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in the era of large language
models: a perspective†

Ge Lei, ‡a Ronan Docherty ‡ab and Samuel J. Cooper *a

Large LanguageModels (LLMs) have garnered considerable interest due to their impressive natural language

capabilities, which in conjunction with various emergent properties make them versatile tools in workflows

ranging from complex code generation to heuristic finding for combinatorial problems. In this paper we

offer a perspective on their applicability to materials science research, arguing their ability to handle

ambiguous requirements across a range of tasks and disciplines means they could be a powerful tool to

aid researchers. We qualitatively examine basic LLM theory, connecting it to relevant properties and

techniques in the literature before providing two case studies that demonstrate their use in task

automation and knowledge extraction at-scale. At their current stage of development, we argue LLMs

should be viewed less as oracles of novel insight, and more as tireless workers that can accelerate and

unify exploration across domains. It is our hope that this paper can familiarise materials science

researchers with the concepts needed to leverage these tools in their own research.
1 Introduction

Materials science as a discipline sits at the intersection of
physics, chemistry, and oen biology, and therefore requires
a broad range of both skills and knowledge. A single project can
cover multiple length scales, requiring various literature
reviews, hypothesis generation and project planning before any
experiments take place. Laboratory work can require elaborate
synthesis and sample preparation routes, typically followed by
a wide variety of characterization techniques. Acquired data
must be processed and then analysed, either by tting to
models, compared to simulations, or calculating uncertainties.
Theoreticians must understand and leverage a variety of
computational techniques from density functional theory, to
computational uid dynamics, and more recently to deep
learning. This may require knowing multiple programming
languages, as well as having the skills to deploy code across
multiple environments, like high-performance clusters or cloud
services.

The rapid advancement of Articial Intelligence (AI) –

neural-network based deep-learning in particular – over the
recent decade has been driven by increasingly powerful hard-
ware and increasingly massive datasets.1 The culmination of
this advancement is the Large Language Model (LLM), a trans-
former2 based neural network with billions of learnable
al College London, London SW7 2DB, UK.

London, London SW7 2DB, UK

tion (ESI) available. See DOI:

the Royal Society of Chemistry
parameters trained on as large a corpus of text as possible.3

Various LLMs exist, like OpenAI's GPT-4,4 Google's Gemini,5

Meta's LLaMA 2,6 and Anthropic's Claude 3.7 They are mostly
the product of large companies with the nancial and compu-
tational resources to train them, though some open source
models exist.8,9 Despite their simple training objective of
reproducing human-like text,10 the combination of broad
training data and deep networks has resulted in impressive
emergent capabilities and applicability to different domains
and problems.11

LLMs naturally have a strong apparent understanding of the
structure of natural language, being able to translate, transpose,
generate, and answer questions based on texts. They are
sometimes able to (or appear able to) perform reasoning and
extract patterns from textual and numerical data,12,13 extending
their use beyond just language-based applications. This
combination makes them competent programmers,14 but also
effective managers or co-ordinators in complex tasks.15 Whilst
they perform best in workows with a strong, LLM-independent
feedback signal16 they are capable of automating processes in
ambiguous scenarios through trial-and-error. Compared to say
a Convolutional Neural Network (CNN), the transformer archi-
tecture is more amenable to multi-modality, able to combine
and process encodings of text and images.17 This multi-
modality massively expands the range of problems to which
LLMs can be applied.4,5

Like other computer programs, but unlike human scientists,
LLMs are inexhaustible – able to run all day, every day, which is
useful not just in automated digital discovery workows, but
also for setups like automated laboratories or pilot lines.18,19

They are typically more exible and adaptable than traditional
Digital Discovery, 2024, 3, 1257–1272 | 1257
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computer programs, making them more effective when run
continuously. The ability to process instructions in natural
language, retrieve domain knowledge, generate code and co-
ordinate systems, paired with their tireless operation and
immunity to boredom make LLMs appealing tools to a mate-
rials science researcher. If used judiciously they could speed up
materials discovery and perform large scale analyses previously
impractical for even the largest teams of researchers.

The development of the computer revolutionised informa-
tion processing and research – we argue that domain-grounded
LLMs will produce another step-change in materials science. In
this paper we explore the potential role of LLMs in material
science, starting with a qualitative examination of the theory
underpinning transformers and LLMs in Section 2. Next in
Section 3 we discuss the capabilities of modern LLMs and LLM-
based workows across a variety of domains and how they
might be applied to materials science. Section 4 contains two
case-studies which use LLMs in materials science workows.
The rst case study uses LLMs to automate tasks during 3D
microstructure analysis and the second uses LLMs to extract
labels for micrographs from papers using abstracts and gure
captions to create a new dataset. Finally in Section 5 we examine
the issues and challenges around using LLMs in research,
including hallucinations, cost, and depth of understanding.
2 LLM theory: from attention to
ChatGPT
2.1 Attention and transformers

Attention (or self-attention), originally used for sequence
modelling in recurrent neural networks,21 is a mechanism
designed to force a neural network to consider the rest of the
elements in a sequence (the ‘context’) in its representation of
the current element. For a sentence that is represented as
a sequence of tokens (efficient vector representations of words
in terms of common sub-parts like prexes) like “the dog
chased its own tail”, attention would place emphasis on the
“dog” token in its representation of the “its” token – the
consideration of context allow it to model noun-pronoun rela-
tions. An example attention map for a sentence is shown in
Fig. 1. A more thorough description is available in the ESI in
Section S1.1.†

Transformers were introduced by Vaswani et al. in 20172 as
a neural network architecture that only used self-attention for
sequence modelling. The removal of recurrent layers meant less
sequential operations were needed, meaning training could be
parallelized even for a single training example (like a long
sentence). The use of attention in place of convolutions meant
shorter distances for information propagation across
a sequence, making it easier to learn long-range connections.

Despite being the most efficient way to include the whole
context of a sequence of n tokens in a single layer, computing
the interaction of every token with every other token means
attention is an O(n2) operation. This limits the total ‘context
length’ of the input sequence based on the amount of (GPU)
memory. The quadratic scaling is the major downside of
1258 | Digital Discovery, 2024, 3, 1257–1272
transformers and researchers are looking to mitigate this with
techniques like windowed attention22 or moving to linear state-
space models like Mamba,23 though these approaches lose
global context.

