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Goal-directed molecular generation is the computational design of novel molecular structures optimised
with respect to a given scoring function. While it holds great promise for the acceleration of drug design,
there remain limitations that hamper its adoption in an industrial context. In particular, the lack of
diversity of molecules generated currently limits their relevance for drug design. Yet, most algorithms

proposed focus solely on optimizing the scoring function, and do not address the question of diversity of
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Accepted 30th September 2024 the solutions they propose. Here, we propose a conceptual framework for analyzing the need for diverse
solutions in goal-directed generation. Using a mean-variance framework, we present a simple model to

DOI: 10.1039/d4dd00105b bridge the optimization objective of goal-directed generation with the need for diverse solutions. We
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Introduction
Goal-directed generation

De novo molecular design refers to the computational design of
novel chemical structures. Recently, there has been renewed
interest in de novo design, fueled in part by the popularity of Al
generative models, which have been adapted to generate de novo
molecular structures. De novo design tasks can be classified as
either distribution learning tasks or goal-directed generation
tasks.' Distribution learning aims at generating large libraries of
novel chemical structures, for instance in the aim of performing
virtual screening. On the other hand, goal-directed learning aims
at designing novel chemical structures that satisfy a desired
molecular profile. This is done by generating structures that
maximize a user-defined scoring function.' In the context of
industrial drug discovery, the scoring function S is designed to
quantify whether a molecule fits to the drug discovery project's
objectives. For instance, for a project in the lead optimization
stage, the scoring function could combine predicted values for
properties such as activity and selectivity on the target, as well as
ADME-Tox properties. Existing goal-directed methods can be
classified according to the molecular representation on which
they operate® - atom based, fragment based or reaction based, as
well as the kind of optimization approach they use. The opti-
mization approaches can be gradient-free, for instance
population-based optimization algorithms such as genetic algo-
rithms,® swarm optimization* or Bayesian optimization.’ They
can also be gradient-based, where the generative model itself is
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also show how to integrate it within different goal-directed learning algorithms.

updated through gradient descent. Gradient-based approaches
rely heavily on reinforcement learning.*

Diversity objective in goal-directed generation

Goal-directed learning is by essence framed as an optimization
problem.* This was stated in the work of Brown et al, who
coined the term “goal-directed learning”, by using the following
definition: “The goal is to find molecules that maximize the
scoring function”. This objective translates in the algorithms
used for goal-directed generation. In gradient-free approaches,
the explicit objective is to maximize scores and to identify the
highest scoring molecule. For gradient based approaches that
resort to reinforcement learning, the reward is defined by the
value of the scoring function at the end of an episode, during
which a molecule was designed. As both the reward and the
transition function are deterministic, the optimal policy is the
one that puts the whole probability mass on the highest scoring
molecule. This contrasts with the fact that an important
objective in the different stages of drug discovery is often to
provide diverse solutions. There is therefore an inherent
conflict between the objectives of drug discovery (i.e., design
high-scoring yet diverse molecules) and the formalism used by
goal-directed generation (i.e., design the highest scoring mole-
cules irrespective of their diversity). This was for instance noted
in one of the early studies on goal-directed learning,” which
used a Long-Short Term Memory network (LSTM) on SMILES
strings. The authors acknowledged that converging to a state
where all the probability mass is placed on the top-scoring
SMILES sequence is not desirable, even though it is the
underlying objective of their reinforcement learning frame-
work. To overcome this issue, they recommend that training
should be stopped early in order to balance the design of high-
scoring molecules with the design of structurally diverse ones.
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While it is possible, as proposed in the aforementioned work, to
provide ad-hoc modifications of goal-directed learning in order
to increase the diversity of generated molecules, a framework to
reconcile goal-directed learning with the diversity objective still
lacks. The main goal of this work is to propose such a frame-
work and to reconcile the formalism used in goal-directed
generation with the diversity objective. Furthermore, we also
translate this framework in different goal-directed algorithms.

Prior work on diversity in goal-directed learning

Diversity as an objective for generative models has been widely
discussed for distribution learning,"® but less for goal-directed
learning. In the field of optimization theory, a novel paradigm
called quality-diversity®'® has emerged in the last decade. This new
paradigm states that optimizing ambitious objectives might not be
achieved through direct optimization, which often leads to being
stuck in local optima. Instead, quality-diversity proposes inclusion
of novelty and diversity as inherent objectives. Counter-intuitively,
this might lead to the discovery of solutions that perform better on
the initial objective than directly optimizing the primary objective.
This was applied to molecular design in a recent study," relying on
the MAP-Elites algorithm.”” The search space is divided into
different regions (called niches), and the optimization algorithm
aims at finding optimal solutions for each niche, therefore
enforcing diversity. Noteworthily, in this case diversity is only
a means to an end and the final goal is still to find the highest
scoring solutions. Other approaches have also been proposed: for
instance, Liu et al.*® use a dual RNN framework to enforce explo-
ration. One RNN is used to optimize the scoring function, while
the other simply encodes a fixed probability distribution. During
reinforcement learning, with some user defined probability, the
second network can be used to sample some tokens. This prevents
the optimization scheme from collapsing on the highest scoring
sequences. Several other methods were proposed, some using
a similar approach, as in Pereira et al,"* or through a strategy
which uses multiple agents concurrently.* Finally, Blaschke et al.*®
proposed the Memory-RL framework. Building on the REINVENT
algorithm,” they modified the scores in a similar way to MAP-
Elites. The molecules generated are sorted in memory units.
Closely related (e.g., based on Tanimoto similarity) molecules
populate the same units, and when the number of molecules in
a unit exceeds a predefined threshold, new molecules falling in
that unit have their scores set to 0. This prevents the algorithm
from exploring indefinitely the same region of chemical space.
In this work, we present a novel theoretical framework that
bridges the current formulation of goal-directed generation with
a diversity objective. We first present this framework, and show
how to apply it for different goal-directed generation algorithms
in order to augment them with a diversity objective. We then
present empirical results on different tasks for two datasets.

