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ne package to visualize reaction
networks†

Sergio Pablo-Garćıa, *abc Raúl Pérez-Soto, d Albert Sabadell-Rendón, e

Diego Garay-Ruiz, e Vladyslav Nosylevskyi f and Núria López e

In the study of chemical processes, visualizing reaction networks is pivotal for identifying crucial

compounds and transformations. Traditional methods, such as network schematics and reaction path

linear plots, often struggle to effectively represent complex reaction networks due to their size and

intricate connectivity. Alternatives capable of leading with complexity include graph methods, but they

are not user-friendly, lacking simplicity and modularity, which hinders their integration with widely-used

research software. This work introduces rNets an innovative tool designed for the efficient visualization

of reaction networks with a user-friendly interface, modularity, and seamless integration with existing

software packages. The effectiveness of rNets is demonstrated through its application in analyzing three

catalytic reactions, showcasing its potential to significantly enhance research both in homogeneous and

heterogeneous catalysis fields. This tool not only simplifies the visualization process but also opens new

avenues for exploring complex reaction networks in diverse research contexts.
1 Introduction

Catalyst development plays a pivotal role in enhancing indus-
trial chemical production by optimizing processes to reduce
material, nancial, and environmental costs.1,2 The conven-
tional approach to develop these catalysts relies on a labor-
intensive cycle of design, making, and testing of numerous
candidates to nd the most effective ones for specic reactions.
As the number of candidates grows, this method becomes
increasingly time-consuming and resource-intensive.2–9 With
pressing environmental challenges, the need for more efficient
strategies is evident, prompting the integration of density
functional theory (DFT) simulations into the discovery process.
DFT simulations offer valuable theoretical insights and can act
as a decision-making tool to predict reactions' outcomes more
accurately.10–18 However, effectively utilizing these insights
requires not only prediction but also the visualization of the
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complex networks formed by reactions, a signicant challenge
in both homogeneous and heterogeneous catalysis due to their
branched and complex nature.19,20

Traditional visualization techniques, such as reaction path
plots, leverage ab initio data to provide a two-dimensional view
of the network's thermodynamics and, when including activa-
tion energies, its kinetic behavior. While effective for small,
straightforward reactive systems, these plots fall short in rep-
resenting the intricate, branched networks characteristic of
homogeneous and heterogeneous catalysis. This comes as
a direct consequence of employing a linear reaction coordinate
(sequential process) as the x-coordinate of the plot. A more
robust alternative is the representation of reaction mechanisms
as reaction network graphs,6,19,20 encoding the reaction inter-
mediates as nodes and the reactions which interconnect them,
as edges. More specically, reaction networks are formed by
elementary reactions, which are chemical transformations in
which one or more reactants evolve into products in a single
reaction step.1

This conceptualization of chemical processes is shared not
only by both homogeneous and heterogeneous catalysis,6 but
also by any non-catalytic cascade of chemical reactions. Typi-
cally, these more complex networks have been illustrated
through manually drawn graphs, tracing the reaction mecha-
nism, as depicted in the le part of Fig. 1. The most used tools
to trace these reaction mechanisms and linear energy diagrams
manually are Adobe Illustrator,17,21 OriginLab,18,22,23 Ink-
scape,15,24,25 Matplotlib,26–28 and ChemDraw,10–12,29 among
others. From there, it is possible to switch to a representation
that is more akin to graphs in other domains of science,
© 2024 The Author(s). Published by the Royal Society of Chemistry

http://crossmark.crossref.org/dialog/?doi=10.1039/d4dd00087k&domain=pdf&date_stamp=2024-08-06
http://orcid.org/0000-0002-3327-9285
http://orcid.org/0000-0002-6237-2155
http://orcid.org/0000-0003-2905-1541
http://orcid.org/0000-0003-0744-0562
http://orcid.org/0009-0003-1544-7745
http://orcid.org/0000-0001-9150-5941
https://doi.org/10.1039/d4dd00087k
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00087k
https://pubs.rsc.org/en/journals/journal/DD
https://pubs.rsc.org/en/journals/journal/DD?issueid=DD003008


Fig. 1 Schematics of a reaction network graph. Left, reaction-
centered representation, using reaction arrows to depict processes
and labels for intermediates. Right, complete graph-based represen-
tation with intermediates as nodes and reactions as edges.

