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ts: predicting sites of reaction
based on chemistry within two bonds†

Ching Ching Lam and Jonathan M. Goodman *

How much chemistry can be described by looking only at each atom, its neighbours and its next-nearest

neighbours? We present a method for predicting reaction sites based only on a simple, two-bond

model. Machine learning classification models were trained and evaluated using atom-level labels and

descriptors, including bond strength and connectivity. Despite limitations in covering only local chemical

environments, the models achieved over 80% accuracy even with challenging datasets that cover

a diverse chemical space. Whilst this simplistic model is necessarily incomplete, it describes a large

amount of interesting chemistry.
1 Introduction

The growth in the application of machine learning models in
predicting chemical reactivity has brought numerous chal-
lenges in model construction to light.1–5 One such challenge is
formulating representations of chemical reactions or reacting
molecules for machine learning.6–8 The optimal representations
should be interpretable by computers while covering the traits
of the chemical system relevant to the target property to be
predicted by the model.

The most common approach involves treating each reaction
or set of reacting molecules as a single entity, where the
descriptors are derived or calculated at the molecular level.9,10

Multiple ngerprint features are commonly used in machine
learning for their robustness and applicability in dealing with
a wide range of chemistry problems.11 Besides ngerprints,
computed and experimental physiochemical parameters that
quantify electric and steric factors at the molecular level have
also proven effective.12 For example, Aspuru-Guzik and Balcells
et al.13 have used topological descriptors in training Bayesian-
optimised articial neural networks to predict the activation
energy of reactions catalysed by Vaska's complex. In the work of
Phipps and Sigman et al.,14 the multivariate linear regression
based on a combination of physiochemical descriptors helps to
identify high-yielding substrates for Minisci reactions. Text-
based representations of molecules can also be utilised in
machine learning to predict reactivity. The molecular trans-
former model from Lee et al.,15 where SMILES strings are
tokenised for the training process, can suggest potential prod-
ucts of organic reactions. Our group has recently applied the
niversity of Cambridge, Lenseld Road,
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tion (ESI) available. See DOI:

y the Royal Society of Chemistry
T5Chem model from Zhang et al.16 in predicting reaction
outcomes of C–H borylation.17

Using molecular-level representations necessitates the
availability of extensive datasets, ideally comprising thousands
of reactions. This not only introduces the challenge of data
scarcity but also underscores the need to uphold quality during
data gathering.18–20 The development of Chematica from Grzy-
bowski et al. and Merck (under the name Synthia™) also show
that AI-driven methods alone do not seem to work as well as
hand-derived rules.21,22 Chematica is a synthesis planning so-
ware that adopts a hybrid approach, using machine learning
algorithms and expert knowledge based on 100 000 manually
derived reaction types. What are the limits of pure machine
learning methods? We will investigate in this work.

Building from our previous work,23–25 this paper takes
a different approach to predicting chemical reactivity. Atomistic
approaches, or atomic ngerprint representations, have been
explored in the construction of machine-learning potentials
and for treating inorganic lattice structures.26–29 Within organic
chemistry, Jensen et al. have utilized atomic-based descriptors
for predicting the regioselectivity of electrophilic aromatic
substitution reactions.30 This project is founded on the
hypothesis that the reactivity of an atom can be predicted if we
have adequate knowledge about the atom and its local envi-
ronment within the molecule, specically within a range two
bonds to the atom. This is a simplistic approach, and we
investigate it not because we think it will explain all of chem-
istry, but because we want to nd out how far it can get. Here,
machine learning models are trained on descriptors and labels
designed for the individual atoms within a molecule. Such an
approach allows the exploration of data-driven methods on
a relatively small dataset. Even with a dataset containing only
a hundred reactions, the number of descriptors is likely to be in
the thousands as it is the product of the number of atoms and
the number of reactions. Evaluations were conducted on
Digital Discovery
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various datasets with varying complexity and diversity in
chemical space. This allowed us to discover the extent to which
this simple model had the capacity to encompass a substantial
portion of reactivity within the chemical space of three types of
reaction datasets. The outcome of the investigation, models for
predicting sites of reaction, is useful for providing insights into
the molecule reactivity and hinting at the possible
transformations.
2 Methodology
2.1 Data

2.1.1 Data gathering. Datasets of elementary organic reac-
tions were collected and represented in the format of reaction
SMILES with only the reactant and product component (i.e.
reactant SMILES [ product SMILES). We restricted the
chemical space of the dataset to reactions involving non-metal
main group elements only. The gathered reaction datasets
were categorised into three different types (Fig. 1 and Table 1):
(A) textbook reactions, (B) reactions of a specic class and (C)
reaction datasets with diversity.