Another consequence of attention is that there is no implicit
ordering of tokens in the network – this information must be
added in the form of a ‘positional embedding’ to the vector
representation of each token in the sequence. The simplest way
of doing this is word-order, i.e., which number the token is in
the sequence, though other embeddings like sinusoidal or
learned embeddings are also used.24 An embedding is just
a vector representation of a quantity in a new subspace – this
can be as simple as one-hot encoding showing the presence of
a feature or as complicated as a set of features learned by
a deep CNN.
2.2 Pretraining and language modelling

Supervised training is updating the weights of a neural network
to minimize the loss between the labels predicted by a model, ŷ,
and the labels from the dataset y for a given input x. As an
example, the x could be a photo of a dog and y could be a label
from a human saying “dog”. In training, the human labels y are
replaced with some transformation of the input y = f(x).

Ideally during self-supervised training the network learns
strong representations of the data and can be ne-tuned or
paired with another network on labelled data for specic tasks.
This has two advantages – rstly that it reduces the amount of
human labour needed to label the inputs, x, and secondly that it
is believed to produce more robust representations25 than
supervised learning, due to the lack of ‘shortcuts’ available. An
example of a ‘shortcut’ is learning to predict a dog by detecting
a lead, or detecting a polar bear based on ice in the background
– learning these might mean ignoring more relevant and gen-
eralisable features.26

Transformers are parallelizable so scale well with added data
and compute, and can easily learn long-range connections.2

Self-supervised learning requires little or no human input –

massive text datasets can be collected through automated web-
scraping27 – and generates strong learned representations. This
combination makes transformers prime candidates for self-
supervised learning on large text datasets to create multi-
purpose language models.

One of the rst works to apply self-supervised learning to
large text datasets with transformers was Radford et al. in
2018,10 where a transformer was pre-trained on 7000 unpub-
lished books before being ne-tuned on tasks like question-
answering and classication. It was pre-trained using next-
token prediction and operated autoregressively, i.e. it pre-
dicted next-token probabilities for all tokens in its vocabulary,
selected the highest one, added it to the input and predicted the
new next token. This was called “generative pre-training”, and
the model was called a “Generative Pretrained Transformer”
(GPT).

GPT's pre-training was le-to-right causal language model-
ling where the sequence had to be masked to prevent the
transformer seeing future tokens (specically the current token
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Amulti-scale diagram of an LLM. (a) Shows an attentionmap for an example sentence, note how ‘Law’ is strongly linked to its pronoun ‘its’.
(b) Shows a transformer encoder layer, made up of an attention layer and (fully-connected) feed-forward layer. Multiple of these encoder layers
with associated decoder layers form an LLM in (c), which is pretrained in an self-supervised manner on a large text corpus. This LLM is fine-tuned
to ensure its responses better match human preferences without diverging toomuch from the original model via RLHF, as shown in (d). Figures (a
and b) adapted from ref. 2 and (c and d) adapted from ref. 20.
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of interest) and predicting that. An alternative approach is
masked language modelling, where only the current token of
interest in the sequence is masked and the rest is part of the
context – this is bidirectional and future context can be
considered. This was the approach used for Google's BERT in
2018.28 The bidirectional language modelling meant BERT had
higher performance on benchmarks but meant it could not be
autoregressive/generative – a key factor in ChatGPT's later
popularity.
2.3 Aligning outputs via RLHF

Always selecting themost probable token during autoregression
leads to coherent and deterministic results, but can limit the
ability of the model to be ‘creative’. Picking tokens in propor-
tion to their probability is a simple strategy for more diverse
text, and a common way to parameterise the distribution and
therefore control text generation is ‘temperature’.29 Tempera-
ture is a scalar term introduced before the somax function that
generates per-token probabilities, with a large temperature
making the distribution more uniform and thus increasing the
probability of previously rare tokens.30,31 A low temperature does
the opposite, and a temperature of ‘0’ is used to refer to most
likely token selection.

‘Prompting’ is a consequence of the autoregressive learning
objective of LLMs – a user's prompt is given to the LLM as
a sequence and the LLM generates the most likely subsequent
tokens. The model must be ne-tuned to act in a true question/
answer or chatbot style.3 The notion of prompting has found
success in other domains, like Meta's promptable ‘Segment
Anything Model’.32

In 2022 OpenAI published a paper on “InstructGPT”,33 a pre-
trained model which was then trained on a dataset of prompts
to desired responses and nally ne-tuned via Reinforcement
Learning From Human Feedback (RLHF).34 RLHF, shown in
Fig. 1, contains two LLMs – a frozen LLM and the LLM to ne-
tune. A prompt is fed to both, and the ne-tuned LLM's
response is fed to a reward model (a NN trained to emulate
© 2024 The Author(s). Published by the Royal Society of Chemistry
human preferences) to generate a reward score. A second term
is added to the reward based on the KL divergence between the
frozen and ne-tuned LLM to prevent model dri. This reward
is fed into a reinforcement learning policy, like Proximal Policy
Optimization (PPO)35 to update the weights.

InstructGPT had signicantly fewer parameters than GPT-3
but outperformed it, signalling the power of reinforcement
learning in aligning a model's outputs with human preferences.
Despite this impressive performance it is worth noting that at
no point during the pre-training, training or ne-tuning are
models explicitly trained to minimize factual errors or to reason
– saying the sky is green goes against human preference and
would therefore be penalised, but most labellers would be
unaware if the model had confused ferro- and ferrimagnets if
the text was otherwise coherent.

3 Capabilities of LLMs in research

Machine learning has seen widespread application in materials
science, from characterization36,37 to property prediction,38–40 to
materials discovery and design.41–43 They have mostly been
applied in well-structured tasks with strong supervision (i.e.,
fully labelled single-task datasets).44 Frequently this has
involved researchers developing models trained only on their
data for their problems, causing poor generalisation to new
materials or processing conditions.45

LLMs, by virtue of their large number of parameters and the
scale of their training data, have strong natural language skills
and emergent properties that make them promising candidates
for processing more unstructured and varied data.44 In this
section we explore some of these emergent capabilities,
examine how researchers have used them in various disciplines
and consider them in a materials science context (Fig. 2).

