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ng approach for the prediction of
aqueous solubility of pharmaceuticals:
a comparative model and dataset analysis†

Mohammad Amin Ghanavati,a Soroush Ahmadi ab and Sohrab Rohani *a

The effectiveness of drug treatments depends significantly on the water solubility of compounds,

influencing bioavailability and therapeutic outcomes. A reliable predictive solubility tool enables drug

developers to swiftly identify drugs with low solubility and implement proactive solubility enhancement

techniques. The current research proposes three predictive models based on four solubility datasets

(ESOL, AQUA, PHYS, OCHEM), encompassing 3942 unique molecules. Three different molecular

representations were obtained, including electrostatic potential (ESP) maps, molecular graph, and tabular

features (extracted from ESP maps and tabular Mordred descriptors). We conducted 3942 DFT

calculations to acquire ESP maps and extract features from them. Subsequently, we applied two deep

learning models, EdgeConv and Graph Convolutional Network (GCN), to the point cloud (ESP) and graph

modalities of molecules. In addition, we utilized a random forest-based feature selection on tabular

features, followed by mapping with XGBoost. A t-SNE analysis visualized chemical space across datasets

and unique molecules, providing valuable insights for model evaluation. The proposed machine learning

(ML)-based models, trained on 80% of each dataset and evaluated on the remaining 20%, showcased

superior performance, particularly with XGBoost utilizing the extracted and selected tabular features.

This yielded average test data Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and R-

squared (R2) values of 0.458, 0.613, and 0.918, respectively. Furthermore, an ensemble of the three

models showed improvement in error metrics across all datasets, consistently outperforming each

individual model. This Ensemble model was also tested on the Solubility Challenge 2019, achieving an

RMSE of 0.865 and outperforming 37 models with an average RMSE of 1.62. Transferability analysis of

our work further indicated robust performance across different datasets. Additionally, SHAP explainability

for the feature-based XGBoost model provided transparency in solubility predictions, enhancing the

interpretability of the results.
1. Introduction

The effectiveness of pharmaceutical molecules relies on their
aqueous solubility, directly impacting the drug's bioavailability
for optimal therapeutic outcomes. This is determined by the
drug's efficient dissolution and accessibility for absorption in
the gastrointestinal (GI) uid aer oral administration.1,2

Recent studies reveal that a signicant percentage, approxi-
mately 70%, of newly developed drugs suffer from poor aqueous
solubility, limiting their utility for patients.3 Recognizing this
challenge, the integration of an accurate solubility prediction
model serves as a valuable tool for drug developers. This model
estern University, London, Ontario N6A

assachusetts Institute of Technology,

tion (ESI) available. See DOI:

y the Royal Society of Chemistry
enables the swi identication of compounds with low water
solubility, allowing proactive intervention through various
enhancement techniques such as salt and cocrystal formation,
micronization, etc.4–6 In the drug development pipeline, various
stages encompass optimizing drug properties, selecting lead-to-
candidate compounds, formulation and dosage selection;
which traditionally necessitate time-consuming and resource-
intensive solubility measurements.7 An alternative and expe-
dited route involves utilizing reliable predictive models, to
signicantly accelerate these steps and the screening of candi-
date molecules with intended solubility values.

Traditional solubility prediction methods include fragment-
based semi-empirical approaches (e.g., general solubility equa-
tion,8 UNIFAC,9 UNIQUAC,10 PC-SAFT11). The limitations of
these methods stem from their simplications and assump-
tions which pose restrictions, especially when confronted with
diverse chemical compounds. Additionally, reliance on empir-
ical parameters in some methods hinders their applicability to
novel compounds beyond the scope of the experimental data,
Digital Discovery
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impacting their generalizability.12–14 On the other hand, meth-
odologies based on molecular dynamics,15,16 and rst principle
ab initio calculations (such as COSMO-RS12,17,18) offer insights
into molecular behavior through detailed simulations and
electronic structure calculations. Additionally, other physics-
based techniques, such as direct coexistence simulation19 (for
studying phase equilibria), chemical potential20 (by analyzing
changes in free energy), and density of states21 (density of
electronic states at various energy levels), rely on detailed
complex molecular simulations and electronic structure calcu-
lations that can face challenges related to computational
complexity and the need for parameterization for tuning the
required simulations.