Type A reaction datasets were manually generated based on
the contents of the rst-year organic chemistry lecture course at
the University of Cambridge.31 The rst-year dataset was directly
handpicked from the lecture handouts. The dataset comprises
147 reactions in total, including nucleophilic substitution,
nucleophilic addition, elimination, enolisation and proton
transfer (Fig. 2).

Type B reaction datasets comprise the computational dataset
of [3 + 2] cycloaddition generated by Coley et al.32 and the Diels–
Alder reaction dataset collected by Tang et al.33 We took the all [3
Fig. 1 Examples of reactions from each dataset.

Table 1 Overviews of the datasets after the data processing in this stud

Type Dataset No. of reactions

No. of sets r
the same rea
(i.e. competi

A First-year 147 108
B [3 + 2] cycloaddition 5953 2869
B Diels–Alder reaction 11 011 10 394
C RGD1 11 281 10 428
C Green 321 252

Digital Discovery
+ 2] cycloaddition reactions and all training Diels–Alder reac-
tions from the original datasets for data processing.

Type C reaction datasets include the Reaction Graph Depth 1
(RGD1) dataset from Savoie et al.34 and the elementary chemical
reactions dataset from Green et al. (referred to as ‘the Green
dataset’ below).35 These datasets were generated in an auto-
mated fashion with programmed methods. RGD1 dataset uses
the graphically dened elementary reaction step method to
explore the chemical space and enumerate the reactions.36,37

The Green dataset relies on the growing string method to
explore the potential energy surface and nd the reaction
pathways.38–40 For this investigation, we ltered both datasets to
ensure that the reactions are thermodynamically favourable (i.e.
DHr < 0 kcal mol−1) with a low kinetic barrier (i.e. activation
energy, EA <40 kcal mol−1) so that these reactions are feasible at
room temperature. The selected RGD1 and Green reactions
correspond to 6.5 and 6.4% of the original dataset respectively.

2.1.2 Data processing. All the reaction SMILES strings
collected in the data gathering stage were processed and
standardised to the same format.

On each dataset, reactions with identical reactants (i.e. all
components on the reactant side must be the same) were
grouped together to account for competitive pathways. The
SMILES strings of the reactants were converted to InChI to
identify instances of the same reactant. Additionally, a few
reactions contain molecules that cannot be processed by func-
tions related to 3D structure generation in RDKit. These reac-
tions were also ltered out from each dataset. See ESI Section
1.1† for the details. In the Diels–Alder dataset, reactions with
hypervalent molecules and placeholder atoms were also
removed.
y

eactions with
ctants
tive pathways)

Average no. of atoms
in the reactants

Average no. of non-H
atoms in the reactants

23 10
43 23
47 25
17 8
13 7

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Composition of first-year dataset in pie charts.

Paper Digital Discovery

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

6 
A

ug
us

t 2
02

4.
 D

ow
nl

oa
de

d 
on

 9
/6

/2
02

4 
11

:2
3:

43
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
We carried out atom-to-atom mapping, a procedure that
matches atoms in the reactants to atoms in the products, on
reactions in the rst-year and Diels–Alder reaction datasets. The
[3 + 2] addition dataset includes mapping information for the
non-hydrogen atoms. Thus, atom-to-atom mapping was carried
out on the hydrogen atoms only. All atoms in reactions of RGD1
and Green dataset have been mapped, where the reaction
SMILES strings already contain the atom indexing. RXNMap-
per,41 a transformer neural network model explicitly designed
for atom-to-atommapping, was employed to map non-hydrogen
atoms. Subsequently, the hydrogen atoms were mapped based
on the mapping of the non-hydrogen atoms. As all reactions are
elementary, we assumed that no more than one hydrogen atom
has changed its connectivity. The atom mapping from
RXNMapper is not always perfect but has achieved the highest
accuracy in a recent benchmarking study.42 Schwaller et al. re-
ported an 85% accuracy for RXNMapper,41 tested on the USPTO
data. Therefore, all the mapped rst-year reaction SMILES
strings were checked. Three out of 147 reactions had mapping
errors, which were subsequently corrected manually. For the
Diels–Alder reaction datasets, we manually checked the
mapping result in 100 reactions. Errors were found in eight out
of 100 reactions. Thus, we assumed that errors are presented in
8% of the reactions in the Diels–Alder dataset.