3.1 LLM properties: intrinsic and emergent

3.1.1 Optimizing responses with prompt engineering.
Prompt engineering refers to optimizing the prompt the user
gives to an LLM in order to produce a ‘better’ answer or
Digital Discovery, 2024, 3, 1257–1272 | 1259
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Fig. 2 Diagram of LLM capabilities explored in Section 3 and potential materials-science related applications. These emergent capabilities can be
combined with each other and integrated into traditional pipelines (genetic algorithms, databases, etc.) to form the different applications.
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response. This can involve making the response more or less
precise, conform to specic rules or schema changing the level
of the explanation, i.e., “explain like I'm ve years old.“.
Choosing the correct prompt is more of an art than a science,
but some work has been done on creating and testing various
principles46,47 or using an LLM to optimise prompts for another
LLM.48 It has been found that it is generally better to be precise,
structured (using paragraphs, whitespace and question/answer
blocks) and explain to the LLM what ‘role’ it should act in.

Adding a simple role like “You are an expert materials
scientist” to the start of the prompt has been shown to improve
performance on domain-specic tasks.46,47 Another example
prompt engineering technique is output priming, where the
end of the user's prompt is the start of the answer they wish
from the LLM, for example “Write me a fairytale about a wood-
land mouse. Once upon a time.”;47 this plays into the LLM's
most likely next token generation. Further examples of prompt
engineering are show in Fig. 3.
Fig. 3 Results of applying two prompt engineering principles (giving exam
Taken from ref. 47.

1260 | Digital Discovery, 2024, 3, 1257–1272
Other prompt engineering techniques like in-context
learning and chain-of-thought reasoning are explained in
following sections. Example prompts for our case studies,
which utilise these principles, are in ESI Sections S2 and S3.5.†

3.1.2 In-context learning (ICL) and property prediction.
One important emergent property that is useful to optimize
a prompt is in-context learning, or few-shot learning,3 where
a few example input/output pairs are provided to the model in
the prompt. This is useful for familiarising the model with
unknown concepts. Why it works is still a topic of debate, and it
is a counter-intuitive phenomenon. Min et al.49 found that
during in-context learning, randomly swapping output labels in
examples (i.e. introducing wrong information into the context)
only slightly decreased the accuracy of LLMs when predicting
related new samples. This suggested showing the model the
structure and input/output distributions were more important
than demonstrating the underlying logical mapping.

However, subsequent research12 studied this effect with
larger LLMs and found that as the number of model parameters
ples and including the phrase ‘let's think step-by-step’) using LLaMa-2.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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increased, the adverse effects of wrong information in examples
became more pronounced. As the percentage of swapped labels
increased, the accuracy on unswapped examples dropped below
50% (the random baseline), implying these larger LLMs learnt
the reverse logical mapping from the (swapped) in-context
examples, rather than just the problem structure.

Google's Gemini 1.5 Pro50 recently demonstrated its
advanced in-context learning capabilities by accurately trans-
lating English into Kalamang, a language spoken by fewer than
200 people. Initially, the model struggled with translations due
to a lack of Kalamang training data. However, aer processing
250k tokens of linguistic documentation on Kalamang without
undergoing a traditional training regimen, it achieved near-
human levels of translation accuracy.

As well as various natural language and mathematical
problems,13 ICL has been used for both quantitative and qual-
itative material property prediction.44,51–54 However, Microso
AI4Research noted that despite good qualitative predictions,
the quantitative predictions of LLMs were lacking.54 Quantita-
tive reasoning oen involves complex mathematical concepts,
calculations, and problem-solving. LLMs may struggle with
these tasks, as their reliance on statistical patterns can lead to
incorrect answers, particularly when the problems are intricate.
We further discuss these problems in Section 5.

3.1.3 Error correction via chain-of-thought (CoT) reasoning
& self-reection. Chain-of-Thought (CoT) prompting is a tech-
nique that improves the reasoning capabilities of LLMs by
breaking down complex problems into sequential, logical
steps.55 For instance, if prompted with “Anna has 15 oranges.
She buys two more bags, each containing 8 oranges. How many
oranges does Anna have now?”, the LLM might generate an
incorrect number like “23”. With a CoT prompt like “Howmany
oranges does Anna have originally? Howmany oranges does she
buy? How many oranges does she have now?”, the model
outputs a different, lengthier response: “starting with 15
oranges, adding 16 from two bags (8 each), and summing to 31”.
CoT has been found to improve performance on tasks that
require complex reasoning.55,56

Various explanations for this improved performance have
been suggested, including that requesting the model think step-
by-step increases the length of the sequence. Recall that during
autoregression the whole sequence including the output so far
is fed into the model to generate the next token – adding more
tokens gives the model more context and thus more ‘space’ to
compute with, as more text means more interactions in the
attention layer. Another possibility is that longer sequences
reduces the space of likely sequences to those that contain the
correct answer; if the model has repeated “John has 4 apples”
multiple times as part of its explanation the probability of
outputting future tokens that use (directly or indirectly)
a different number of apples is reduced compared to directly
outputting the answer.

Self-reection is a consequence of ICL and CoT and involves
giving an LLM an evaluation of its previous prompt in a new
prompt, this can be pointing out errors or a broader evaluation.
This can be from a human,55 a program (i.e., a stack trace),57

another LLM58 or even itself.59 Self-reection improves
© 2024 The Author(s). Published by the Royal Society of Chemistry
performance, potentially for the same reasons as ICL and CoT,
but also because correcting a wrong output may be a simpler
task than generating the correct output de novo.

3.1.4 Pre-existing and ne-tuned materials domain
knowledge. LLMs are trained on large corpuses of text that
contain facts about the world, including large datasets of
scientic papers.60 Common facts will be repeated many times
across these texts, making it statistically likely that an LLM will
reproduce them when prompted to. Microso AI4Science found
that “In biology and materials design, GPT-4 possesses exten-
sive domain knowledge”, which they evaluated by asking
domain experts to rate outputs about various drug molecules,
general materials design principles, mathematical concepts like
PDEs and more.54

The ability to act as an oracle for common shallow infor-
mation across many domains61 is useful in a multi-disciplinary
eld like materials science, but the model generalization
encouraged by the pre-training task and autoregression can
limit the usefulness of LLMs for deep information recall.