Fig. 2 Representation of the workflow followed by rNets. First, the
energies of the compounds, transition states and/or concentrations
are collected into. CSV data files from simulations. Together with the
configuration files, rNets is used to generate a dot file containing the
plotting instructions for the graph. Finally, Graphviz is used to compute
the energy or concentration-based plot.
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explicitly showing nodes as circles and edges as full connections
between them (right side of Fig. 1), using tools such as
Graphviz.30

However, this manual approach to graphing reaction
mechanisms poses signicant limitations. First, the represen-
tation cost escalates with the number of compounds, chal-
lenging the depiction of networks that suffer from
combinatorial explosion,4,19,31 which is an increasingly common
situation due to the generalization of the use of automated
mechanism discovery algorithms.4,32–43 Additionally, unlike
reaction paths, these graphs do not visually convey thermody-
namic and kinetic information. Alternative and promising
methods for automatically encoding reactions with these
considerations have been proposed,44–46 but they oen face
constraints that hinder their widespread adoption by the
computational chemistry community, such as being tied to
specic soware, requiring multiple dependencies, or using
complex input formats. From these examples, ReNView44 is
primarily focused on the visualization of microkinetic simula-
tions in heterogeneous catalysis, coupled with the OpenMKM
package.47 Then, CaRMeN45 is mainly a platform for the auto-
mation of parameter exploration tasks in microkinetic simula-
tions, offering specic visualization for the simulated reaction
networks. Finally, SCAN46 provides a database with web visual-
ization, including network analysis, mainly focused on organic
chemistry discovered through AFIR.32,33

To overcome these limitations, this work introduces
a standalone, package-agnostic soware designed to efficiently
visualize the thermodynamic and kinetic properties of reaction
networks, rNets. rNets is built on three core design principles:
(i) ease of use for both programmers and non-programmers, (ii)
readiness for integration with various DFT and microkinetic
(MK) packages, and (iii) minimal dependency requirements to
simplify deployment and enhance robustness. To demonstrate
the capabilities of our code, we have integrated rNets with two
distinct microkinetic modeling packages, showcasing its effec-
tiveness in visualizing the complex reactions associated with
both homogeneous and heterogeneous catalysts. Moreover, we
have also coupled rNets with a knowledge-graph based repre-
sentation of reaction networks, integrated within the ioChem-
BD48,49 database for computational chemistry data. This
approach not only streamlines the analysis of intricate catalytic
networks but also bridges the gap between theoretical simula-
tions and practical applications, offering amore comprehensive
© 2024 The Author(s). Published by the Royal Society of Chemistry
and accessible tool for researchers in the eld of computational
chemistry. Through rNets, we aim to facilitate a more rapid,
automated and informed catalyst discovery process.
2 Methods

rNets, is a soware package written in Python 3.12, that aims to
provide an extensible and modular tool for visualizing the
thermodynamic and kinetic properties of reaction networks.
The choice of Python for its development is a nod to the
language's widespread use and acceptance within the scientic
community. rNets stands out for its ease of use, minimalistic
design, and its capability to seamlessly integrate with external
codes. The core functionality of rNets involves surrogating the
visualization of reaction graphs to Graphviz, a soware able to
parsing dot les and rendering them in various formats. Thus,
rNets can be characterized as a metaprogramming package,
able to translate reaction networks into the dot language for
visualization, with Graphviz as its sole external dependency. For
the present work Graphviz 9.0.0 has been used. Fig. 2 summa-
rizes the logic behind rNets.

However, the rapid development of Python packages for
chemistry has been accompanied by increasing complexity in
managing soware dependencies, a crucial aspect for ensuring
consistent and accurate execution of chemical soware. Tradi-
tional solutions like package managers and virtual environ-
ments have only partially addressed these issues, oen
struggling with the integration of multiple packages that have
conicting dependencies within a single Python distribution.
This has resulted in a tendency towards isolated Python pack-
ages, each with its own set of dependencies, reducing their
modular capabilities. In contrast, rNets has been meticulously
craed as a standalone package, devoid of these dependency
entanglements. By requiring only Graphviz for plotting, rNets
effectively maximizes its portability and modularity. This
Digital Discovery, 2024, 3, 1564–1576 | 1565
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strategic design choice, along with its practical implications, are
further explored in the following subsections.

2.1 Input parsing

Theoretical studies of reaction networks frequently rely on ab
initio methods to compute thermodynamic and kinetic prop-
erties, such as ground-state energies of compounds and acti-
vation energies of reactions. These properties are typically
collated into simple, spreadsheet-like tables for easy parsing
and analysis. Reaction path plots, a popular visualization
method, excel in depicting these tables, especially for simple
mechanisms. Recognizing the simplicity and widespread use of
table formats in the research community, rNets has been
tailored to interface seamlessly with input les resembling
these tables. This design strategy is aimed at facilitating the
adoption of rNets, especially among chemists with limited
programming expertise. rNets utilizes two primary le types to
dene a reaction network: the “compounds” le, detailing the
compounds, and the “reactions” le, outlining the reactions.
The chosen le format for both is comma-separated values
(CSV), balancing simplicity, versatility, and FAIRness.