Machine Learning (ML) has signicantly advanced the
prediction of molecular properties, particularly for the predic-
tion of solubility, establishing itself as a powerful data-driven
method. However, the accuracy of ML prediction results
depends on three crucial conditions: having sufficiently large
and high-quality data, employing a suitable data representa-
tion, and selecting an appropriate learner (model) capable of
capturing relevant features for accurate outputs. Achieving
a thorough comprehension of the underlying patterns in solu-
bility prediction remains a challenging task, requiring effective
handling of these key conditions.22,23

The physicochemical aspect of a solute's dissolution
behavior is intricately inuenced by the balance between over-
coming attractive forces within the compound and disrupting
hydrogen bonds between the solid phase and the solvent.
Molecular representation must be carefully chosen to effectively
capture this concept, considering factors such as polarity,
molecular size, and intermolecular interactions of polar and
nonpolar molecules.24–26

Regarding molecule representation, molecular tabular
descriptors, which encompass a range of physicochemical and
cheminformatics-based features, have been utilized in the
literature for ML models. Various ML approaches have been
employed, ranging from small-scale models such as
Ensemble,27 LightGBM,28,29 Random Forest,30–32 to more
complex techniques including ANN,26 ResNet,33 as well as
incorporation of transfer learning34 and attention
transformer.35

More recently, there has been growing interest in utilizing
advanced deep learning techniques, beneting from graph
representation of molecules and the utilization of different
versions of Graph Convolutional Network (GCN) algorithm for
predicting solubility including attention-based GCN,36–38

composite GCN,39 and residual-gated GCN.40

We evaluate an alternative molecular representation derived
from Density Functional Theory (DFT) calculations, known as
electrostatic potential (ESP) maps. This molecular representa-
tion provides a comprehensive input data structure for deep
learning algorithms, capturing essential features like the 3D
molecular shape and charge distribution. These elements are
highly essential to understanding the solubility of a compound.
Moreover, we developed two other ML models based on
molecular graph and a combined tabular extracted features to
Digital Discovery
evaluate different molecular representations for solubility
prediction.41–43

In this study, we employed three distinct approaches to
predict intrinsic aqueous solubility of small organic molecules.
Firstly, EdgeConv algorithms, originally designed for point
cloud 3D data of objects, was implemented as a deep learning
technique to simultaneously extract features from ESP maps
and predict solubility. Secondly, GCN, the most widely used
deep learning algorithm for predicting molecular properties
was implemented. Thirdly, a synergistic representation of the
molecule was created by utilizing a combination of features
extracted from ESP maps and tabular molecular descriptors as
the input for an ML regressor. Additionally, a random forest-
based feature selection technique was applied to these extrac-
ted features and those obtained from a list of molecular
descriptors, enhancing prediction accuracy by focusing on the
most important features. These techniques underwent training
on 80% of four sets of high-quality experimental solubility data,
and their efficacy was subsequently evaluated on the unseen
and reserved 20% of test data. We also developed an ensemble
of three models to incorporate diverse molecular representation
techniques, enhancing both performance and robustness in
solubility prediction. This ensemble approach was bench-
marked against 37 models tested on the Solubility Challenge
2019 data to evaluate its generalization ability. A transferability
analysis was conducted across various datasets to assess the
consistency of the three individual models and the ensemble.
Additionally, we implemented an explainability analysis using
the feature-based XGBoost model to provide transparency in
model decisions and improve interpretability.

2. Methods
2.1 Data collection

One fundamental aspect crucial to data-driven machine
learning models is the provision of a high-quality and diverse
dataset. These two factors which help a robust evaluation of the
predictive performance of the trained model have been
considered in our work.

In a recent study, Meng et al.44 introduced a curation work-
ow to rene seven well-established aqueous solubility data-
sets. This process focused on removing redundant and
conicting records, particularly those exhibiting variations in
solubility across datasets. For precise alignment with drug
design goals, they carefully controlled experimental conditions,
ensuring that solubility measurements were conducted at
temperatures of 25 ± 5 °C and pH values of 7 ± 1. In our study,
we utilized four curated and high-quality datasets (AQUA, PHYS,
ESOL, OCHEM), with each dataset consisting of 1311, 2001,
1116, and 4218 cleaned aqueous solubility records, respectively.
These selections adhered to their curation workow44 and
demonstrated high-quality scores compared to AQSOL,
CHEMBL, and KINECT datasets.

Training on a diverse solubility dataset broadens the model's
exposure, fostering fairness and unbiasedness by mitigating
biases from skewed or limited data, and enhancing general-
ization to new scenarios.45 Hence, to underscore the
© 2024 The Author(s). Published by the Royal Society of Chemistry
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signicance of model robustness and generalization, we
assessed the diversity of molecules attributes within the
selected aqueous solubility datasets, as detailed in the results
section of the present article.
2.2 Data representation for ML

Each entry in the collected datasets contains two components:
a column indicating the measured intrinsic solubility presented
as the logarithm of molar aqueous solubility (log S), and
another column for SMILES (Simplied Molecular Input Line
Entry System) strings. These strings serve as a notation system,
efficiently representing the molecular structures of compounds
in a compact format. We employed SMILES to generate three
different modalities of molecule representation for the machine
learning model.