The sequential steps described below were executed on each
dataset individually. Within each set of reactions sharing the
same reactants, the atoms were renumbered via GetSub-
structMatch from RDkit to ensure consistent atom numbering
while considering the atom-to-atom mapping result. GetSub-
structMatch was unable to map match tautomer structures with
difference connectivity. On rare occasions, reactions are
grouped together as competitive pathways because reactants are
tautomer of each other. This is an artefact of using InChI
strings. Reactions in this situation were removed from the
dataset.
2.2 Reactive site prediction model

In this project, the model is built on the assumption that
a comprehensive understanding of an atom and its local
chemical environment enables the prediction of its reactivity.
Thus, the descriptors and labels are based on individual atoms.
The descriptors for an atom were computed based on the
reactant molecule only, while its label came from analysing
reaction SMILES strings of competitive pathways involving the
reactants.
© 2024 The Author(s). Published by the Royal Society of Chemistry
2.2.1 Descriptor. Various descriptor array compositions
have been considered, specially the ‘one-bond’, ‘two-bond’ and
‘two-bond +’ descriptor array (Fig. 3).

An ‘one-bond’ descriptor array contains features on
� Atom nature: this includes the group and period of the

corresponding element and species whether the atom belongs
to one of the key organic elements (i.e.H, C, N, O, B, F, Cl, Br, Si,
P or S).

� Self-connectivity: this part of the descriptor array species
the number of key organic element atoms among its neighbours
and the total number of neighbouring atoms.

A ‘two-bond’ descriptor array includes:
� All features in the ‘one-bond’ descriptor array.
� Neighbours' connectivity: in accordance with the assump-

tion that an atom has a maximum of 4 neighbours, this part of
the descriptor array incorporates the self-connectivity
descriptor arrays of the neighbouring atoms. Information of
the neighbouring atoms was sorted according to their atomic
number from high to low in the descriptor array.

A ‘two-bond +’ descriptor array includes:
� All features in the ‘two-bond’ descriptor array.
� Bond strength: Guided by the MolE8 analysis,23 we classify

bonds into 86 classes which was calculated from a dataset of
100 000 molecules from ChEMBL-28 with the structure opti-
mised by MMFF (ESI Section 2†).43 The bond strength descrip-
tors explicitly provide information on the chemical
environment of the atom beyond the two-bond range.

� Rings: atoms that are in rings are marked, and the ring size
is recorded if it is smaller than eight.

2.2.2 Label. The atoms are either labelled as ‘reactive’ or
‘unreactive’ (Fig. 4).

To derive the label, we compared the connectivity difference
of each atom in the reactant and product for every reaction
through comparing the adjacency matrices based on atom-to-
atom mapping results. Here, changes in connectivity refer to
changes in the neighbouring atoms only. Changes in bond order
have not been accounted. In accounting for competitive reac-
tions from the same reactants, an atom is considered reactive if it
undergoes a connectivity change in one of the possible compet-
itive reactions. The example in Fig. 4 shows three competitive
reactions that share the same reactants. There are 22 atoms in
the reactants. Thus, this set of reactions would yield 22 pairs of
a descriptor array and a corresponding label on reactivity.

Atoms within the same chemical environment were assigned
identical labels. In Fig. 4, both protons are likely to be extracted
in the enolisation reaction, although only one of them will be
involved in the actual reaction. Thus, for consistency, if one of
the atoms within a chemical environment is found to be reac-
tive, all other atoms within the same environment are regarded
as reactive.

The chemical environment of atoms within a molecule was
determined via in silico isotopic labelling. For example, let us
consider two atoms from the same chemical environment in
a molecule. Two copies of RDkit44 Chem.Mol objects are
generated from the molecule, followed by isotopic labelling on
each atom individually in each Chem.Mol objects.
Digital Discovery
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Fig. 3 Illustrating the derivation of the ‘one-bond’, ‘two-bond’ and ‘two-bond +’ descriptor array for an oxygen atom in an example molecule.

Fig. 4 Illustrating the derivation of the label based on the atom-to-atom mapping result. The three reactions above were grouped together in
data processing. They are competitive pathways, i.e. have the same reactants but different products. An atom is considered reactive if it
undergoes a connectivity change in one of the possible competitive reactions. Atoms within the same chemical environment were assigned
identical labels.
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Subsequently, by converting the Chem.Mol objects to InChI45

representations, the two resulting InChI strings are expected to
be identical. The above process was applied to all atoms,
including H, within a molecule.