Theory
Probabilistic framework

The scoring function used in goal-directed learning is often
designed to model the adequacy of a molecule to a drug

© 2024 The Author(s). Published by the Royal Society of Chemistry
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discovery project. Nonetheless, many properties relevant to
a drug discovery project are difficult to model accurately. Fig. 1
illustrates the life of a putative compound after de novo design.
In order to reach the clinical stage of development, a molecule
must face several challenges. First, it should be reasonably
drug-like."”*® It must also be synthesizable, in a reasonable
number of steps and with limited cost. Then, the value pre-
dicted for the properties of interest have to be verified when
tested in vitro in biochemical and cellular assays. Finally, even if
it shows a good profile on the properties of interest, those only
serve for proxies of the in vivo behavior of the molecule. Those
uncertainties lead scoring functions to be imperfect predictors
of a compound's future success in a drug discovery project.

To account for this, we use a probabilistic framework. For
a molecule, we define “success” as satisfying the pre-defined
desired molecular profile. While scoring functions are imper-
fect, we assume that the probability of success for a given
molecule m is an increasing function of its score:

Psuccess(m) = f(S(m)) (1)

where f{s): s — [0, 1] is an increasing function of the score s. The
success of a molecule success () is therefore a random variable
that follows a Bernoulli distribution parameterized by f{S(m)). At
this stage, the best strategy remains to select the highest-
scoring molecule, as it is the molecule whose probability of
success Pgyecess() is the highest.

Generating batches of molecules

Another key point is that the output of generative design is
generally not restricted to a single molecule. Rather, goal-
directed algorithms are often used to generate a batch of
molecules. Indeed, the Design-Make-Test-Analysis (DMTA)
cycle’ in drug discovery rarely operates on a compound-by-
compound basis, but rather by a batch of compounds. Given
a budget n (i.e., a number of molecules to synthesize and test in
one iteration of the DMTA cycle), the goal is to provide a batch M
= (my, my, ..., my,) of molecules. Switching to the generation of
a batch of molecules is often done implicitly, by selecting the
top n scorers from the pool of potential candidates identified by
the goal-directed generation algorithm. This is for instance re-
flected in the goal-directed benchmarks of Guacamol," where
the highest-scoring molecule is evaluated, as well as the top 10
and top 100 molecules. For a batch of n molecules, the outcome
observed is a random vector (success (my), success (m,), ...,
success (m,)) € {0, 1}". As the order of the molecules is inter-
changeable, we are actually only interested in the success rate:

1 n
(M) =~ success (m;
(M) = > success (m)
In our probabilistic framework, the expected success rate is
simply:

ET(M) = E(% gpsuccess(’ni)) = % gf(s(ml))
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Fig. 1 Challenges encountered after the design of a molecule.

As f is an increasing function of the scoring function, maxi-
mizing this expectation is achieved by picking the top n scored
molecules. Once again, at this stage, the best strategy remains
to select a batch of the highest scoring molecules. This is due to
the fact that the expectation is linear. Below, we will explore the
fact that when we optimize a statistic that is not linear, but also
depends on the correlation of molecules’ outcomes, the optimal
batch is one where molecules are not only high-scoring but also
diverse.

Intuitively, selecting only the highest scoring molecules can
be a risky strategy. Conceptually, the success of a molecule
conditioned on its score depends on failure risks (e.g., failure of
a predictive model, unmodeled properties, synthesizability
issue). Assuming that these failure risks are shared by highly
similar compounds (an assumption detailed in the following
section), a de novo design approach that would generate closely
related compounds is subject to a high risk of simultaneous
failure of the generated molecules. This intuition is illustrated
on the left of Fig. 2. Several scenarios are displayed, to illustrate
our absence of knowledge of the landscape of the failure risks.
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On the other hand, a method that balances high scores with an
inherent diversity objective (represented on the right of the
figure) would mitigate those risks. This intuition will be
formalized in the next section.

Maximization of the expected success rate is a valid strategy,
but not the only one available. Besides the rate of success, we
might be interested in optimizing other statistics of the success
rate. Indeed, statistics linked to the spread (e.g:, the variance) of
the distribution control the risk of the distribution. For
instance, we can be interested in maximizing the probability
P(tp, > 0) of having at least one successful molecule, with the
desired molecular profile. This is a more conservative strategy,
which can correspond to a risk-adverse behavior.

Fig. 3 represents two hypothetical distributions describing
the rate of success of a batch of molecules. The distribution on
the left has a higher mean than the one on the right; on the
other hand, its probability of having zero successes is far higher.
In this situation, we might prefer sampling from the distribu-
tion on the right than from the distribution on the left, even
though the latter has a higher expected success rate.

100 Failure risk

°
Scenario1 27 /é
501 .