The structure of these les is straightforward: the rst line
contains column names (in no specic order) that dene the
data represented in each column, followed by lines that provide
the data for individual compounds or reactions. To enhance
user exibility, column names are categorized as either
“required” or “optional”. The “required” columns constitute the
essential data needed to dene a compound or a reaction. For
instance, the “compounds” le mandates the and
columns, whereas the “reactions” le requires at least one

and one column. During the parsing process,
rNets checks for the presence of these required columns in the
input les. Conversely, the “optional” columns allow for addi-
tional, user-specic customizations to each compound or
reaction. This exibility enables users to tailor the analysis to
their specic needs. Tables S1–S2† summarize this information,
offering users a quick reference guide for efficient data orga-
nization and input into rNets, also included in the code
repository.

2.2 Graphical representation of reaction networks

In rNets, the reaction network extracted from the input les is
encoded graphically. This representation involves depicting
compounds as nodes and reactions as edges within a graph. The
nodes, representing compounds, are illustrated as square
boxes, each labeled at the center with the compound's name,
derived by default from the “ ” column in the “compounds”
le. To augment the visual appeal and clarity, users have the
option to modify the label format using the “optional”
column in the input le. Here, format modiers can be applied,
separated by a colon (“:”). These modiers include b for bold, i
for italic, and u for underlined text, allowing for a customized
and informative visual presentation. Further rening the
representation, each edge in the graph symbolizes a reaction
connecting two nodes. The default directionality of these reac-
tions is forward, denoted as “−>”. However, users have the
1566 | Digital Discovery, 2024, 3, 1564–1576
option to alter this directionality to backward (“<−”) or bidi-
rectional (“<−>”) by specifying their preference in the
“optional” column name in the “reactions” le.
rNets comes with two different graphical encodings: “thermo”
representing the thermodynamic values of the compounds and
the computed kinetic constants and “kinetic” focusing on the
concentrations of the compounds and the net rates of the
reactions. These encodings are described in the following
sections.

2.2.1 Energy-based representation. This visualization
modality extends to the thermodynamic and kinetic aspects of
the network. The nodes' background colors signify the ther-
modynamic energies of compounds, while the ll colors of the
directional arrows (depicting reactions) represent the energies
of the transition states. Notably, bidirectional reactions are
represented by two distinct arrowed edges, effectively illus-
trating the forward and backward reactions as separate entities.
This color encoding is achieved through a normalization
process, wherein the minimum and maximum energy values
from the superset of compounds and reactions are used to
create a function that projects these energies onto the [0, 1]
interval. This normalized data is then visually represented using
colors from a predened colorscheme.

rNets is capable of visually encoding reaction kinetics when
transition state energies are provided in the “reactions” le.
These energies, listed under the “optional” column,
enable rNets to dynamically adjust the width of the arrows. This
adjustment is proportional to the pseudo-kinetic constants
derived from the specied energies, following the methodology
outlined in Note S1.† This feature allows for a more nuanced
and informative representation of the reaction network, high-
lighting the kinetic relationships between different
components.

2.2.2 Concentration-based representation. In this visuali-
zation mode, activated when both concentration and
energy metrics are specied for all network entities at
a chosen time step, rNets illustrate the reaction dynamics. Node
backgrounds depict compound concentrations, using a color
gradient normalized for immediate clarity, and arrow widths
signify reaction rates—wider arrows indicate faster reactions.
Directionality is inherently shown by the net reaction rate,
without the need for explicit markers. This design,
with concentration and rate normalization, offers a direct,
unied view of the reaction network's kinetics and dynamics at
any simulated time step. Normalization of concentration and
rate values ensures consistent visualization scales. For detailed
computational methods behind these values, see Note S2.†

2.2.3 Color selection. rNets includes a color utility mode to
chose the desired color gradient to represent used to represent
the previous representation, being Viridis the default choice.50

Users can use this utility to dene their own colorschemes by
dening a simple list of colors, as detailed in Note S3.† Exam-
ples can be found in the Fig. S1.† Additionally, to ensure label
readability against varied background colors, the luminance of
each node's background is considered, with label colors
adjusted accordingly to enhance contrast and legibility, as
explained in Note S4.†
© 2024 The Author(s). Published by the Royal Society of Chemistry
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2.3 Enhanced component visibility

rNets incorporates a feature that addresses the common need in
reaction network visualization to selectively focus on certain
parts of the network. Researchers oen nd themselves in
situations where some compounds or reactions may not be
relevant to their current analysis or where they might require to
highlight specic segments of the network. However, even when
certain elements are not the focus, their energies play a crucial
role, especially in representing kinetic properties, and thus
cannot be entirely omitted from the dataset. As a solution, rNets
introduces the column functionality. This feature
grants users the exibility to either hide or dim specic
compounds or reactions within the graphical depiction of the
network. When the column for a given element is set
to , that particular compound or reaction will not appear
in the visual representation of the reaction graph. Importantly,
this does not remove its inuence from the overall network; it
continues to contribute to the normalization of network ener-
gies. For compounds, this means they are still considered in the
computation of kinetic constants for related reactions.