2.2.3 Algorithm. For the choice of the algorithm, bench-
marking studies have been carried out on various classication
algorithms with the ‘two-bond +’ descriptor arrays, including
random forest (RF), K-nearest neighbour, support vector,
Gaussian process and multi-layer perceptron classier. The
default setting from the scikit-learn package were used.46 While
similar results in terms of accuracy were achieved across the
different models, the models based on RF classier showed
slightly better performance than others (ESI Table S4†). In the
text below, all the reportedmodels are based on the RF classier
algorithm. Hyperparameter tuning tests have been performed.
Changing the hyperparameters does not alter the performance
of the RF model signicantly.
Digital Discovery
3 Results and discussion

Model training and evaluation were performed for each dataset
with different descriptor compositions (i.e. the ‘one-bond’, ‘two-
bond’ and ‘two-bond +’ descriptor array composition).

Relatively small datasets were employed deliberately in
model training to illustrate the effectiveness of the atomistic
approach. We carried out the random sampling test to show the
consistency in the result despite the small training dataset. The
following procedures were conducted on each dataset individ-
ually and the results are presented in Table 2:

(1) Sets of reactions with the same reactants were randomly
selected for training and testing, respectively. For the rst-year
dataset, 30 sets of reactions were randomly selected from the
dataset for testing, leaving 78 sets of reactions for training
(Table 2 entries 1–3). For all other datasets (i.e. [3 + 2] cycload-
dition, Diels–Alder, RGD1 and Green; Table 2 entries 4–9 and
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Performance of themodels. Three different types of datasets (Type A, B and C) and the combinations of these datasets were considered
in the model evaluation. The mean and standard deviation of the performance metrics were calculated based on the results of random sampling
tests. The size of the dataset involved in training and testing is specific below. Let us take ‘Diels–Alder: train: 100, test: 100, i.e.∼2% of the dataset’
as an example. 100 sets of Diels–Alder reactions are involved in training and another 100 sets are involved in testing in each repeat. A set contains
one or more competitive reactions with the same reactants but different products. The total number of reactions involved corresponds to about
2% of the dataset. For each set of data, ‘one-bond’, ‘two-bond’ and ‘two-bond +’ descriptor compositions were considered

Entry Descriptors

% by atoms % sets of reactants with

Accuracy Precision Recall No fault predictions
No more than one
fault prediction

All reactive atoms
predicted correctly

Type A
First-year reactions: train: 78, test: 30, i.e. 100% of the dataset
1 One-bond 86.8 � 1.4% 54.1 � 7.1% 74.0 � 4.5% 9.7 � 4.3% 40.3 � 5.3% 31.7 � 7.5%
2 Two-bond 88.3 � 1.3% 58.3 � 7.1% 78.5 � 4.5% 16.3 � 7.5% 39.7 � 9.0% 37.3 � 9.8%
3 Two-bond + 89.1 � 1.4% 61.8 � 6.1% 79.8 � 3.3% 22.3 � 8.2% 45.0 � 10.2% 43.3 � 8.7%

Type B
[3 + 2] cycloaddition: train: 100, test: 100, i.e. ∼7% of the dataset
4 One-bond 94.5 � 1.0% 57.9 � 9.0% 77.9 � 8.2% 11.4 � 6.8% 25.4 � 12.9% 19.6 � 10.6%
5 Two-bond 98.7 � 0.2% 87.3 � 2.6% 99.2 � 0.9% 54.7 � 8.2% 86.2 � 3.7% 57.1 � 9.0%
6 Two-bond + 99.6 � 0.3% 96.5 � 3.1% 98.8 � 1.4% 82.8 � 12.7% 96.9 � 4.0% 86.2 � 11.6%
Diels–Alder: train: 100, test: 100, i.e. ∼2% of the dataset
7 One-bond 91.5 � 0.7% 27.3 � 3.1% 85.5 � 4.4% 1.4 � 1.4% 6.9 � 2.4% 2.3 � 1.7%
8 Two-bond 95.2 � 0.8% 66.3 � 5.0% 87.1 � 1.7% 30.7 � 4.4% 56.2 � 4.3% 42.0 � 6.3%
9 Two-bond + 96.0 � 0.7% 73.1 � 4.3% 89.0 � 3.5% 41.6 � 5.6% 62.9 � 3.5% 56.1 � 4.7%
Combined: train: 100 [3 + 2] cycloaddition + 100 Diels–Alder, test: 100 [3 + 2] cycloaddition + 100 Diels–Alder
10 One-bond 93.2 � 0.5% 39.8 � 2.9% 85.9 � 1.9% 10.8 � 2.3% 23.1 � 3.0% 12.7 � 1.9%
11 Two-bond 96.5 � 0.5% 73.7 � 3.6% 89.8 � 1.2% 33.3 � 6.0% 59.0 � 5.5% 42.5 � 6.1%
12 Two-bond + 97.3 � 0.4% 80.2 � 3.8% 91.7 � 1.7% 48.2 � 7.3% 71.0 � 6.4% 60.5 � 8.0%