Failure risk

100 Ll ]
oo| | M Active |
Inactive 90§ [ ]
801 80
- Seenario 2,
g g
60
o 50 ®
50 «

’ ’ PC1 ’
2 3 4 5
pet 100]
" Failure risk .
¢ AI-generatgd Scenario 3% «
molecule with g
diversityasan “ .
objective

Fig.2 De novo design of molecules subjected to an unknown failure risk, without diversity as an objective (left) and with diversity as an objective
(right). Dots denote generated molecules. Red (respectively green) dots are subject (respectively not subject) to the failure risk of the corre-
sponding scenario. Multiple scenarios are presented to illustrate that we ignore which failure risks molecules will face.
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Fig.3 Both panels represent hypothetical probability distributions on the rate of success of a batch of molecules. The expected rate of success is
higher for the distribution in the left panel. On the other hand, the probability of having at least one success P(X = 1) is higher for the distribution
on the right panel. According to our overall goal, and our sensitivity to risk, we might privilege sampling from one distribution or the other.

Mean-variance analysis

Here, we present several risk measures for probability distri-
butions that can be of interest. It is to be noted that many risk
measures were first described and implemented within the
financial sector,> to assess risks associated with financial
portfolios. There is indeed a parallel between a financial port-
folio and a batch of molecules selected to identify a drug
candidate. In both cases, we observe a return which depends on
the constituents of the portfolio or of the batch of molecules,
and in both cases we are interested in avoiding realizations of
the tail of the distribution. As we want to avoid the risk of
a financial loss of high magnitude, we also want to avoid finding
no successful molecules within our batch. One straightforward
measure of risk is the variance var(X) = E(X*) — E(X)? of the
underlying distribution. The variance is often tractable, and
amenable to optimization.

Intuitively, a higher variance stems from a more spread-out
distribution, and thus a higher risk. This can be understood
through the Chebyshev inequality:** for a random variable X
with mean E(X) and finite variance o, we have for any positive
number o

o

P(X —EX)|za)= Z. @)

Q
)

Applying it to the random variable t(M), the probability of
having no successful molecule P(t(M) = 0) satisfies

P(x(M) = 0) = P(z(M) — E(x(M))
— E((M))) = P(|e(M)

—E(x(M))|=E(«(M))) = W 3)

It suggests that to minimize the risk of finding no successful
molecule in the batch M one should increase the expectation
E(z(M)), as expected, or similarly lower the variance o”.

© 2024 The Author(s). Published by the Royal Society of Chemistry

Other risk measures include the value at risk,* the condi-
tional tail expectation® and the expected shortfall.>* These risk
measures give specific information on the tail of the distribu-
tion for which they are computed. On the other hand, specific
optimization of these risk measures is often intractable.

Mean-variance analysis, also known as the modern portfolio
theory, was introduced® as a framework to mitigate risk in
financial portfolios. Here, we transpose this analysis from
selecting assets in a portfolio to selecting molecules to be tested
in a DMTA cycle. The main idea of the mean-variance analysis is
that we are not only interested in maximizing our mean return
(in our case the success rate of our selected molecules), we are
also interested in minimizing the variance of our return, as
a proxy for risk.

We propose an optimization objective allowing a trade-off
between the variance and expectation value, optimizing both
quantities in a single-objective framework through a weighted
sum of both objectives, with a negative weight for the variance:

E(T(M)) - ApenaltyUZ(T(M)) [4)

where Apenairy 15 @ user-defined term that balances the expecta-
tion with the variance. This choice of objective function is
different from the analysis of Chebyshev inequality, eqn (3). As
will be seen below, it allows for a straightforward modification
of existing optimization codes and it has the interesting prop-
erty of being submodular®® as a function of the batch M.

As the variance of a sum of random variables {X;};_," is the
sum of covariances across all pairs, Le.,

(3 (X)) = X jc papcov(Xi, X;), we have:

x iaz(success m)+>

i=1 i=1

1

PE(M) = —

n
X Z oi0;p(success (m;), success (n;))
T
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where o, is the standard deviation of the Bernoulli distribution
parameterized by Pgyccess(2;) and p(success (m;), success (m)) is
the correlation coefficient between success (m;) and success
(m)).

We do not have direct access to the correlation coefficient p.
While the score S(m) is assumed to model the single molecule
probability of success, this probability is not independent
between two molecules. To model correlation coefficients, we
will rely on the well-known similarity principle in drug
discovery.”

Correlation model. The similarity principle states that
structurally similar molecules have similar properties.”® We
assume that the probability of success of molecules, which is
a combination of several molecular properties, follows the same
principle. This leads us to define a simplified correlation model
based on medicinal chemistry heuristics.?” This heuristic states
that if two compounds' similarity increases above a threshold
(e.g, 0.8), their properties will be correlated. Below this
threshold, the probability of having similar properties quickly
decreases into background noise.

We thus choose to define a simplified correlation model
based on Tanimoto similarity, as a step function given
a threshold ¢

p(mi, m;) = {g’

where p(m;, m;) denotes the correlation coefficient between
success (m;) and success (m;). Whether p = 1 depends on
whether we expect the property of interest to have activity
cliffs,* where two similar compounds can have different values
for a property. For computational experiments, we define
similarity as the Tanimoto similarity on extended-connectivity
fingerprints, and use a threshold of 0.7. Of course, the right
choice of fingerprints, similarity coefficient and threshold will
depend on the particular situation at hand. Furthermore,
functions other than a step function are also a valid modeling
choice. For instance, a linear function could also be used to
model the correlation coefficient as a function of the similarity
between two compounds.
The proposed objective eqn (4) can be rewritten:

if similarity (m;, m;) =1
otherwise

Table 1 Greedy selection of a population for genetic algorithms

View Article Online

Paper

E(z(M))

n

= Zf(s(ml)) - ApellallyGZ(T(M))

i=1

_Zf m[

— Apenalty 7 (z(M))