In instances where complete removal of an element from the
visual eld is not desired, setting the column to
offers an alternative. This option achromatizes the node or edge
associated with the element, effectively making it less prom-
inent without entirely eliminating it from the visual network.
This greying out of elements allows for a nuanced approach to
visualization, enabling users to de-emphasize certain aspects of
the network while maintaining a holistic view.

This column feature in rNets provides a powerful
and exible tool for users, allowing them to tailor the network
visualization to their specic research needs. It ensures that the
graphical representation of the network remains comprehen-
sive yet clear, focusing on elements of interest without losing
sight of the overall context of the network.
2.4 Customization and user interface

rNets equips the users with extensive customization capabil-
ities, allowing for the personalization of network visualizations.
Users can adjust different plot options, such as the maximum
edge width and color scheme, tailoring the visual output to their
preferences. These options can be congured through two
primary methods: (i) a Tom's obvious minimal language
(TOML) le that species the desired values, and (ii) direct
command-line interface (CLI) arguments for on-the-y
adjustments.

The hierarchical structure of option precedence ensures
exibility and control; settings dened in the conguration le
override the default values coded within rNets, while CLI
arguments take precedence over both conguration settings
and defaults. This design allows users to establish a baseline
conguration le reecting their standard visualization pref-
erences, with the exibility to use CLI arguments for temporary
or experiment-specic modications. rNets rigorously checks
the validity of user-dened values to maintain stability and
reliability. The available conguration options are described in
Tables S3–S5† and an example of a conguration le can be
© 2024 The Author(s). Published by the Royal Society of Chemistry
found in Note S5† and in the code repository. For advanced
customization, the option enables the specication of
Graphviz parameters for various elements of the network visu-
alization. Additional details on utilizing this feature are avail-
able in Note S6.†

In addition to its standalone functionality, rNets is designed
for seamless integration as a Python library within broader
Python projects. This capability is comprehensively docu-
mented, ensuring users can effectively incorporate rNets into
their workows.
3 Results and discussion

In this section, we present three case studies, tackling both
homogeneous and heterogeneous catalysis, to demonstrate the
capability and versatility of rNets for solving the aforemen-
tioned challenges in this eld of study. Further details about the
relevant simulation details are available in the ESI (Note S7–
S9).†

The inspection of the energies of reaction networks provides
valuable insights about chemical systems. Indeed, although
experimental observations can be correlated to energies, it is
challenging to provide a one-to-one mapping with properties
such as selectivity, yield, or conversion,10,51 which are essential
to control a given chemical process. In this context, micro-
kinetic simulations are a valuable tool to bridge this gap52 and
allow an actual quantitative comparison with experimental
results.
3.1 Energy-based examples

3.1.1 Imine condensation. Linear free energy proles are
commonly used in mechanistic studies in homogeneous phase.
In this context, the application of energy corrections is a stan-
dard practice to mitigate the various limitations associated with
DFT simulations.53 These corrections have different origins,
such as reference state,54 quasi-harmonic vibrational,55 single-
point (SP) energy, counterpoise-corrections56 or entropic
corrections,57 and are crucial for the proper description of the
chemical potentials within DFT. However, as the reaction
network's complexity escalates, the task of understanding how
these corrections inuence the overall reaction process
becomes increasingly daunting.

This complexity and the critical role of corrections were
exemplied in our previous investigation of imine condensa-
tion between benzaldehyde and n-butylamine in aprotic
media.58 In that study we observed how a bias of 13.4 kJ mol−1

per computed structure coupled with a reference state correc-
tion (from 1 atm to 1 M) was able to bridge the gap between the
DFT-derived microkinetic simulation and the experimental
concentration vs. time values. The rNets' representation of both,
the uncorrected system and the corrected system are included
in the ESI (Fig. S1),† while a simplied representation is
included in Fig. 3.