Type C
RGD1: train: 100, test: 100, i.e. ∼2% of the dataset
13 One-bond 75.3 � 2.0% 44.6 � 6.1% 66.9 � 5.7% 2.8 � 1.8% 14.9 � 3.7% 14.5 � 3.3%
14 Two-bond 77.6 � 1.3% 52.0 � 4.4% 69.1 � 3.2% 4.6 � 2.7% 18.1 � 2.3% 18.6 � 3.8%
15 Two-bond + 78.0 � 1.1% 55.0 � 4.7% 66.4 � 2.4% 5.8 � 1.8% 19.5 � 4.0% 24.9 � 5.4%
Green: train: 100, test: 100, i.e. ∼76% of the dataset
16 One-bond 81.8 � 1.5% 73.4 � 4.9% 84.5 � 1.9% 16.4 � 1.9% 37.3 � 3.3% 31.7 � 8.3%
17 Two-bond 83.8 � 1.1% 77.5 � 2.4% 85.4 � 1.7% 25.6 � 2.6% 45.0 � 2.0% 42.7 � 4.6%
18 Two-bond + 84.1 � 0.7% 76.7 � 1.9% 86.8 � 0.7% 27.1 � 2.8% 46.1 � 3.4% 42.6 � 3.2%
Combined: train: 100 RGD1 + 100 green, test: 100 RGD1 + 100 green
19 One-bond 77.7 � 1.1% 56.0 � 4.5% 76.6 � 2.4% 9.7 � 1.7% 25.0 � 1.8% 20.3 � 4.5%
20 Two-bond 79.5 � 1.1% 64.5 � 2.1% 75.7 � 1.9% 13.4 � 2.2% 29.4 � 2.8% 29.9 � 3.1%
21 Two-bond + 80.0 � 0.9% 65.8 � 2.1% 76.2 � 2.4% 13.7 � 1.5% 30.5 � 3.1% 30.6 � 1.7%
Combining all datasets: the global model
Train 78 rst-year + 100 [3 + 2] cycloaddition + 100 Diels–Alder + 100 RGD1 + 100 green
Test: 30 rst-year + 100 [3 + 2] cycloaddition + 100 Diels–Alder + 100 RGD1 + 100 green
22 One-bond 86.9 � 0.6% 38.4 � 3.7% 68.2 � 2.1% 2.7 � 1.5% 9.6 � 2.7% 6.0 � 2.1%
23 Two-bond 90.6 � 0.3% 61.7 � 2.4% 76.6 � 2.6% 13.7 � 2.1% 31.5 � 3.3% 27.0 � 4.1%
24 Two-bond + 91.7 � 0.4% 67.3 � 2.0% 79.5 � 2.1% 20.2 � 3.6% 40.8 � 3.9% 38.0 � 3.8%
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13–18), 100 sets of reactions were randomly selected for training
and testing, respectively. Combinations of the datasets (Table 2
entries 10–12 and 19–24) were also considered to assess the
generalisability of the model. Four reactions in RGD1 also
appear in the Green dataset. These reactions were removed
from the RGD1 dataset prior to selecting reactions of the
combined dataset (see ESI Section 1.1† for details).

(2) Model training was performed and repeated using the
‘one-bond’, ‘two-bond’ and ‘two-bond +’ descriptor composition
respectively. The metrics from the evaluation were recorded
aer the testing.
© 2024 The Author(s). Published by the Royal Society of Chemistry
(3) The above steps were repeated ten times. The mean and
standard deviation of the performance metrics were calculated.