1
pena]ty ) X [ZO' SUCCESS (}’I/l,))
i=1

+Apenulty Z

i=1 j=lj#i

a,0;p(success (m;), success (m;)) (5)

For the first of the

X3 f(sm)a

increasing when f{S(m;)) goes from 0 to 1/2, and decreasing
when f{S(m,)) goes from 1/2 to 1. Considering that we also (as it's
our primary objective) want to maximize f(S(m;)), we can
consider the latter case. Formally, one has f{S(m,))(1 — fiS(m,)))
= 1 — f{S(m;)) such that

E(‘L’(M)) - Apenaltyo‘z(T(M))

Z :
It: X
- pena y }12

n

part variance

—f(S(m;))), each individual term is

n

(1 =7 (S(m:)))

i=1

>

Apenalty oi0;p(success (m;), success (m,))} (6)

=1 j=lj#i

This allows us to simplify the overall objective by removing
constant terms and redefining the free parameter Apenaigy to
yield the following objective:

Zf(s(ml penaltyz Z O'UJP m;, m])
i=1

i=1 j=lj+#i

In practice, we do not know f but expect practitioners to
calibrate the scoring function such that its value reflects as
accurately as possible the expected probability of success for
a molecule. Using the correlation model introduced before, we
can thus simplify this objective to derive our final optimization
objective:

Input: Set of molecules my, ma, ...,
function S(m), penalty term A, threshold ¢

m,, number of molecules to select k, optimization

Re-rank molecules from highest to lowest scoring using S

Selected molecules K <— {}

for i =1ton do
Re-score m;, m;,1, m, using Score(m) =
Select highest scoring molecules m;,
K = K Ufm,}

end for

return K

2576 | Digital Discovery, 2024, 3, 2572-2588

S(m) —

>\0-m ije K O-j(STanimoto(m,mj)>t
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Table 2 Diversity oriented HillClimb-MLE
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Input: initial probability distribution P(x|z, ..

term A, threshold ¢
for i = 1 to nepocns do
Sample molecules s, .

‘ 'Snsamples

.x4), optimization function S(m), penalty

from P(z|xg,...x4)

Score molecules using mean-field approximation and mean-variance analysis:
n
Score(mi) = S(mz> - )\O—i Zj:l,j;éi O—deanimoto(mi,mj)Zt

Select k highest scoring molecules s;,, ..s;

k

Fine-tune P on s;,,..s;, by minimizing negative log-likelihood

end for
return P

n n

F(M) =Y S(m;) 2

i=1 i=1

Z a[aféTanimoto(m,,mj) =1 (7)
Jj>i

where § denotes Kronecker's delta, equal to 1 when the under-
lying condition is satisfied and 0 otherwise. This optimization
objective optimizes the scores of the molecules within the
batch, while yielding a penalty if the similarity of two molecules
from the batch is above the defined threshold.

Materials and methods
Goal-directed generation of algorithms

In this section, we show how to modify goal-directed learning
algorithms to include the optimization objective derived in
eqn (7).

Optimization. We first consider optimization algorithms
that evolve populations of molecules, such as genetic algo-
rithms for graphs® or SMILES** that employ fitness-based
selection. We aim at modifying them to select not the best
solutions based on individual scores, but the best batch of
solutions according to objective 7. Selecting the optimal subset
among a population according to this objective is computa-
tionally hard. Yet, this batch optimization can be performed
efficiently through a greedy approach for maximizing sub-
modular set functions.

Submodularity of the optimization objective. A submodular
function f{M) over subsets M of a pool V is characterized®® by the
property that for two sets M C Vand N C V,with M S N, and an
element m € VAN (not in N) the function f'satisfies the inequality:

AN U {m}) — fIN) = AM U {m}) — fIiM). (8)

This property can be easily verified for the objective function
F(M), eqn (7). Indeed, for a set M of molecules and a molecule m
not in M, the discrete derivative F(M U {m}) — F(M) is

F(MU {Wl}) - F(M) = S(m) —A Z O'm,-o'm6Tanimoto(m,-‘m) =1 (9)

mieM

Thus, given another set N of molecules satisfying M = N, and
for m not in N, we have

© 2024 The Author(s). Published by the Royal Society of Chemistry

[F(NU{m}) — F(N)] — [F(MU{m}) — F(M)]
= Z UnlianléTﬂnimOlO(ll7i,m)Zt =0,

mje N\M

(10)

proving the submodularity of the objective function F(M).

Maximizing submodular functions with the constraint of
a given budget of n molecules is a problem NP hard, but it has
been shown that greedy approaches provide good approxima-
tions efficiently.>*

Greedy approach. The greedy approach for submodular
functions adapted to our problem is described in Algorithm 1.
In this greedy algorithm, we iterate on the number of molecules
to select, re-scoring molecules using the penalty term computed
over previously selected molecules at each iteration.