2.2.1 ESP maps. Using the SMILES representation of the
molecules, we employed the MolFromSmiles module in Python/
rdkit46 to generate initial 3D atom coordinates, subsequently
saving them into individual XYZ les. Importantly, we did not
use these initial 3D coordinates directly for ESP map calcula-
tion, as they might not represent the most energetically favor-
able conformation. Instead, we used the RDKit-generated 3D
coordinates as the starting point for detailed geometry optimi-
zation. Subsequently, we conducted geometry optimization
employing DFT in Gaussian 16,47 which involves multiple steps
to converge on the most stable 3D structure with the lowest
energy. We employed the B3LYP/6-311++g (d, p) level of theory
to obtain electronic structure of the molecules. The consider-
ation of solvent effects was involved in the calculations using
the Self-Consistent Reaction Field (SCRF) model with the
Solvation Model based on Density (SMD)48 for water as the
solvent. Additionally, we employed the Grimme-D3 empirical
correction, which renes the molecular total energy and
subsequently the optimized geometry.49 Electron density iso-
surface is generated by truncating the electron density (charge
distribution of molecule) at a cut-off of 0.002 e− bohr−3.
Mapping the ESP to the electron density isosurface creates
a four-dimensional (x, y, z, ESP) point cloud representation. The
number of points in each molecule's ESP map varies based on
the molecule's size. To ensure a consistent dimensionality for
model input, we randomly sampled 3000 points from the point
clouds, approximately matching the minimum points found in
the smallest molecule in our dataset, which is 3118 points.

2.2.2 Molecular graph. Graphs are constructed using
DeepChem library50 where each graph object encapsulates
features assigned to nodes and edges, representing atoms and
bonds within molecular structures. The atomic attributes
comprises a 30-dimensional feature vector containing infor-
mation such as atom type, formal charge, hybridization,
hydrogen bonding (acceptor or donor), aromaticity, atom
degree, number of hydrogens, chirality, and partial charge.51

Similarly, the edge attributes consist of an 11-dimensional
vector that includes attributes such as bond type, whether the
bonds are in the same ring, conjugation status, and stereo
conguration. Leveraging the DeepChem library, we seamlessly
converted SMILES strings within the solubility datasets into
© 2024 The Author(s). Published by the Royal Society of Chemistry
molecular graph representations, serving as the input for our
Graph Convolutional Network (GCN) model (Fig. 1b).

2.2.3 Tabular extracted features. For the third approach, we
employed a synergistic representation of the molecule by
combining features extracted from the ESPmap and descriptors
in Mordred,52 a successful cheminformatics library. To extract
key features of ESP maps, we employed a Python script to scan
points on the ESP map and accurately identify local maxima
(ESPmax) and minima (ESPmin). Detailed information is avail-
able in ref. 43. These points were then assigned to the closest
nucleus within the molecular structure. Using these extremum
values, we computed the H-bond donor parameter (a) and H-
bond acceptor parameter (b) based on the equations illus-
trated in Fig. 2. Additionally, three spatial features were calcu-
lated, including the volume (V), area (A), and sphericity (J) of
the ESP maps.

On the other hand, we computed all 2D and 3D tabular
Mordred descriptors utilizing the Mordred package in Python.
These descriptors encompass a comprehensive set of 1826
features, including ring count, bond count, bond types, polar
surface area, and more.

Among the three compared molecular representations, ESP
maps (and the tabular extracted features from them) and Mor-
dred descriptors can capture the stereoisomerism. However,
molecular graph representation, which is based on atoms
connectivity cannot capture isomeric structures. More details
and examples are included in ESI (S1).†
2.3 ML models

2.3.1 EdgeConv algorithm. We have chosen EdgeConv,53

a recent deep learning algorithm, for processing point cloud
data modality due to its demonstrated superior performance
compared to the previously popular methods, PointNet54 and
PointNet++.55 The deep learning architecture we used based on
EdgeConv for feature extraction and solubility prediction is as
follows:

The EdgeConv deep learningmodel was originally used for the
classication and segmentation of 3D objects (x, y, z). In our work
we have adapted it for solubility prediction (regression problem)
by processing ESP maps (x, y, z, ESP). The feature extraction
process involves four EdgeConv operations applied to the raw
ESPmap using kernels of sizes 128, 128, 256, and 512 (Fig. 1). The
outputs of these operations are concatenated to form a matrix of
dimensions 3000 × 1024. Subsequently, a combination of
average and maximum pooling is applied, resulting in a 1024
array. This output from the feature extraction is then connected
to the Multi-Layer Perceptron (MLP) regression component, and
both parts' parameters are simultaneously trained to enhance the
accuracy of the solubility prediction.