The accuracy, precision and recall were on an atomistic
basis. Precision is the number of true reactive predictions over
the total number of reactive predictions. Recall is the number of
true reactive predictions over the total number of reactive atoms
in the dataset. At the molecular level, the percentage sets of
reactants with no fault predictions, no more than one fault
prediction and all reactive atoms predicted correctly were
calculated. The standard deviations of the performance metrics
are relatively small. This demonstrates the robustness of the
Digital Discovery
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model in covering the chemical space with only a fraction of the
entire dataset.

3.1 Type A: the rst-year dataset

The rst-year dataset includes a variety of different reactions
(Fig. 2). Hence, it is to our surprise that even a model trained
with only the ‘one-bond’ descriptors can achieve an accuracy of
86.8% by atoms (Table 2 entry 1). The good performance can be
explained by looking at the dataset composition. Many rst-year
reactions, such as SN2 reactions and nucleophilic addition
reactions on carbonyl bonds, are quite simple and the sites of
reaction only involve a few atoms. In these cases, the chemical
environment within one bond to an atom is sufficient to
determine the reactivity.

The model performance improves when the neighbours'
connectivity and bond strength descriptors are included in the
model training. Fig. 5 showcases examples where noticeable
improvements are observed when extending the range of
chemical environments included in the descriptors for each
atom. Example A4 shows possible enolisation reaction pathways
from an 1,3-dicarbonyl compound. Alpha carbon atoms are
correctly predicted as reactive when including the neighbours'
connectivity and bond strength descriptors in model training.
Example A5 describes a scenario where primary carbon atoms,
which tend to be involved in SN2 or E2 reactions when con-
nected to a good leaving group, are predicted incorrectly as
reactive. These primary carbon atoms are predicted as unreac-
tive in the model trained with the bond strength descriptors,
which presumably reinforce the recognition that the carbon
atoms are not connected to any good leaving group. The
predictions on the reactivity can hint at the possible products
from the reactants. In many cases, only the predictions from the
‘two-bond +’model can account for all the competitive pathways
in the dataset. These examples highlight the effectiveness of the
Fig. 5 Case studies on the results from model evaluation with the first-

Digital Discovery
bond strength and connectivity descriptors in describing the
chemistry within a two-bond range and indicating the local
chemical environment.

The rst-year reaction dataset covers a wide range of reac-
tions. Thus, the model performance deciencies could be due
to the lack of corresponding examples in the training dataset for
the types of reaction present in the test dataset. We split the
rst-year dataset and checked the compositions to ensure that
all types of reactions present in the test dataset have appeared
in the train dataset. Details of the split are presented in ESI
Fig. S8.† With the selected dataset and using the ‘two-bond +’
descriptor array, there is no more than one fault prediction in
70.0% of the sets of reactants in the testing dataset (ESI Table
S12† entry 3) as opposed to 45.0% from random sampling test
(Table 2 entry 3).

Case studies also help to understand the limitations of the
model. Firstly, it is within the expectations that the models
cannot predict the reactivity of atoms which requires the
consideration of the chemical environment beyond two bonds
from the site of connectivity changes. While bond strength and
the ring component descriptors recognise the different chem-
ical environments, they do not explicitly describe the specic
atom arrangements beyond the two-bond distance from the
atom. Many of the false predictions of unreactive behaviour of
the ‘two-bond +’ model come from the alpha proton of the
carbonyl or leaving group in enolisation E2 reactions. The motif
at the reaction site extends beyond two bonds for these reac-
tions. An exception is example A1. The alpha protons in the
aldehyde are accurately predicted as reactive even though the
protons are three bonds away from the carbonyl group. Here, it
is likely that the correct predictions are made based on the
wrong reason. These protons are predicted to be reactive
because they are at the alpha position relative to the chloride.
Cases of mistaken reactive predictions, such as example A2,
year dataset. The annotations on the fault predictions are in purple.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Predictions from the ‘two-bond +’ model trained on all first-year reactions using reactions from first-year exams at the University of
Cambridge. The accuracy by atom values was calculated based on the actual label derived from atom-to-atommapping results compared to the
product and the intermediate.
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show that the model consistently predicted the alpha proton to
the chloride group as reactive.

At times, the model may encounter challenges in extrapo-
lating beyond the training data, even when there are reactions
of the same type in the training dataset. This becomes especially
apparent when dealing with unfamiliar chemical groups that
involve changes in connectivity. Fig. 5 A6 illustrates such
a scenario. ‘C–I’ has not been presented as a leaving group in
the training dataset SN2 reactions, contributing to the fault
unreactive prediction of the C atom in ‘C–I’ for example A6 in
the testing dataset.