Reinforcement learning. In this paragraph, we deal with
generative models that encode a distribution Py(x) over the
space of molecules, that depends on a set of parameters 6. For
instance, this could be an auto-regressive model on SMILES
sequences, modeling the joint probability Py(xs, ..., x,) over
fixed length SMILES sequences. The parameters ¢ are then
optimized to maximize the expectation value of the objective
function for the probability distribution P:

Oopt = argmaxEp [F(M)]. (11)
0

Mean-field approximation. In these approaches, the proba-
bility of generating a molecule m; is independent with respect to
the generation of a molecule m; so that the joint probability P(M)
of generating an n-uplet of molecules M = (my, ..., m,) of
molecules is simply

(12)

P(M) = ﬁPH(mi).
i=1

The expectation of the objective function then reduces to

Ep,[F(M)] = n x Ep,[S(m)]

2 @ ZZ Py(m)Py (m) TG0, (o) =1 (13)

7
moom
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nn—1) .
Up to factors n and ———— this corresponds to a mean-field
approximation in the expression of the objective function eqn
(7), where the variance penalty term is replaced using this
mean-field approximation:

n n
FMF(M) = Z S(mr) -2 Z UiEPg(m)a(m)éTanimoto(m, )=t (14)
i=1 i=1

This formulation can be optimized with Monte-Carlo
sampling and stochastic gradient descent. The mean-field
approximation and the Monte-Carlo sampling allow computa-
tion of the cross-molecule penalty on molecules sampled from
the current probability distribution P,, using other molecules
from the same batch. The variance term acts as an entropy term
favoring wide distribution with respect to peak distributions on
a few best molecules. This promotes diversity among the

Epoch: 0 (0.79)

Epoch: 30 (0.77)

View Article Online

Paper

generated molecules, which was our initial goal. It might seem
that minimizing variance is in contradiction with maximizing
diversity. In fact, variance minimization is done with respect to
the score distribution, while diversity is promoted in molecular
space. This is similar to taking the average of a set of random
variables. If these random variables are highly correlated, the
variance of the average is large for different trials, while the
variance is lower if the random variables are uncorrelated.
The REINFORCE algorithm can be modified in a similar
fashion, replacing the score by the objective (14), with the
expectation taken over all other molecules from the batch.

Experimental setup

The main purpose of this work is to provide a theoretical
framework for understanding the exploration-exploitation

Epoch: 60 (0.77)

e generated

inactives, - <
H ¥
actives %3 w*; 2

o
N
o
o
N

-3 -3

-2 0 2

Fig. 4 PCA projection of generated molecules with no similarity penalty (A = 0), on the DRD2 dataset for different epochs, showing their
evolution over time. The ellipses recover regions that span the 10th to 90th percentiles of the principal component values for the molecules
generated up to the epoch considered. The internal diversity, indicated between parentheses, is computed as 1 minus the average Tanimoto

similarity between ECFP4 fingerprints of generated molecules.

2578 | Digital Discovery, 2024, 3, 2572-2588

© 2024 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00105b

Open Access Article. Published on 10 October 2024. Downloaded on 11/21/2025 7:23:04 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

trade-off in goal-directed generation. Nonetheless, we also show
experimental results for the HillClimb-MLE algorithm
described above. We focus on this mean-field approach as it
corresponds to a simple modification of existing REINFORCE
algorithms and can thus be easily implemented in current
packages.

Datasets and algorithms. We evaluate Algorithm 2 on
different datasets. We present results for the DRD2 and EGFR
datasets, extracted from EXCAPE-DB?*® before curation (see the
Data availability section). We implement Algorithm 2 by
adapting Guacamol baseline code for the Hill-Climbing MLE
algorithm. We use default parameters, and study the influence
of the two parameters that are specific to Algorithm 2, the
penalty A and the similarity threshold ¢** For each set of
parameters, we analyze results on ten different runs using

View Article Online

Digital Discovery

different random seeds. The algorithm runs for 150 epochs, and
the 128 highest-scoring molecules generated at each epoch are
reported in the results.

Results
Diversity and scores of generated molecules

A first qualitative analysis is performed by visualisation of the
results in low dimension. Fig. 4 shows the evolution over epochs
of generated molecules on the DRD2 dataset without any
similarity penalty. The generated molecules quickly collapse
into a few narrow regions of the chemical space.

Fig. 5 shows PCA projection on the DRD2 dataset of mole-
cules generated using Algorithm 2 with a similarity threshold of
0.7. We observe that as the A penalty's value increases, the

A=01(0.73) A=1 (0.71) A= 10 (0.72)
2.5 G, & R 2.5 Yo, & R 2.5 B !

A=100 (0.77)

2.5 s 4 2.5 %

- generated
inactives
actives

Fig.5 PCA projection of molecules generated after 150 epochs using different values for the penalty A, at a fixed similarity threshold 0.7, on the
DRD2 dataset. The ellipses recover regions that span the 10th to 90th percentiles of the principal component values for the molecules generated
up to the epoch considered. The internal diversity, indicated between parentheses, is computed as 1 minus the average Tanimoto similarity

between ECFP4 fingerprints of generated molecules.
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generative algorithm doesn't explore only the main cluster of
actives, but also other regions of the chemical space covered by
the dataset.

Qualitative analysis of Fig. 6, which presents the same results
on the EGFR dataset, yields a similar conclusion. The generated
molecules cover a larger portion of the main cluster of actives as
A increases.

Finally, Fig. 7a and b show a heatmap of average similarities
between generated sets on the DRD2 and EGFR dataset. As ex-
pected, internal similarity (represented by the diagonal)
decreases as the variance penalty increases. An interesting
observation is that the decrease is not constant, being stronger
when 4 is small. Even if A evolves on a log-scale, the decrease in

View Article Online

Paper

internal diversity becomes less pronounced for higher values of
A. This illustrates the tension between the two optimization
objectives of eqn (7): at one point, decreasing the variance is too
costly, and lowers too much the optimization scores, forcing the
algorithm to find a good trade-off between the two.