The full reaction network is composed of a total of 28 species
and 52 reversible reactions, which in its majority corresponds to
bimolecular association processes, leading to an intricate
Digital Discovery, 2024, 3, 1564–1576 | 1567
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Fig. 3 Simplified reaction network of the imine condensation in DCM between benzaldehyde (A) and n-butylamine (N). The adduct of “X” and “Y”
is represented as “[X + Y]”. Water, the hemiaminal intermediate and the product Imine are represented as “W”, “H” and “I” respectively. The
magnitude of the energy barriers for each elementary step is represented by the color and the thickness of the arrows, while the color of the
nodes represents the stability of the intermediates. The color scale goes from dark, corresponding to low energies (thus high stability) and
barriers to light colors, indicating unstable intermediates and high barriers. (a) Corresponds reaction network without any correction and (b) to
the same network but with standard state correction and a bias of 0.14 eV per DFT simulation.
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network. A preliminary examination of the plot in Fig. 3b readily
reveals two prominent alterations within the network: a notably
darker overall tone and an increased presence of thicker edges,
indicating signicant changes. Further scrutiny of the network
highlights specic variations in the appearances of species “A”
and “I”, which correspond to benzaldehyde and N-butyl-1-
phenylmethanimine, respectively. Notably, these species
1568 | Digital Discovery, 2024, 3, 1564–1576
exhibit a lighter shade in Fig. 3b compared to the rest of the
network, suggesting differential effects of the applied correc-
tions on these particular reaction components. The different
adducts (i.e. the adduct of “A” and “W” is represented as “[A +
W]”) have become darker, indicating that they are now more
stable. As a consequence, the overall reaction becomes more
dynamic, as the generalized increase in the thickness of the
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Visualization of the reaction network for CO2 hydrogenation on
Pd(111). The intermediates are labeled in Table S3.† The magnitude of
the energy barriers for each elementary step is represented by the
color and the thickness of the arrows, while the color of the nodes
represent the stability of the intermediates. Bright colors imply
unstable intermediates or high activation energies.
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edges indicates. Some reactions are still slow, such as the
uncatalyzed hemiaminal dehydration (corresponding to the
edges between “H” and “[I + W]”, in green the full reaction
network shown at Fig. S3 and S4†). This interpretation aligns
well with the results of the microkinetic simulations carried out
in the original work where the simulations with the uncorrected
system (Fig. 3a), led to no imine formation, while the simula-
tions of the corrected system were consistent with previous
experimental results.

3.1.2 CO2 hydrogenation on Pd(111). In heterogeneous
catalysis, CO2 hydrogenation on metal surfaces exemplies the
complexity of reaction networks. In the heterogeneous catalysis
case, reaction paths tend to be considered straightforward, yet
this oversimplied view is challenged even in one of the most
appealing reactions, CO2 hydrogenation. This reaction on
transition metal catalysts is the perfect example of an inter-
esting heterogeneous reaction from both academic and indus-
trial points of view, as CO2 is recycled into added-value
precursors and products such as CO via the reverse water gas
shi (RWGS) reaction,59,60 methanol,23,59,60 and methane as side
product,15,59,61,62 eqn (1)–(3). However, even if the number of
atoms involved in the potential products is small, the reaction
networks include multiple competing pathways, and different
kinds of equilibria.19,25,59 Consequently, in the reactors, the
three equations below take place simultaneously and the extent
of each of them depends on the catalyst and the operation
conditions. Thus, the visualization and posterior analysis of the
energy reaction proles is extremely complex.19,25

CO2(g) + H2(g) # CO(g) + H2O(g) RWGS reaction (1)

CO2(g) + 3H2(g) # CH3OH(g) + H2O(g) MeOH reaction (2)

CO2(g) + 4H2(g) # CH4(g) + 2H2O(g) Methanation reaction (3)

In Fig. 4 we report as an example the simplied reaction
network of CO2 hydrogenation on Pd(111) neglecting the
formation of methane, involving 21 elementary steps, 16 inter-
mediates, and 5 gas-phase species (labelling at Table S7†). The
network starts with the adsorption and dissociation of H2 (i1)
on the surface (i0). Then, CO2 is adsorbed (i2), and the reaction
evolves through the oxygen hydrogenation of CO2, resulting in
COOH* (i3), leading to the dissociation of i3 into CO* and OH*

fragments, and the posterior elimination of OH* via water
formation and desorption (intermediates i5 and i6).60,63 At this
point, the reaction can evolve towards two different pathways:
CO* desorption (i6 to CO(g) and i0), culminating the RWGS
reaction, or CO* sequential hydrogenation to generate meth-
anol (from i7 to i8 or i13). We use the last elementary steps as
examples to understand the information contained in Fig. 4.
The color of the i8 intermediate (COH* + H*) is brighter than i7
(CO* + 2H*) meaning that this step is thermodynamically
unfavored, as for i13 formation (CHO* + H*). The kinetic
equilibrium between the initial and the nal steps is expressed
with the thickness and the color of the arrows (edges) in forward
or backward directions. Thus, according to Fig. 4, CO*
© 2024 The Author(s). Published by the Royal Society of Chemistry Digital Discovery, 2024, 3, 1564–1576 | 1569
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hydrogenation pathway is less favored than the RWGS route
both thermodynamically and kinetically.