To assess the model trained on all rst-year reactions (i.e.
2473 atomic descriptor arrays and labels from 108 sets of
reactants), we conducted tests using past exam questions from
the University of Cambridge. The outcome is presented in Fig. 6.
There is no more than one mistaken prediction in each reac-
tion. This demonstrates the performance of the model in a real-
world context.

3.2 Type B: the [3 + 2] cycloaddition and the Diels–Alder
dataset

The model performs well in predicting the atom reactivity in
reactants of reactions where there are many similar examples in
the training dataset. In type B datasets, only a single type of
reaction is presented, and therefore, good performances were
achieved. The accuracy by atom for type A datasets, the [3 + 2]
cycloaddition and the Diels–Alder dataset, are close to 100% for
the ‘two-bond +’model (Table 2 entries 6 and 9). Example B1–B3
in Fig. 7 are cases of successful predictions from the model
evaluation. These cases also demonstrate the improvements in
performance when introducing the bond strength and neigh-
bours' connectivity descriptor components (i.e. moving from
‘one-bond’ to ‘two-bond’ and ‘two-bond +’). Although the bond-
forming carbon atoms are more than two bonds apart in the
diene motif of substrates in Diels–Alder reactions, the bond
strength descriptor components should be capable of dis-
tinguishing between the various carbon atoms within the diene
motif.
© 2024 The Author(s). Published by the Royal Society of Chemistry
Taking away the bond strength descriptors has not signi-
cantly defected the performance of the models trained on type B
datasets. This is out of our expectations. One possible expla-
nation is that the connectivity descriptors also implicitly indi-
cate about the chemical environment beyond the range of two
bonds. For example, the total number of neighbouring atoms of
atoms at a two-bond distance may indirectly hint at the
hybridisation of the atoms three bonds away. The self-
connectivity descriptor components also include the number
of neighbouring atoms for its neighbours. Thus, even for the
‘one-bond’ model, there are no fault predictions in 25% of the
sets of reactants in the evaluation with the [3 + 2] cycloaddition
dataset.

The quality of the dataset also matters. In data processing,
we estimated that atom-to-atom mapping errors are presented
in 8% of the reactions in the Diels–Alder reaction dataset. These
errors lead to drop in performance of the models trained on
Diels–Alder reactions. To verify this claim, we conducted tests
on the 100 reactions for which we have manually checked for
mapping errors. Take-one-out cross-validations were performed
on the 100 Diels–Alder reactions before and aer the correc-
tions of atom-to-atom mapping errors. We saw an improve-
ment, yet statistically insignicant, in the accuracy, precision
and recall value by atoms (ESI Table S5†).

Another observation from the study on the Diels–Alder
dataset is that the model may sometimes hint at potential
competitive pathways leading to products not presented in the
dataset (Fig. 7 B4). For instance, in the B4 Diels–Alder reaction,
the model also highlights an alternative potential dienophile
position in the substrate, which is a reasonable pathway.

3.3 Type C: the RGD1 and the green dataset

The RDG1 and the Green datasets are more challenging and
complex compared to type A and type B datasets. The reactions
oen involve multiple steps mechanistically and are not the
typical textbook reactions. We analysed the RDG-1 and the
Green dataset based on reaction templates to quantify the types
of reactions present in the dataset. A reaction template in
Digital Discovery
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Fig. 7 Case studies on the results from model evaluation with the type B datasets: the [3 + 2] cycloaddition32 and the Diels–Alder reaction33

dataset.
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SMILES string was generated for each reaction, highlighting the
motif at the reaction site. The motif at the reaction site covers
the atoms involved in changes in connectivity. If less than two
atoms involved connectivity changes, the non-H neighbouring
atoms of the reactive atoms were also accounted in the
template. 100 random reactions were selected from each dataset
for the test. 82 and 59 unique templates were generated from
100 RGD1 and 100 Green reactions respectively. However, even
for the challenging RDG-1 and Green datasets, the trained
models on just 100 sets of reactions with ‘two-bond +’ descrip-
tors gave a surprisingly decent performance of 78.0% and 84.1%
accuracy respectively (Table 2, Entry 15 and 18), which is much
better than random guessing (i.e. the accuracy of random
guessing is 50%). The cases presented in Fig. 8 are examples of
the predictions from the model evaluation. Here, we hope to
emphasise the representativeness of the above results despite
the small dataset selected for training and evaluation for the
RGD1 dataset. Repeating the test on the RGD1 dataset with
different sets of randomly selected reactions gives consistent
Digital Discovery
results (ESI Table S8†). This implies that models trained from
1% of the dataset can already cover quite a substantial amount
of chemistry in the RGD1 dataset.