Trajectories of generated molecules

We also explore how the population of generated molecules
evolve over the epochs. Coming back to Fig. 4, we show the PCA
projection of generated molecules at different epochs when no
similarity penalty is applied (A = 0). As already noted, at the
beginning (top left panel), the molecules cover the whole

A= 0(0.41) A=1 (0.52) A= 10 (0.57)

3 3 3

2 2 : 2

1 1y 1, \

01 * . 01 . 01 =
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2 2 2
-3 -3 -3
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A= 100 (0.57) A= 1000 (0.57)
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-1 -1
2] ° 21"
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Fig. 6 PCA projection of molecules generated after 150 epochs using different values for the penalty A, at a fixed similarity threshold 0.7, on the
EGFR dataset. The ellipses recover regions that span the 10th to 90th percentiles of the principal component values for all generated molecules.
The internal diversity, indicated between parentheses, is computed as 1 minus the average Tanimoto similarity between ECFP4 fingerprints of
generated molecules.
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Internal Tanimoto similarities’ heatmaps of generated molecule sets for different values of A on the (a) DRD2 and (b) EGFR datasets. The

sets of generated molecules are comprised of 128 molecules each. For comparison, average internal Tanimoto similarity is 0.16 for DRD2 and

0.15 for EGFR datasets.

chemical space of the dataset, after the initial pretraining of the
generative model. Quickly, the chemical space covered shrinks
as the generative model focuses on the highest scoring regions.

Fig. 8 shows the same evolution when the similarity penalty A
is set to 100. The generative model also converges to the highest
scoring region but this is balanced by the similarity penalty.
Eventually, the diversity objective prevents the generative model
from collapsing to a few narrow regions of the chemical space.

Retrieval of active molecules

A good proxy for goal-directed algorithms is their ability to
retrieve previously unseen actives. Fig. 9 shows the proportion
of unseen actives (and analogs with a Tanimoto similarity =0.9)
recovered for different values of 4 on the DRD2 and EGFR
datasets. This is shown both for each run individually (on the x-
axis) and over the 10 runs (on the y-axis). Over 10 runs, as ex-
pected, the proportion of unseen actives recovered quickly
increases with A. Interestingly, it decreases for the highest value
A = 1000 for the EGFR dataset. Once again, this illustrates the
exploration-exploitation trade-off: at one point, the increase in
diversity is done at the expense of the optimization of predicted
activities. On the DRD2 dataset, we see that less diversity (A =
0 and 2 = 1) leads to some retrieved actives on individual runs,
but that number keeps being low when results are pooled over
the 10 runs. This means that on this dataset, individual runs
with higher diversity penalty might also generate a low number
of actives, but as those actives are not the same between runs,
taken together they represent a larger number of actives than
for the runs with lower diversity penalty. This is particularly
clear on the EGFR dataset where runs with less diversity find no
actives, probably because the highest scoring region only
contains very few actives.

Robustness to risk

The rationale on which we built our model and derived algo-
rithms such as Algorithm 2 was that we assumed the presence

© 2024 The Author(s). Published by the Royal Society of Chemistry

of downstream risks that we could not model which could
prevent our molecules from becoming drug candidates. To
assess whether or not our diversity-oriented generation does
give an edge in the case of unknown downstream risks, we
designed a set of experiments, each testing the robustness of
the generated molecules to a specific simulated downstream
risk. After the generation, we selected at random a set of N
molecules among the top 128 generated. To simulate what
could happen in a realistic setting, molecules are judged
successful if they meet the following conditions:

e Sampling from a Bernoulli distribution parameterized with
S(m) returns 1.

e m is not subject to a pre-specified risk.

We assess three different simulated downstream risks: one
based on clustering, one based on the calculated coefficient
partition clog P and one based on the calculated total polar
surface area (TPSA). These risks were selected to mimic risks
where correlation is driven by structural similarity (clustering)
and by property value (clog P and TPSA).

For the clustering simulated downstream risk, we perform
a k means clustering on the initial dataset into 5 different
clusters and select one of them at random. Molecules that do
not belong to this specific cluster are considered as not
successful. For the clog P simulated downstream risk, we select
the clog Pvalue of a training set's molecule at random. Then, we
define an interval centered around this value, whose length is
sampled uniformly in [1, 2] (Fig. 10).

A molecule whose clog P falls outside of this interval is not
successful. We also perform a set of experiments using TPSA
and the same procedure as with clog P, except that in this case
the length of the interval is selected uniformly in [5, 10]. The
metric we track is the probability of having at least one of the N
molecules that is successful, i.e., its TPSA lies in the desired
range. We choose this risk measure over variance, even though
we explicitly optimize it over the latter. Indeed, our goal is to
show that even with the simplification made in our model (e.g.,
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Fig.8 PCA projection of generated molecules with similarity penalty A =100, on the DRD2 dataset for different epochs, showing their evolution
over time. The ellipses recover regions that span the 10th to 90th percentiles of the principal component values for all molecules generated up to
the epoch considered. The internal diversity, indicated between parentheses, is computed as 1 minus the average Tanimoto similarity between
ECFP4 fingerprints of generated molecules.
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Fig. 9 Proportion of actives and close analogs (with Tanimoto distance <0.9) recovered per run, and total for the set of 10 runs, for the DRD2

dataset (a) and the EGFR dataset (b), as a function of the A penalty.
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Fig. 10 Illustration of how the clog P risk is computed: a molecule is selected at random in the dataset. An interval length is sampled uniformly in
[1, 2]. The interval with this length, centered on the molecule's clog P value, defines the valid range of clog P values. When we sample a new
molecule and a new interval length, the clog P risk changes, a process highlighted by the difference between the top and the bottom of the

figure. The same principle is used for TPSA.

choosing the variance as a risk measure as it allows for an
analytical solution to be derived), we are still able to optimize
with regard to more relevant risk measures.