Following the CO* hydrogenation pathway through COH* +
H* intermediate (i8), the next step is the generation of CHOH*

(i9). Then, i9 is sequentially hydrogenated to obtain methanol
(i12) via CHOH* + 2H* and CH2OH + H* intermediates (i10 and
i11 respectively). Alternatively, CO* can be also hydrogenated
through CHO* + H* (i13), followed by the generation of CH2O*,
CH2O* + 2H*, and CH3O* (i14, i15, and i16, respectively).
However, the formation of CH2O intermediate (i14) is kineti-
cally less probable than CHOH*, and thus, the reaction would
evolve through the i9, i10, i11, and i12 pathway according to
Fig. 4. In any case, the formation of COH* is thermodynamically
more favored than CHO*, since i13 is brighter than i8, and thus,
methanol generation is more prone to evolve through the i8
route. All these observations are in line with previous compu-
tational and experimental works.18,60

3.1.3 Networks as knowledge graphs. Having explored the
integration of rNets with automation frameworks such as
AMUSE,51 we have established a robust environment for the
analysis of reaction networks. The importance of automatic
data generation cannot be overstated, yet equally crucial is the
adherence to the FAIR (ndable, accessible, interoperable, and
reusable) principles for data reporting.64 This balance presents
a signicant challenge in managing data from computationally
characterized reaction networks. Computational chemistry
packages generate very heterogeneous output les, for which
either manual inspection or the development of specic parsers
are essential to retrieve the required information. Because of
this, is also common for researchers to only share these prop-
erties that have been extracted, thus leaving likely relevant data
that has already been computed out of the set of information
that is eventually published. Moreover, the denition of the
relationships between the chemical entities represented by the
nished simulations, e.g., the specication of the chemical
reactions taking place in a given reaction network, does also
lack a general normalization.

The ioChem-BD platform48,49 provides a robust solution for
the rst part of the problem, translating these diverse output
les into an unique format (chemical markup language, CML)
and providing a framework in which completely curated data-
sets can be shared with the community, enhancing reproduc-
ibility and interoperability. Regarding the relationships
between data elements, the OntoRXN ontology65 was introduced
as an organization scheme following the principles of semantic
data, which established the core entities that are required to
properly dene a CRN and map it to the properties gathered
from quantum chemical methods. Through the combination of
ioChem-BD and OntoRXN, it becomes possible to dene
knowledge graphs (CRN-KGs): non-relational databases which
contain all the information about a given reaction network. A
CRN-KG, then, can be used as a standard format to process and
analyze data, extracting the properties and relationships of
interest through queries in the SPARQL format.

One of the foundational applications of CRN-KGs was indeed
the automated setup of microkinetic models, processing the
individual elementary steps encoded in the knowledge graphs
1570 | Digital Discovery, 2024, 3, 1564–1576
and determining the corresponding reaction barriers and rate
constants. In this context, rNets provides a solid foundation to
streamline the visualization of the simplied CRN gathered
from the CRN-KG and to follow up with the introduction of
standards for computational chemical reaction networks.
Additionally, we can consider this pipeline as a relatively
straightforward connection between rNets and the increasing
number of computational results available in ioChem-BD. As
a test system, we have consider the halide-catalyzed regiospe-
cic xation of carbon dioxide in a cyclooctene-based epoxy
alcohol,66 for which the results of microkinetic simulations were
in very good agreement with experimental yields and
selectivities.

Despite its simplicity in species and reactions, this system
offers a practical example for kinetic simulations in homoge-
neous catalysis and reveals unique mechanistic insights due to
the cyclooctene moiety's versatility.

A naive direct application of rNets to this mechanism
resulted in a reaction network that was challenging to interpret,
as shown in Fig. S2.† This complexity arose frommodelingmost
chemical reaction network (CRN) processes as transitions from
bimolecular reactants to bimolecular products, which oen
resulted in the mapping of two nodes to another pair of nodes,
cluttering the visual representation with numerous arrows. This
scenario, however, showcases the ideal context for demon-
strating the visualization enhancement capabilities of rNets.
While some of the species in the network (namely, the coun-
terion TMA, the bromide salt TMABr and carbon dioxide) are
required to balance energies and appropriately compute
barriers and rate constants, they might be omitted from the
reaction network in order to focus on the actual rearrangement
of the epoxy alcohol to the cyclic carbonate and the different
pathways through it which might occur. Therefore, setting the

property of these entities to sheerly improves
the readability of the produced graph (Fig. 5), while keeping
compound and reaction energies consistent.