One way of overcoming this is ne-tuning on domain-
specic knowledge. This domain specic knowledge can be
collected by traditional web-scraping or through using ML
models62 and then used to ne-tune a language model like
BERT.28 Models like SciBERT63 outperformed BERT and other
state-of-the-art models for tasks like text classication or
Named Entity Recognition (NER). MatSciBERT64 took this
process a step further and ne-tuned SciBERT on materials
science specic data to outperform SciBERT on materials
science text tasks. Jablonka et al.65 also demonstrated that ne-
tuning GPT-3 on chemistry and materials science tasks allows
the model to achieve high performance for property prediction,
oen surpassing traditional machine learning models, espe-
cially in low-data scenarios.

Full ne-tuning of any large ML model is expensive and risks
‘catastrophic forgetting’,66 where a model loses information
from its general (pre)training during the domain-specic ne-
tuning. One way to alleviate both the cost and catastrophic
forgetting problem is Parameter-Efficient-Fine-Tuning (PEFT),
where only a small subset of the model's parameters are
updated. Example PEFT schemes include LORA,67 adapters68

and prompt/prex-tuning methods.69,70

Textual representations of molecules like SMILES71 and
SELFIES72 have seen success in transformer networks for
property prediction73,74 and molecular generation.75 Work has
been done on ne-tuning LLMs to include these textual repre-
sentations, either by training exclusively on these representa-
tions or including them in-context in training data, showing
promising results in molecular generation, inverse design, and
property prediction.76–78 Similar studies have been done for
crystal structure prediction and generation, for example by ne-
tuning an LLM on millions of .cif les79 or on custom string
representations.80

3.1.5 Comprehensive programming skills. Large quantities
of text exist online (and therefore in LLM training sets) about
programming: discussions, help forums and source code, and
the move towards approachable, high-level programming
languages like Pythonmeans source code is increasingly similar
Digital Discovery, 2024, 3, 1257–1272 | 1261

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00074a


Digital Discovery Perspective

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

5 
Ju

ne
 2

02
4.

 D
ow

nl
oa

de
d 

on
 6

/2
0/

20
25

 2
:1

1:
26

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
to natural language. These two facts mean LLMs are procient
at generating, modifying, correcting and summarizing code in
a variety of languages for a variety of tasks.14,81

Programming is ubiquitous in modern science, from data
processing, analysis, visualization, simulations, instrument
interfaces, etc. and the ability to write reasonable code across all
these different tasks is obviously useful for researchers. LLMs
have been shown to be procient in these tasks in a materials
science context.54 The ability to code in different contexts is also
fundamental for many of the workows explored in Section 3.2.

3.1.6 Multi-modality – enriching materials characteriza-
tion. The tokenization, positional embedding and attention
mechanics of transformers are highly exible and therefore
capable of jointly modelling different modalities and tasks.82 A
prominent example of this is OpenAI's CLIP (Contrastive
Language–Image Pre-training),17 where a model is trained to
maximize the similarity of text and image representations for
text-image pairs collected from the internet. The success of CLIP
and other multimodal representations83 has led to the rise of
Vision Language Models (VLMs) like GPT-4,4 LLaVa84 and
Gemini5 which can use information from text and images to aid
in the generation and processing of both.

Joint text-image reasoning has the potential to be a useful
analysis tool when combined with existing datasets of materials
images and descriptions – consider searching the literature for
microstructures that display similar features, defects or arte-
facts to your data, with potential answers from related papers
signposted.

Images are not the only mode of data that transformers can
learn to use with text. There are examples using videos via 3D
CNN embeddings,85 speech/audio using spectrograms86 and
even graphs via Graph Neural Network (GNN) embeddings.87

Notably, OpenAI's Sora88 has extended this versatility further by
generating high-delity videos, demonstrating the application
of transformers beyond static images to dynamic, temporal
data.

Finding suitable embeddings for the wide range of charac-
terization techniques that exists in materials science (CLIP for
micrographs, GNNs for crystallographic information from XRD,
1D CNNs/LTSMs for spectral data) and ne-tuning a trans-
former or LLM with them could be a promising direction for
injecting domain-specic knowledge or priors. For example,
embeddings for spectroscopic data could be extracted from the
hidden layers of CNNs that have shown good performance in
material-specic classication or quantication tasks in
Raman89 or P/NMR90,91 spectroscopy, though a larger, more
varied training dataset would be needed to ensure they gener-
alise well.

Multi-modality has become an increasingly important focus
of LLMs,50,92 with recent examples like GPT-4o being ‘natively
multi-modal’,93 meaning they are trained to input and output
tokens of various modalities (rather than, say, generating an
image by producing text to describe the image and feeding that
into a different text-to-image model). The success of a multi-
modal materials science LLM will depend on the quantity and
variety of data from the various modalities, as well as how
amenable the modalities are to tokenization.
1262 | Digital Discovery, 2024, 3, 1257–1272
3.2 Resulting workows

These properties are exible and composable, meaning they can
be combined in a wide range of potential workows in various
domains, including materials science.44 Below are a few exam-
ples of such workows, and though they are split into separate
sections there are strong links and similarities between them.
The key commonality is letting LLMs act as high-level managers
whilst other, more robust systems perform low-level tasks.

3.2.1 RAG: generation from custom datasets. Retrieval
Augmented Generation (RAG) involves performing a lookup
into a traditional database and using the retrieved information
as part of a prompt to an LLM in order to achieve better or more
accurate generation.94 The lookup is usually based on some
function of a user request – one common way to match the
semantics of a user's search to a database is ‘vector search’,
where embeddings of every item in a database are pre-
computed using a language model like BERT28 and the ones
with the highest similarity (usually cosine similarity) with the
embedding of the user's request are returned.95

RAG has several benets to LLM workows:96 rstly, hallu-
cinations are reduced as models only need to process existing
information in a prompt rather than generate (or fabricate) it. It
is more interpretable as the retrieved documents can be linked
back to conrm the results. Finally, these databases can be
updated simply by computing the embeddings for the new
items –without RAG the LLMwould need to be retrained or ne-
tuned to add the new information.