For each simulated risk, we repeat the experiment 50 times,
in order to imitate an unknown risk and to sample over the risk
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(a) DRD2 clustering

100- 0.1

0 1 10 100 1000
)

(c) DRD2 TPSA

distribution. For the cluster-based simulated risk, the results as
a function of 2 are shown in Fig. 11a for the DRD2 dataset. We
see that the probability of finding at least a molecule satisfying
the TPP increases as A increases from 0 to 100. As it forces the
algorithm to generate more diverse compounds, the overall risk

-0.8
10+
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Fig. 11 Evolution of the probability of risk mitigation with A as a function of N, the number of molecules selected among the generated ones.
Heatmaps of the probability of finding at least one molecule satisfying the TPP (being active and in a predefined cluster: top left (a), activity and
good value of clog P: top right (b), being in a predefined range of TPSA: bottom right (c)) as a function of A for the DRD2 dataset and for the EGFR

dataset (being in a predefined range of TPSA: bottom left (d)).
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integrated over each experiment decreases. Nevertheless, if the
variance penalty A is set too high (here, A = 1000), the proba-
bility of finding at least one molecule satisfying the TPP actually
decreases, as we have already seen in Fig. 9. This illustrates once
again the tension between diversity and optimization of the
primary objective.

For the clog P simulated risk, results integrated over 50
independent experiments are shown in Fig. 11b for the DRD2
dataset. Results are qualitatively similar to the experiment with
the clustering risk; although the dependency of the outcome on
Ais of alower magnitude. Finally, results for the TPSA simulated
risk are also displayed in Fig. 11c and d for both the EGFR and
DRD?2 datasets. We observe as well that the maximum proba-
bility of having at least one successful molecule increases with
A, before reaching a maximum for A = 100.

Overall, results using those simulated downstream risks
confirm that even with our model's limitations, the algorithm
that derives from it still allows for a better minimization of
arelevant risk measure for drug design. It also allows derivation
of empirical values for the penalty A. It is to be noted that all
experiments were performed using Tanimoto similarity on
ECFP4 fingerprints, with a threshold of 0.7. With other corre-
lation models, it is possible that different results could be
obtained.

Discussion
Analysis of the optimization objective

The final eqn (7) yields a simple optimization objective that
gives a trade-off between exploitation of the highest scoring
solutions (with the first term > 7, S(m;)) and exploration of
diverse solutions (with the second term
—A35{4 21 44 0i0; Tanimoto (m;, my;)>t). Noteworthily, A
is in fact the product between the initial penalty put on the
variance in eqn (7), and of the correlation value p chosen in our
simplified correlation model.

This model is interesting as it departs from the current
paradigm described for goal-directed learning.* It was indeed
originally stated that “The goal-directed optimization of mole-
cules relies on a formalism in which molecules can be scored
individually”. While this is true when our primary objective is
a linear combination of the outcomes of the selected molecules
(such as the expected rate of success), this is not the case for
other objectives (e.g., risk measures like variance of the distri-
bution of the number of successes). For those objectives, if we
assume correlation between the outcomes of molecules, they
should not be scored individually but as a batch of molecules.

This model is appealing for its simplicity and the fact that it
illustrates our intuitions regarding diversity. Nevertheless, it
suffers from several limitations that are worth discussing. First,
we assume that the variance is a good measure of risk. This
choice is mainly made out of convenience, as it allows deriva-
tion of an analytical model. Ideally, a risk measure that specif-
ically addresses the tail of the distribution could be of more
interest. Indeed, the situation we really want to avoid is the one
where none of the selected molecules meet the required
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endpoints. In this regard, minimizing a risk measure such as
7(M) = 0 would be more relevant to the problem at hand.
Besides, we posit a simplified correlation model. To illustrate
this point, we represent in Fig. 12 the relationship between the
Tanimoto similarity of two molecules from the Sanofi database
with known CYP3A4 inhibitory activity and the correlation
coefficient between the random variables that indicate whether
they are CYP3A4 inhibitors (activity =1 uM) or not. The dataset
is comprised of all Sanofi internal data on small molecules
profiled for CYP3A4 inhibition. We choose this property as it is
often a liability that leads to discarding molecules in a drug
discovery project. As we can see, the step function that we
choose as a correlation model is a simplification of reality. On
the other hand, we can see that it roughly models, in this case,
the evolution of the correlation coefficient. As a general matter
of fact, our correlation model assumes that the structure-
activity relationship of properties impacting the downstream
success of molecules is somewhat smooth on average. While
activity cliffs* (i.e., two very similar structures having drastically
different properties) are a known reality for many properties of
interest in drug design, this assumption is reasonable as we are
interested in the average case. On the other hand, we cannot
mitigate risks for which no well-defined structure-activity rela-
tionships exist.

Furthermore, as S(m;) — 1, the standard deviation o; tends
to 0, limiting the impact of the penalty term. In the model, as
S(m;) — 1, we become almost certain that the m; € success. In
practice, limitations of predictive models contradict this, and
therefore setting a minimal value for the penalty term might be
desired in numerical applications.

