s-
and p-polarization in transmission and reection modes. On
our workstation, a single inverse design step which yields ten
viable shapes takes an average of approximately 3.2 seconds.
Additionally, each of the discovered viable shapes is passed
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Exploring local and global continuity in the shape latent space. (A) Demonstrating the procedure for testing local continuity – an input
shape is encoded to Z in the shape latent space. Seven random local neighbors, generated using a normal distribution (mean = Z, standard
deviation = 0.2), and are decoded using a shape and cross-linked spectrum decoder. (B) Displays the neighboring shapes of the base shape
alongside their predicted and ground truth spectra. (C) Illustrating the procedure for testing global continuity – two input shapes are encoded to
obtain their latent points Z1 and Z2. Linear interpolation, Z= aZ1 + (1− a)Z2, is performed between these points, and the resulting point Z is passed
through the shape and cross-linked decoder. (D) Depicts the six generated shapes through interpolation alongside their predicted and ground
truth spectra.
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Fig. 4 Evaluation of the performance of the cross-linked neural network in inverse design of metasurfaces. The DNN-predicted spectra and
ground truth spectra (obtained using S4) of the inverse designed geometries are compared with given target spectra. (A) Inverse design of
polarization independent transmission and reflection mode spectral filters. The DNN predicts two classes of geometries for identical target
spectra– (i) plus shape class and (ii) circle shape class, showcasing the DNNmodel's ability to generatemultiple suitable shape classes. (A) (iii) and
(iv) Similar study as in (i) and (ii) with Gaussian target spectra. Here also the DNNmodel shows the ability to predict multiple suitable shape classes
for given target spectra. (B) Inverse design of polarization independent dual band spectral filters. (C) Inverse design polarization-dependent
transmission and reflection mode color spectrum filters. (B) and (C) The given shape classes are found to be unique for the given target spectra
showcasing a one-to-one mapping.
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through the full electromagnetic solver, and only those shapes
whose spectra closely match exact calculations are retained (this
verication step takes an additional 2 minutes for 10 shapes).
3.3 Sensitivity analysis

The achievement of precise geometric shapes through inverse
design encounters notable hurdles during the fabrication
process, particularly when employing lithography techniques.
Vercruysse et al.61 have delineated critical constraints and
limitations pertinent to the creation of arbitrary geometrical
shapes with heightened degrees of freedom. These constraints
encompass minimum feature size restrictions, which dictate
specic thresholds for feature sizes, and gap size constraints,
where smaller gaps between shapes pose fabrication challenges.
Furthermore, curvature constraints assume signicance, as
sharp or highly curved features may deviate from the intended
geometry during fabrication.62,63 For instance, the plus-shaped
design obtained through inverse design may not align seam-
lessly with the fabrication process due to curvature constraints,
as evidenced by Vashistha et al.64 Consequently, relying solely
on a singular design becomes impracticable, necessitating the
generation of multiple shapes akin to those derived through
inverse design, albeit with slight variations to preserve desired
spectral characteristics. Utilizing trained networks, such sensi-
tivity analysis can be rapidly conducted.

For this experiment, two classes of inverse designed geom-
etries, the plus and circle shapes, are utilized as the base
shapes. Fig. 1E outlines the encoding process of the base shape
through the shape encoder into latent space. In this space,
Fig. 5 Sensitivity analysis of inverse-designed geometries is performed, w
shape by introducing noise. (A) and (C) The derived geometries from two b
their respective predicted and ground truth spectra. Ground truth spe
predicted spectral deviations among all derived geometries, along with

© 2024 The Author(s). Published by the Royal Society of Chemistry
a random noise is introduced into the shape latent point,
ranging from 0 to 1.8 in increments of 0.2. Subsequently, the
corresponding shapes and spectra are reconstructed from these
noisy latent points using the shape and spectrum decoders. The
average time taken for the generation of these derived shapes is
∼42 s, whereas the verication of these spectra (that uses the S4

tool) takes ∼3.20 min. Illustrated in Fig. 5A and C are a diverse
array of these derived shapes, accompanied by their predicted
spectra, illustrating the outcomes of this iterative process. As
noise is incrementally introduced with each iteration, the
derived shape further diverges from the base shape. To assess
the sensitivity of the derived shapes, we compute the mean of
squared errors (MSE) between the target spectra for inverse
design and the predicted spectra of the derived shapes.
Specically, we iterate the generation process 15 times for the
derived shape with the highest noise value and a statistical
analysis is shown in Fig. S8.† The MSE value for the plus shape
is observed to be having a wider distribution as compared to the
MSE of the circle shape, thus depicting a higher sensitivity of
the plus shape class.

Evidently, as illustrated in Fig. 5B and D, the ground truth
and predicted spectra of the derived plus shapes display
a greater deviation from the base shape compared to the derived
circle shapes. Therefore, it can be inferred that the predicted
optical response of the base circle shape is more resilient to
fabrication tolerances and process variability, which inherently
impact the nal geometrical shape. The spectra of the nal
geometry closely align with the desired performance charac-
teristics of the base shape's ground truth spectrum.
here eight different shapes are derived from the latent point of the base
ase shape classes (plus shape and circle shape) are illustrated alongside
ctra of the base shapes are also included. (B) and (D) The spread of
the predicted spectra of the base shape.
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4 Conclusions

In summary, we present an improved methodology for deep-
learning-based inverse design in nanophotonics, where arbi-
trarily large and diverse shapesets can be employed. The use of
cross-modal training adapted in this work can ensure multiple-
solution inverse designs and sensitivity ranking in a single
rapid design process without coupling with an external opti-
mization routine. Expanding the scope to metagratings where
multiple reection and transmission orders are present and to
excitation beyond normal incidence is an obvious extension of
this study. Multilayered65,66 aligned metasurfaces as well as
multi-material geometries67 are another possible extension.
Rapid prediction of near-eld and far-eld responses of nano-
structures68 and implementation of deep transfer learning69

that leverages computational and experimental data open
a number of avenues for further extension of this work.

The reported training of locally and globally continuous cross-
linked latent representations can take advantage of manifold18

and metric learning33 and also facilitate the search for novel
responses. The versatility of this approach makes it easier to
explore complex shape sets and enables innovative research in
various kinds of research areas through combining multiple data
modalities. Multimodal approaches70 like UNITER71 and triplet
network training72 along with scalable semi-supervised learning
on graph-structured data73 can nd extreme relevance in our
approach. Large language models (LLM) are proving adept at
interpreting scientic papers. We envision that with the help of
LLM and the proposed methodology, it may be possible to learn
the structure–response relationships in very large shapes
acquired from published literature.
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