These three examples highlight the versatility of rNets to
handle the complexity of reaction networks in both homoge-
neous and heterogeneous catalysis, as well as different schemes
for data organization. There is a clear synergy between tools for
automated data generation (AMUSE), and tools for the stan-
dardization of the produced information (ioChem-BD and CRN-
KGs). rNets would conform an essential part of this coupled
workow, simplifying and unifying the visualization of the
likely very complex systems studied through this kind of pipe-
lines. Furthermore, the possibility of performing microkinetic
simulations as part of this workow opens the door to in situ
visualizations of the evolution of the concentrations of the
different species in the reaction network, as we will detail in the
following section.
3.2 Concentration-based examples

3.2.1 Reassessing the imine condensation reaction. To
showcase the strengths of rNets in illustrating kinetic
outcomes, we revisited our earlier imine condensation reac-
tion58 through the lens of the recently presented “Dynamic Radii
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Visualization of the reaction network for CO2 fixation on a epoxy alcohol cyclooctene derivative. Themagnitude of the energy barriers for
each elementary step is represented by the color and the thickness of the arrows, while the color of the nodes represents the stability of the
intermediates.

Fig. 6 Total concentration of imine vs. time of different microkinetic
simulations upon constantly biased energies. The bias applied to each
simulation is indicated in kJ mol−1 over the curve as well as in the
colorbar legend. The experimental points are represented as black
circles and were extracted from69 following the procedure explained in

58
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Adjustment for Continuum Solvation” (DRACO),67 aiming to
discern the need of the 13.4 kJ mol−1 correction, potentially
prompted by inaccuracies in handling implicit solvation. This
inquiry is powered by the use of pykinetic,68 a Python library
tailored for the creation and analysis of kinetic models. This
approach not only tests the validity of previous ndings but also
highlights the synergy between advanced simulation tools and
kinetic modeling in rening our understanding of chemical
processes.

We have followed the same methodology as in our original
paper, and recomputed the potential energies through SP
simulations using the adjusted radii computed using DRACO.
We recomputed the free energies and added a reference state
correction from 1 atm to 1 M.

With the resulting set of energies, we conducted a micro-
kinetic simulation, which, revealing minimal imine formation,
suggests the 13.4 kJ mol−1 correction transcends mere inac-
curacies in electronic energy level cavity treatments. In our
previous work we observed that upon the addition of other
corrections, quasi-harmonic corrections, the concentration
prole became completely incompatible with the experimental
one, even when we followed the same approach and added
a constant bias to the energy of each calculation. We decided to
also apply it for the DRACO-corrected energies, the total
concentration of imine is shown in Fig. 6. To our surprise,
compared with our previous results, upon a correction of
17.6 kJ mol−1 the concentration prole showed an acceptable
correlation with the experimental data. This may indicate that
at least for this specic example, the correction introduced with
DRACO is proportional to the molecularity of the species. Thus,
it introduces a shi to the energies of each computed species
that for our example is a negative value which leads to a higher
correction. Next, we proceeded to visualize the concentration vs.
© 2024 The Author(s). Published by the Royal Society of Chemistry
time evolution of the 17.6 kJ mol−1 corrected system using
rNets, with the aim of getting more insights into signicant
changes in the reaction pathway to conrm the previous state-
ment. Fig. 7a and b show respectively the simplied network
(comparable to Fig. 3) at 10 min and 40 min respectively. The
equivalent images with the full network can be found in the
ESI† and a GIF with the evolution over time is also attached.

At 10 min, Fig. 7a, the initial water (W) impurity is displaced
towards forming an adduct ([N + W]) with the n-butylamine (N)
which can act as a proton shuttle. As the concentration of n-
butylamine and the benzaldehyde (A) the formation of the [A +
N] adduct is very dynamic (showing a thicker reaction arrow)
but as it is not thermodynamically favored it either reacts to
our previous work.

Digital Discovery, 2024, 3, 1564–1576 | 1571
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Fig. 7 Simplified reaction network of the imine condensation in DCM between benzaldehyde and n-butylamine. The intermediates are labeled
following the same nomenclature as in our previous work.58 The thickness of the arrows represents the net rate for each elementary step, and the
orientation of the arrow indicates the direction of the reaction, while the color of the nodes represents the concentration of the intermediates. A
dark color represents a low or null concentration while a bright color corresponds to a high concentration.
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form the hemiaminal or dissociates. As the reaction progresses,
Fig. 7b, the concentration of water increases as it is a product of
the reaction, but instead of staying as an adduct with the imine
(I) it is displaced to coordinate with the amine. As the amine is
Fig. 8 Visualization of the reaction network for CO2 hydrogenation on P
The thickness of the arrows represents the net rate for each elementar
reaction, while the color of the nodes represents the concentration of t

1572 | Digital Discovery, 2024, 3, 1564–1576
consumed more water is available increasing the formation of
the [N + W + W] adduct, which is an intermediate in the water
dimer ([W + W]) proton shuttle catalysis.
d(111) considering the rates. The intermediates are labeled in Table S3.†
y step, and the orientation of the arrow indicates the direction of the
he intermediates.