Probability to be both CYP3A4 inhibitors
° o ° o o o
_- N w > w (=2}

o
=

0.1 0.2 0.3 0.4 05 0.6 0.7 0.8
Tanimoto similarity

Fig. 12 Correlation coefficient for being a cytochrome P450 3A4
inhibitor as a function of Tanimoto similarity on ECFP4 fingerprints. On
the y-axis is the probability that a pair of molecules in the dataset with
this level of similarity are both CYP3A4 inhibitors.
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Comparison with existing methods

The goal of the experimental section is not to prove the exper-
imental superiority of our algorithms, and a full comparison
with existing methods is beyond the scope of our work.
Furthermore, there are no clear benchmarks to compare algo-
rithms that balance exploration and exploitation for molecular
generation. That being said, we provide a quick qualitative
comparison of Algorithm 2 with the MemoryRL algorithm.'® To
decouple the impact of the generative algorithm from the
diversity component, we re-implement MemoryRL'S memory
bucket within the same codebase as Algorithm 2 (Guacamol
baselines). This could induce some changes as the authors
originally implement it with the REINVENT algorithm,” which is
slightly different.

View Article Online

Digital Discovery

Algorithmic complexity. The main difference between the
two algorithms is that Algorithm 2 computes a similarity
penalty per batch, while MemoryRL computes it with respect to
the full trajectory. Therefore, we guarantee diversity within the
molecules generated at each epoch, while MemoryRL guaran-
tees it with respect to the whole set of molecules generated. One
could argue that the latter is better, forcing the algorithm to
explore exhaustively the chemical space. The main drawback is
that it increases the algorithmic complexity. In Algorithm 2, the
algorithmic complexity of the similarity computation at each
epoch is O(n), where n is the number of molecules sampled per
epoch. This is assuming that we use Monte-Carlo sampling to
compute the similarity penalty. Conversely, the algorithmic
complexity of the similarity computation at epoch M for

A= 0(0.73)
3 "et P 3 "o «
(]
° & .
. generat;d P PY
inactives .
2 actives ¥ 4

A=1(0.71)

A= 10 (0.72)
3 .

Fig. 13 PCA projection of generated molecules using different values for the penalty 4, at a fixed similarity threshold 0.7, on the DRD2 dataset
with Algorithm 2, and with the MemoryRL algorithm.** MemoryRL was run using a similarity threshold of 0.7, and a bucket size of 25 (as rec-
ommended by the authors). The ellipses recover regions that span the 10th to 90th percentiles of the principal component values for the
generated molecules. The internal diversity, indicated between parentheses, is computed as 1 minus the average Tanimoto similarity between
ECFP4 fingerprints of generated molecules.
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Fig. 14 DRD2: evolution of the average score throughout epochs for Algorithm 2 using different values for the penalty 4, at a fixed similarity
threshold 0.7, and for the MemoryRL algorithm?®® (bottom right). The envelope indicates the inter-run variability of the average score.

MemoryRL is O(M x n*). Indeed, the number of buckets (and
therefore of similarity computation done for each of the n
molecules sampled at a given epoch) grows as M X n. In our
implementation (151 epochs, 1028 molecules per epoch, using
a Nvidia Tesla K80 GPU), the runtime for MemoryRL on the
DRD2 dataset is roughly 16 hours, while it is only 3 hours for
Algorithm 2.

Exploration of chemical space. In Fig. 13, we compare the
PCA projections of molecules generated with Algorithm 2 (using
various penalties) and MemoryRL, using the same similarity
threshold (0.7).

Fig. 14 shows the evolution of average scores throughout
epochs for both methods: no major differences can be seen
between both methods.

Overall, no major differences in the results of both methods
appear in this quick case study. The good trade-off between
exploration and exploitation, and the best way to reach it, is
problem dependent. Thus, we encourage the reader to test
different algorithms to empirically identify the one most suited
for their specific problem.

Conclusion

Throughout this work, we question the general framing of goal-
directed learning. First, we highlight that we are generally
interested in selecting batches of molecules, for which down-
stream success is uncertain. Then, we stress that maximizing
our expectation is not necessarily what we want to achieve, and
that other risk measures are of interest. Finally, assuming that
the outcome of molecules is correlated for similar molecules,
we show that scoring molecules individually is not correct, but
that molecules should be scored by batch, taking into account
inter-molecule correlations. This series of questions lead us to

2586 | Digital Discovery, 2024, 3, 2572-2588

develop a model that explains the intuition behind the need for
diversity for molecules generated by goal-directed learning
algorithms. Within this model, we show how to modify goal-
directed algorithms and especially the HillClimb-MLE
approach to find a trade-off between exploration and exploita-
tion of the scoring function.

The experimental results are encouraging. Indeed, the
algorithm is well behaved, and controlling the different
parameters and modeling choices allow reasonable control of
the outcome. On several simulated scenarios, we confirm our
initial intuition: diversity mitigates unknown risk. This work is
the opportunity to once again bridge the gap between require-
ments of a drug discovery project (which includes providing
diverse solutions) and the current formulation of de novo
molecular design.

Data availability

Code availability: All software to reproduce the results of this
paper is available at: https://github.com/maxime-langevin/
diverse_molecule_generation.

Correlation coefficient for being a cytochrome P450 3A4 inhib-
itor: Circa 40k compounds with a measured pICs, on CYP P450
3A4 inhibition were retrieved from Sanofi's internal data ware-
house. Values were binarized to 1 if pICs, > 6 and to 0 otherwise
(compounds with an affinity stronger than 1 uM were thus
considered as actives). For each pair of compounds, their
Tanimoto similarity based on ECFP4 fingerprints was computed
with the RDKit (using 2048 bits). For a given similarity value, the
correlation coefficient is defined as the correlation coefficient of
labels between pairs of compounds whose similarity lies in
a small interval centered on the similarity value.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Datasets: The EGFR and DRD2 datasets were extracted from
the ExCAPE-DB database® and curated to discard structures
appearing more than once or with extreme rule of five proper-
ties. The datasets' cleaning notebooks are included in the code
repository.
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