The utility afforded by RAG is clear – many companies are
trying to use or sell it as a service,95 and it is a feature in GPT-4.4

It is not hard to see how LLMs paired with a vector database of
materials papers using, say, MatSciBERT's64 text embeddings
could prove useful in research. Indeed, some have already used
RAG alongside knowledge graphs for materials design.97

3.2.2 Tool-using and making for analysis pipelines. LLMs
can be trained to use tools like search engines,98 translations,
mathematics plugins, etc., which is useful in situations where
they typically underperform, like arithmetic.99 This can be
achieved through ICL and ‘prompt managers’ by providing
details of the tools and situations in which to use them to the
LLM and running the generated code or API (Application–
Programmer Interface) calls.100,101

Another more involved approach used by Toolformer99 was
to use ICL to make LLMs annotate an existing language dataset
with API calls for a variety of tools where it deemed them useful.
They then ne-tuned the model on that data, including a loss
term to indicate when the API call improved the accuracy of the
generation. This approach has the benet of not relying on
prompts, which can crowd the limited context window and
sometimes be ignored by the LLM.

LLMs can generate code and as such are able to produce
their own tools. The LLMs As Tool Makers (LATM)102 framework
used LLMs to generate tools which can then be used by other
LLMs. They noted that tools were harder to make than use, so
had a more powerful LLM (GPT-4) generate the tools, tests and
documentation and a weaker LLM (GPT-3.5) use the tools.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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A tool-making and using LLM with a human-in-the-loop
could be useful for materials science problems where the
workows and requirements are varied (in terms of data types,
desired analyses or post-processing) like in image processing.
This could be further combined with RAG on relevant papers for
domain knowledge engagement and a database of generated
tools to obviate the prompt context window limit. Progress has
been made on that front, including ChatGPT integration for the
ImageJ macro language inside ImageJ itself.103

3.2.3 Task integration: the future of automated labwork?
Various papers have shown that LLMs can act effectively as
managers of various sub-components, like other soware tools
or even other LLMs (called ‘agents’). This tends to involve
feeding the outputs of these tools or LLMs as a prompt into the
manager LLM.

One fun example of co-ordination is ‘Generative Agents:
Interactive Simulacra of Human Behavior’,104 where LLMs acted
as villagers in a sandbox with a set of possible actions and
locations. They performed inter-agent communication and had
a recursively summarised memory of events fed into their
prompt to maintain consistency.

Maintaining a memory external to the LLM (i.e., in a text le)
has been explored by studies like MemGPT105 which aimed to
emulate modern operating system memory management to
allow LLMs to perform tasks like large document summariza-
tion and multi-session chats. To achieve this they had a tradi-
tional scheduler with events for document uploads and timers,
and allowed the LLM a set of functions to call in response
including send messages, read, write, and send interrupts.

‘Coscientist’18 used LLMs as a coordinator to design, plan
and execute chemical research. It can call web search APIs,
generate and execute Python code, search documentation,
interact with and write code for physical hardware. Despite the
Fig. 4 Diagram of the FunSearch16 evolutionary workflow, where an LLM
from the previous iteration and tasked with combining them to generate b
evaluated, stored in database and the process repeated. This process w
dimensions. Taken from ref. 16.

© 2024 The Author(s). Published by the Royal Society of Chemistry
need for manual intervention to execute the experiment, it is
a promising example of how LLMs can orchestrate various
research and lab tasks. Similarly, ‘ChemCrow’106 is an LLM
chemistry agent designed to tackle tasks in organic synthesis,
drug discovery, and materials design. The agent uses an itera-
tive, automated chain-of-thought reasoning approach to plan its
approach which it executes via a set of prewritten tools. Like
‘Coscientist’, it has access to web-search, can write its own code
and interface with a robotics lab, but it also has a variety of
molecular, reaction and safety tools it can employ.

Much effort is being made to integrate LLMs with robotics107

as task planners,108 reasoning agents109 or as part of a broader
vision-language-action multimodal model.110 Advancements in
grounded robotics and embodied AI will further development of
automated labwork, improving all-in-one workows like
Coscientist. However, it is worth noting the margin for error (and
hallucinations) is much smaller in labs, where a wide variety of
hazardous chemicals and processes are handled frequently.

3.2.4 Optimization loops and ‘ow engineering’. Another
useful LLM-based workow is meta-optimization, where
instead of generating an optimal solution to a problem, an LLM
generates the code to produce the optimal solution. ‘Eureka’111

used an LLM to generate reward functions for reinforcement
learning applied to robotics simulations. They used a genetic
algorithm, where the best generated reward functions and their
summary statistics were included in a prompt to allow the LLM
to ‘reect’ and then synthesise a new, better set of reward
functions. The framework outperformed expert-written reward
functions on a large majority of tasks.

DeepMind's FunSearch16 followed a similar approach, using
LLMs to generate heuristics for approximating solutions to
mathematical problems like the cap set or online bin packing
problem (Fig. 4). They also used a genetic algorithm framework,
is prompted with a problem specification and best example heuristics
etter candidate heuristics to solve a problem. These new heuristics are
as able to discover a new upper bound for the largest cap set in 8

Digital Discovery, 2024, 3, 1257–1272 | 1263
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asking the LLM to combine aspects of best-performing heuristic
programs to generate new ones. Like Eureka, this relied on
a combination of ICL, CoT and a feedback signal from an
external program – in Eureka's case this was RL simulations
using the reward functions which tracked quantities like time
upright and for FunSearch this was small validation programs
which evaluated how well the heuristic performed (i.e., if the
cap set was valid and how large it was).

The FunSearch process found a new upper bound for the
largest cap set in 8 dimensions, exceeding previous upper
bounds found by human mathematicians. Despite this success,
this was not a triumph of articial mathematical understanding
– a review of FunSearch noted it was “remarkable for the shal-
lowness of the mathematical understanding that it seems to
exhibit”112 – instead it was proof of the power of LLMs inside an
evolutionary framework.