© 2024 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00087k


Paper Digital Discovery

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

9 
Ju

ne
 2

02
4.

 D
ow

nl
oa

de
d 

on
 5

/2
1/

20
25

 1
0:

59
:2

2 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
3.2.2 CO2 hydrogenation kinetics. Regarding the case study
for heterogeneous systems, the analysis performed on the
Pd(111) surface is conrmed with the kinetic utilities of rNets,
as shown in Fig. 8. The color of each node in Fig. 8 corresponds
to the coverage at the steady state of each intermediate esti-
mated through microkinetic simulations using AMUSE,51 per-
formed assuming a differential plug ow reactor (PFR) and the
initial conditions were set to P = 5 × 106 Pa, T = 573 K, and
initial H2 : CO2 ratio equals to 4, in line with the typical range of
experimental operation conditions for CO2 hydrogenation.59,60

The thickness of the edges (arrows) corresponds to the magni-
tude of the rate calculated with rNets from the coverages ob-
tained with AMUSE of each elementary step, and the direction
indicates whether the reaction is displaced to reactants or
products. In Fig. 8, it is clearly shown that all the kinetic equi-
libria are displaced to reactants and that only CO* and 2H* (i7
intermediate, qi7= 0.999) is formed, poisoning the surface. This
data supports quantitatively the qualitative analysis obtained
with Fig. 4. Thus, rNets has proven to be a useful tool not only
for visualization but, more importantly, for the analysis of the
results. In addition, rNets can be also used to directly follow the
time evolution of a microkinetic simulation, as shown in the
ESI† Gif, simplifying the analysis of the results.

4 Conclusions

Through various application scenarios, rNets has proven to be
a highly effective tool for the visualization of thermodynamic
and kinetic properties within catalytic reaction networks. Its
design is both minimalist and modular, ensuring straightfor-
ward integration with kinetic analysis soware. This design
choice offers users previews of reactions as well as compre-
hensive microkinetic analyses. Furthermore, rNets' user-
friendly, table-based input system signicantly reduces the
learning curve, making it readily accessible even to chemists
with limited programming expertise. As a pivotal advancement
in open-source visualization tools for the chemistry sector,
rNets exemplies the power of simplifying the representation of
complex data, thereby broadening its accessibility and utility in
the community.

Data availability

The data used in this work is publicly available on the ioChem-
BD platform. Imine condensation: geometry optimizations
[https://doi.org/10.19061/iochem-bd-1-154] and single-point
simulations [https://doi.org/10.19061/iochem-bd-1-308] with
DRACO-based parameters. Regiospecic CO2 xation [https://
doi.org/10.19061/iochem-bd-1-141]. CO2 hydrogenation on
Pd(111) [https://doi.org/10.19061/iochem-bd-1-43]. The input
les and the intermediate dot les generated by rNets to build
the gures of this work can be found as an examples in our
code repository. Additionally, these examples have been
integrated within the project documentation. The source code
of rNets is publicly available at Github [https://github.com/
spgarcica/rNets], including comprehensive documentation
built with Sphinx 7.2.6 [https://spgarcica.github.io/rNets]. To
© 2024 The Author(s). Published by the Royal Society of Chemistry
assure reproducibility, the version of the code used (24.06) to
compute the examples of this manuscript has been uploaded
to Zenodo [https://doi.org/10.5281/zenodo.11463949]. rNets
has been tested on Windows 11 (Build 1000.22700.1003.0),
Ubuntu 20.04, Gentoo x64, and Arch x64. The package rNets
can be also found on PyPi [https://pypi.org/project/rNets/]. The
source code of pykinetic and AMUSE can be found on their
respective Github repositories [https://github.com/rperezsoto/
pykinetic, https://github.com/LopezGroup-ICIQ/amuse].
Additionally, a package of pykinetic can be found on PyPi
[https://pypi.org/project/pykinetic/] and Zenodo.68 The
OntoRXN ontology [https://gitlab.com/dgarayr/ontorxn] and
the Python library ontorxn-tools [https://gitlab.com/dgarayr/
ontorxn_tools] to generate knowledge graphs are available on
GitLab.
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