It is also worth noting that the ‘one-bond’ models already
exhibit decent performance. The enhancement in performance
when incorporating ‘two-bond’ and ‘two-bond +’ descriptors is
noticeable but less pronounced compared to the improvements
seen in models trained with type A and B datasets. This obser-
vation can be explained by the fact that the chemical systems in
RGD1 and Green reactions are relatively small. The average
number of atoms in the reactants within type C datasets is
below 17, in contrast to 23 in the rst-year reaction dataset and
exceeding 40 in the type B datasets (Table 1). The substructure
covered by the ‘one-bond’ descriptors is oen nearly half of the
molecules in type C reactants. Thus, the models demonstrate
satisfactory performance even without the additional ‘two-
bond’ and ‘two-bond +’ descriptors.

Increasing the number of sets of reactions in the training
dataset improves the performance of the ‘two-bond +’ RGD1
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 8 Case studies on the results from model evaluation with the type C datasets: the RGD1 (ref. 34) and the Green35 dataset. In C4, the
prediction accounts for the connectivity changes from the reactant to the proposed intermediate.
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model signicantly (Fig. 9 and ESI Table S6†). 100 sets of
reactions are equivalent to 1% of the RGD1 dataset. The model
trained with 300 sets of RGD1 reactions (i.e. 3% of the dataset)
has an accuracy of 81.2%. The model trained with nearly all of
the RGD1 dataset, i.e. equivalent to 10 300 sets of reactions, has
an accuracy of 84.3%.
3.4 Model generalisability

We have also considered models trained from combinations of
different datasets, specically [3 + 2] cycloaddition + Diels–
Alder, RGD1 + Green and all datasets together (Table 2 entries
10–12 and 19–24). In all three scenarios, we observed an
improvement in the performance when moving from the model
Fig. 9 Increasing the size of the training data leads to improved
performance metrics for the ‘two-bond +’ model trained using the
RGD1 (ref. 34) dataset. The percentage of data used in the training as
part of the RGD1 dataset are labelled in the accuracy plot. The same
dataset, consisting of 100 RGD1 reactions, was used for testing in the
above evaluation of models.

© 2024 The Author(s). Published by the Royal Society of Chemistry
trained on the ‘one-bond’ to the ‘two-bond’ and ‘two-bond +’
descriptor composition. The accuracy values from the
combined dataset models are very similar to the average accu-
racy of models trained from the individual datasets. For
example, the average accuracy for the ‘two-bond +’ models
trained from the individual datasets (Table 2 entries 3, 6, 9, 15
and 18) is 89.4%. The accuracy of the model trained from the
combination of individual datasets (i.e. the global model, Table
2 entry 24) is 91.7%. The performance of this global model is
comparable to that of the local models trained from the indi-
vidual dataset in evaluation with reactions from the individual
dataset (ESI Table S6†). The above demonstrates the robustness
and generalisability of the global model.

4 Conclusions

In this investigation, a framework for predicting the site of
reactivity has been developed. Machine learning classication
models were trained on labels and descriptors at the atomistic
level. Descriptor array compositions that cover chemical envi-
ronments within ‘one-bond’, ‘two-bond’ and ‘two-bond +’ to the
atom have been considered.

Thorough evaluations on models based on different
descriptor compositions were conducted with various datasets.
Improvements in the model performance were observed when
the bond strength and neighbours' connectivity components
were added to the descriptor array. Decent performance metrics
were achieved for the Type A (i.e. rst-year reaction) and the
Type B (i.e. the [3 + 2] cycloaddition and Diels–Alder reaction)
datasets, indicating that the chemical environment within two
bonds of an atom can determine reactivity to a considerable
extent. We demonstrate the applicability of the model frame-
work with the more complex datasets that cover a diverse
chemical space, namely the RGD1 and the Green dataset. Even
for these challenging datasets, an accuracy of over 80% has
been achieved with a small dataset.
Digital Discovery
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There are models which can predict reactions with greater
accuracy than this. Tailoring the descriptors to align with the
nature of the data and the specic chemistry problem remains
an ongoing challenge. Here, we have presented a very simple
model. It works well enough to give helpful guidance about
reactivity despite the small dataset and highlights the potential
of data-driven methods in terms of transferability.
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