The LLM in FunSearch did not need to always be correct – the
strong feedback signal from the deterministic evaluators ensured
mathematical correctness. This is therefore a good model for
reconciling the LLM's occasional hallucinations with the need for
scientic accuracy. Based on the results, it seems the key contri-
bution of the LLM was to reduce the search space of the genetic
algorithm from all possible functions to all plausible functions,
hugely increasing convergence time and nal performance.

A recent meta-optimization coding paper is AlphaCodium,113

which used a multi-step framework combining reection on
a given specication, human-written tests and LLM-generated
tests. The emphasis on tests was because they noticed it was
easier to generate useful unit tests (which could then improve
future generation) than the correct code. They called this process
‘ow-engineering’ and improved pass accuracy on challenging
code problems from 19% with just GPT-4 to 44% with GPT-4 as
part of the AlphaCodium ow. A useful feature of all these meta-
optimization loops is that they tend to be LLM-agnostic, i.e., GPT-
4 would work equally as well as LLAMA or FALCON.
Fig. 5 Diagram of MicroGPT's workflow, beginning with dataset collect
metrics from the data – this can be an existing tool from its toolkit like

1264 | Digital Discovery, 2024, 3, 1257–1272
An important aspect of FunSearch (and other LLM meta-
optimizations) was that the programs it generated were inter-
pretable by humans. By examination of the program that
generated the new upper bound, the researchers found a new
symmetry in the cap set problem. This human-in-the-loop
approach to optimization and discovery is appealing in the
natural sciences – one could imagine tasking an LLM evolu-
tionary framework to nd new functionals in DFT or approxi-
mating solutions to physically-relevant combinatorial problems
like the max-cut problem.114
4 LLM workflows in materials
science: two case studies
4.1 Case study 1: automated 3D microstructure analysis

In Section 3.2 we examined the potential of LLMs to make, use,
and orchestrate various tools into automated workows. Typical
materials data analysis pipelines require a combination of
domain knowledge, statistical understanding, and various
programming skills. The programming required is oen non-
trivial, involving data handling, conversion, simulations, plot-
ting, etc.

LLMs have the potential to reduce the knowledge and skills
barriers for these workows, by offering a natural–language
interface to a wide pool of programming knowledge, tool co-
ordination, and automation.

As an example, we developed “MicroGPT” – a specialized
chat-bot to streamline 3D microstructure analysis. Prior work
has been done on LLM-guided materials design, like Text2-
Concrete44,115 or BatteryGPT,116 where the former employed an
iterative generator/critic approach and the latter extracted
relevant manufacturing parameters and knowledge from spe-
cialised databases. We focused on integrating simulation and
analysis tools into the design process (Fig. 5). MicroGPT has
a variety of functionalities:
ion and filtering. This is followed by tool making and using to extract
tortuosity calculations or created for the specific query.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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�Data acquisition: MicroGPT can conduct searches for open-
source datasets on Zenodo (an interdisciplinary open-access
repository) and employ functions to download these datasets
using the links available on the respective web pages.

� Filtering: it can retrieve the dataset's metadata, parse it and
subsequently rene the data according to the user's (natural
language) specications. Finally, it can organize the ltered
data into a newly created le directory.

� Integrated simulations: it can apply simulation tools to the
3D microstructures, documenting the simulation outcomes in
formats such as .csv. These results can then be automatically
uploaded to a cloud provider given an API key.

� Data analysis: it can compare various datasets, collect
simulation results and based on user requirements, formulate
hypotheses, and provide recommendations.

� Data visualization: the results of the data analysis can be
plotted, either as histograms for distributions of single prop-
erties across the dataset or scatter plots to examine the corre-
lations between properties.

� Tool making and reuse: custom tools can be developed
based on the user's specications, stored and reused in later
analyses. Over time this will lead to a library of useful and
relevant functions that extend MicroGPT's capabilities.

This was achieved using GPT-4's API. Custom functions were
dened in terms of their description, arguments and return
values (in .json format) and input to the GPT using OpenAI's
‘function calling’ so the LLMwould call themwhen appropriate.
These were implemented in Python and run client-side. We
added more system prompts with explicit instructions to
improve stability (see Section 3.1 and ESI Section 2†).

To demonstrate these functionalities we used MicroGPT to
collect and lter data from “MicroLib”,117 a collection of plau-
sible, synthetic 3D microstructures generated from DoIT-
PoMS118 via SliceGAN.119 It then ltered the structures to only
ones related to materials with specic characteristics. Relevant
3D metrics like tortuosity, effective diffusivity, volume fraction,
and surface area were calculated using TauFactor 2(ref. 120) via
a function call.

MicroGPT collated the results, identied a potential outlier,
and suggested some materials for further investigation. It
successfully correlated metrics such as tortuosity and surface
area with desired properties like high ow rates and extensive
surface areas for efficient performance.

MicroGPT is a promising example for LLM-assisted analysis
workows, leveraging many of the properties in Section 3 like
natural language understanding, programming skills and
chain-of-thought reasoning. The grounding of MicroGPT using
tool like search APIs, RAG, etc. is a future research direction
which could both reduce factual errors and enhance domain
knowledge engagement for reasoning and hypothesis genera-
tion. A detailed example dialog and system prompts are avail-
able in the ESI Section S2.†
4.2 Case study 2: labelled microstructure dataset collection

There are few large (>1000 entries) micrograph datasets that
cover a range of instruments andmaterials, and even fewer with
© 2024 The Author(s). Published by the Royal Society of Chemistry
material-specic labels. The Cambridge DoITPoMS118 library
contains around 900 labelled micrographs of various materials
captured mostly with optical or reected light microscopy.
Another dataset from Rosella et al.121 contains 22 000 SEM
images of materials with taxonomic labels. Biological datasets
are larger and better collated,122 contributing to the success of
generalist deep-learning approaches like Cellpose.123

Materials science papers contain many high-quality exam-
ples of micrographs taken using a variety of techniques, usually
with descriptive captions and abstracts. Traditional string-
matching approaches like regex may be capable of detecting
whether a given gure contains a micrograph and extracting the
instrument used to take it from the caption, but detecting which
material is present is generally not possible. The problem is
further complicated if the gure contains multiple sub-gures
like plots or diagrams alongside the micrograph, which
occurs frequently.

Various approaches to automated materials science data
extraction exist in the literature, using Natural Language Pro-
cessing (NLP) techniques like Markov models, Conditional
Random Fields (CRFs)124 and word embeddings from models
like word2vec125 for tasks like Named Entity Recognition
(NER).126,127 These NLP approaches can be combined with web-
scraping to create extractor tools like ‘ChemDataExtractor’128,129

and ‘MatSciE’,130 which aim to automatically create datasets
from text entities and tabular data in papers matching a given
search query.

Image-based paper data extractors also exist, like ‘Image-
DataExtractor’131 which is capable of detecting electron
microscopy images from gures, identifying their scale and
segmenting any nanoparticles present. ‘EXSCLAIM’132 uses rule-
based NLP and image processing to extract images and assign
hierarchical labels based on the gure caption. These extractors
have found use in generating structured datasets for nano-
particles,133 photocatalysts134 and self-cleaning coatings.135

LLMs and VLMs offer solutions to both these problems,
displaying strong natural language skills and the ability to
consider wider contexts like paper abstracts and therefore
enabling large-scale automated micrograph collection and
labelling from the literature. Some work using GPT-4V for
extracting information from a paper's gures exists, for example
analysing graphs (PXRD plots, TGA curves, etc.) in reticular
chemistry papers136 by treating each page in the .pdf as an
image.

We began by scraping paper metadata (title, authors,
abstracts, links, etc.) from arXiv and chemrXiv that matched the
query ‘microscopy’ via their APIs. For each paper we then
downloaded the .pdf, ran the ‘pdffigures2.0’ gure and caption
extractor137 and saved the image–caption pairs alongside the
metadata. We further extracted the subgures for each gure by
detecting connected components surrounded by whitespace
and removing small (less than 2002 px) results.

A two step screening process was used, rst we fed captions
and abstract to a text-only LLM (GPT-3.5 or 4) to determine if
a micrograph was present, what instrument was used and the
material depicted. Next we prompted a VLM (GPT-4V) with the
specic subgure, its parent gure, caption and abstract to
Digital Discovery, 2024, 3, 1257–1272 | 1265
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work out if that specic subgure was a micrograph and again
what instrument was used and what material was imaged.

Aer running this process on 382 papers (a subset of the 14
000 scraped) we collected 842 micrographs, each with an
instrument and material label – a link to the dataset is available
in Data availability. Fig. 6 shows a visualization of the dataset,
where micrographs are grouped based on how similar the
MatSciBERT64 embeddings of their labels are. The LLM-
generated labels were compared to human labels recorded
with a customGUI (developed for this case study) for each gure
and subgure to work out the accuracy of the process.

During the case study we evaluated the performance of
various setups, including using GPT-3.5 or −4 and whether we
prompted the LLM with the abstract or not. GPT-4 far out-
performed −3.5, and using the abstract led to a minor
improvement over not. See Fig. S4 in ESI Section S3.4† for
details. The performance of GPT-4 with abstract is shown in
Fig. 7, with a sensitivity and specicity above 90% for
Fig. 6 T-SNE plot of the MatSciBERT64 embeddings of the ‘material’ labe
paper abstract and figure caption. Border colour denotes the instrument
nanoparticles in the top right, energy materials in the middle on the left
inset zoom displays some micrographs with similar labels in embedding
examples of extracted micrographs and their generated labels can be se

1266 | Digital Discovery, 2024, 3, 1257–1272
micrograph detection, and material and instrument accuracy
above 80%.

We found that LLMs were competent labellers, sometimes
matching human labels almost exactly. The success is mostly
attributable to the fact that the task could be done with no
materials-science specic knowledge due to how well-
structured scientic captions are. The text-only LLMs make
mistakes when the caption mentions ‘image’ without showing
a micrograph, i.e., in a plot of statistics taken from an SEM
image. The VLM did not have this problem, and there were no
false positives aer the second step (though this may be
because the rst step was already a strong lter), this is dis-
cussed further in ESI Section S3.3.† No further manual curation
was applied to the dataset.

This LLM-based workow is potentially more exible than
approaches using classical NLP in that rules and desired data can
be changed more easily and it is more robust to varying caption
syntax – the authors of EXSCLAIMnoted shortcomings in the rules-
l assigned by the LLM to each micrograph in the dataset based on the
the micrograph was taken with. Similar materials are grouped together:
and quantum dots in the top-left corner. Best viewed zoomed in. The
space (in this case mostly energy materials) grouped together. Further
en in Fig. S3.†

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 Evaluation of micrograph detection performance of GPT-4
supplied with figure caption and paper abstract, including a confusion
matrix in (a) and statistics in (b). GPT-4's performance is strong across
the board, with good sensitivity, specificity and accuracy for instru-
ment and material labels.
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based approach, namely that nearly a third of the extracted images
did not receive “a substring of text from the caption distributor”,
and that this “is where transformer-based NLP models stand to
make the greatest contribution to the overall pipeline”.132

However, this increased exibility comes at the cost of
potential hallucinations, lack of explainability, poor reproduc-
ibility and a larger computational overhead (explored further in
Section 5). A synthesis of the two approaches, for example using
classical NLP to ground LLM labels, could prove fruitful. Utili-
ties like the scalebar recognition of EXSCLAIM or Image-
DataExtractor could also improve the workow.

More details on the setup, including the system prompt, can be
found in Section S3 of the ESI.† Three representative micrographs
alongside a comparison between their labels and the original
caption is available in Fig. S3.† The code needed to reproduce the
results or run on more specic queries is available in Data avail-
ability. In the future we intend to apply this automated approach
to a much wider dataset, with the hopes of creating a varied
micrograph dataset for computer vision applications.

The method based on LLM and VLM to extract datasets
offers high accuracy with good understanding and interpreta-
tion of complex data types like images and scientic texts. But it
is computationally intensive, may provide misleading inaccu-
rate information, and has concerns regarding explainability,
transparency, and reproducibility, which will be further dis-
cussed in Section 5. While previous methods may be limited to
data modality, they yield more stable results, allow users to
easily trace the source of the results, and require less compu-
tational effort. Considering when and which method to use is
worth thoughtful consideration.
5 Issues and challenges

There are naturally a few problems with integrating LLMs into
materials science workows, the most prominent and con-
cerning being that of hallucination or confabulation. Huang
© 2024 The Author(s). Published by the Royal Society of Chemistry
et al.138 provide a taxonomy of hallucination types, separating
hallucinations into two main types: factual and ‘faithfulness’.
Factual hallucinations involve being wrong or fabricating facts,
and ‘faithfulness’ hallucinations involve ignoring user provided
instructions or information, or making logical errors.

Various causes of hallucinations have been suggested,138

including (but not limited to) pre-training on incorrect or
duplicated data, randomness from output sampling and
a ‘capability misalignment’ between the demands made by
RLHF ne-tuning and the model's capabilities – LLMsmay have
been trained to hallucinate in some cases.

These xes for hallucinations exist mostly at the dataset or
training level, which is difficult for all but the largest research
groups to manage. As noted in Section 3.2, RAG is a good way to
mitigate factual hallucinations,138 as manipulating existing data
by RAG is easier than updating knowledge recall methods, and
it can supply a model with information from outside its training
set. Chain-of-thought reasoning can also sometimes mitigate
logical hallucinations,138 though asking a model to correct itself
requires knowing the output was wrong in the rst place,
reducing the value-add of LLMs.

Microso Research AI4Science noted some hallucinations of
GPT-4 whilst handling complex topics like materials science
and chemistry. In generating silicon crystal structures, GPT-4
initially provided incorrect atomic positions, which were
partially corrected aer further prompts but still contained
some inaccuracies. When predicting the electrical conductivity
of inorganic materials, GPT-4's accuracy was only slightly better
than random guessing, misclassifying several compounds.
While generating code for pressure-temperature phase
diagrams, GPT-4's use of simplied equations led to inaccurate
phase boundaries. Additionally, in quantum chemistry discus-
sions on symmetry and antisymmetry, GPT-4 used correct
problem-solving approaches but awed algebraic calculations,
leading to erroneous conclusions (the wavefunction is anti-
symmetric).54 Hallucinations are more likely to occur when an
LLM is processing data in areas where it has a knowledge gap,139

which is likely for broad, deep domains like materials science.
As well as contributing towards hallucinations, data dupli-

cation (alongside autoregression and the pre-training objective)
can also contribute to an LLM's tendency to output towards
a generic or modal answer. This is not just a problem if asking
about uncommon materials or analysis techniques but also if
using LLMs to explore a hypothesis space, design principles or
automate experiments. The risk of using LLMs in research is
that we reinforce existing biases and overlook unconventional
approaches not well-represented in the training data.

Reproducibility is also a challenge for LLMs. Although they
can be run deterministically with a temperature setting of 0 (see
Section 2.3), this limits their ‘creativity’ and makes them less
useful for generative tasks, like molecular or materials design.
Temperature is not the only factor limiting reproducibility, as
small changes to prompt phrasing can have large changes on
the result.140

There are practical issues to implementing LLMs in mate-
rials research. The models are expensive to run if using a cloud
provider like OpenAI's API, or if run locally require powerful
Digital Discovery, 2024, 3, 1257–1272 | 1267
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GPUs with at least 8 GB of VRAM (which are currently expen-
sive). Quantizing these models (storing their weights with less
oating-point precision) can ameliorate this, at the cost of
slightly diminished accuracy. For research groups or companies
dealing with sensitive or proprietary data there are privacy
issues around uploading data to cloud-based LLMs – running
local models is a good workaround but requires more know-
how.

The large parameter count of LLMs that enables their
impressive language capabilities also makes them difficult to
interpret, both algorithmically and practically. Sampling
a single token, to say, examine the associated attention maps,
requires non-negligible compute, and asking a model to explain
its own outputs is also prone to hallucinations.140 Work is
ongoing on developing explainability methods for LLMs.140,141

LLMs struggle with performing quantitative reasoning. Even
a language model like ‘MathGLM’142 that was ne-tuned on
large synthetic datasets of arithmetic problems struggled to
achieve high accuracy on multiplication problems. Its accuracy
decreased as the number of digits increased, leading some to
suggest143 it (and LLMs in general) had not learnt the underlying
rules of multiplication. The most promising avenue for
improving this seems to be teaching the LLM when to use an
external tool like a calculator (see Section 3.2).

6 Conclusion

To conclude, we have explored the basic theory behind LLMs,
linking their industrial-scale self-supervised pre-training and
reinforcement learning-based ne-tuning to their impressive
natural language skills. We then examined existing workows
using LLMs, indicating areas where they have been or could be
applied to materials science research. Next, we demonstrated
two example workows using LLMs, one for 3D microstructure
data analysis co-ordination and another for the automated
collection of LLM-labelled micrographs from the literature.
Finally, we explored various issues and challenges that the
current generation of LLMs are yet to resolve, including hallu-
cination and confabulations.

We believe the versatility and emergent properties of LLMs
will make them strong tools in an increasingly automated,
connected and data-driven research environment. This is
doubly true for materials science which must cover a broad
range of length-scales, materials, techniques and topics.

At their current stage of development, LLMs are promising
tools for accelerating research and exploration, acting as tireless
interdisciplinary workers. They must, however, be used with full
understanding of their drawbacks – not as infallible generators
of new, deep insights, but instead in workows that minimise
and are robust to hallucinations. There is an old saying: “re is
a good servant, but a bad master”.

Data availability

The code needed to run the micrograph scraping, extraction
and LLM labelling is available at https://github.com/tldr-group/
micrograph_extractor with an MIT license agreement. The
1268 | Digital Discovery, 2024, 3, 1257–1272
scraped dataset of 842 micrographs is available in the above
repository in the https://github.com/tldr-group/
micrograph_extractor/tree/main/micrographs and the
corresponding labels in https://github.com/tldr-group/
micrograph_extractor/blob/main/micrographs/labels.csv. The
code to run MicroGPT is available at https://github.com/tldr-
group/Microgpt.
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