The EdgeConv operation as the building block of model
architecture begins by constructing a local neighborhood graph
for each point in each point cloud (ESP map). This is achieved
by identifying the top k nearest neighbor points, determined by
the minimum distance in the feature space of points. Following
this, a 2D convolution with a kernel size of 1, coupled with
a Leaky ReLU activation function, is utilized to calculate edge
Digital Discovery
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Fig. 1 Architecture and schematic diagrams of (a) EdgeConv and (b) GCN models.
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features for each pair of points within the graph. Then, these
edge features, originating from all edges connected to a vertex,
are aggregated using permutation-invariant operators such as
maximum and average. This process updates the representation
of the vertex. The dynamic nature of EdgeConv adjusts the k
nearest neighbors aer each layer, ensuring the relevance of
local neighbors to the updated features (Fig. 1).

2.3.2 Graph convolutional network. We have utilized
message passing in the GCN model, which is built upon graph
Digital Discovery
convolutional building blocks. In each graph convolution layer,
node features are updated by aggregating information from
neighboring nodes, a process that mimics convolutional layers
in image processing applications but has been adapted for
graph data modalities.56

In more detail, the embedding h(k)u , corresponding to each
node u˛n, is updated during each iteration of message-passing
by aggregating information from the u's graph neighborhood
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Feature extraction and selection for XGBoostmodel (thirdmethodology). Adaptedwith permission from ref. 43. Copyright 2024 American
Chemical Society.
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N ðuÞ. The updating node u at kth message passing iteration can
be formulated as follows:

hðkþ1Þ
u ¼

UPDATEðkÞ
�
hðkÞu ; AGGREGATEðkÞ

�n
hðkÞu ; cn˛N ðuÞ

o��
(1)

AGGREGATE is a permutation invariant differentiable func-
tion that is responsible for passing embeddings (referred to as
the “message”) from a target node's neighbors to the target
node. The UPDATE function, on the other hand, updates the
nodes' features by incorporating the received information from
neighboring nodes as well as their own features at previous
step. In our work, we employed four message-passing or graph
convolution layers with an embedding size of 128, using
weighted summation as the ‘AGGREGATE’ function and ReLU
as the ‘UPDATE’ function. Subsequently, global pooling is
applied to all nodes' updated features aer the last convolu-
tional layer, utilizing both mean and max pooling and concat-
enating the results into a single vector. This concatenated vector
undergoes further processing through a fully connected layer to
predict solubility.

2.3.3 XGBoost with extracted features. As we have different
number of a and b for varying molecular size, rstly lists of
a and b along with geometric features (V, A, J) are padded,
subsequently concatenated with Mordred descriptors. The most
important features from the twomentioned sources are selected
and used as synergistic features for ML input. This process is
visually represented in Fig. 2.

We utilized feature importance analysis from the Random
Forest algorithm to identify and select approximately the top
20% of extracted features from the ESP map and Mordred
descriptors. These features were chosen based on their signi-
cance and relevance to solubility prediction. These features
were carefully chosen due to their signicance and relevance in
predicting solubility. In this process, decision trees within the
algorithm evaluate each feature's capability to divide data into
more consistent subsets, resulting in a reduction of disorder
and uncertainty in data classication. Features that contribute
to a more signicant reduction in the disorder are assigned
© 2024 The Author(s). Published by the Royal Society of Chemistry
higher importance scores, emphasizing their inuential role in
predicting solubility. We reduced the number of tabular
features from 1905 to 525 (consisting of 500 features selected
from the original 1826 Mordred features, and 25 from ESP) to
improve computational efficiency in the model and mitigate
overtting during training.

The extracted and selected features were then fed into an
XGBoost model. XGBoost, short for eXtreme Gradient Boosting,
stands out as a robust predictive model inmachine learning.57 It
works by combining predictions frommultiple weak learners in
a step-by-step manner. The algorithm improves its predictions
by minimizing errors identied by the group of learners. This
improvement is achieved through optimization of an objective
function that considers both a loss term and regularization
terms, striking a balance between model complexity and accu-
racy to prevent overtting. We used 300 trees as learners in
XGBoost with a maximum depth of 3 and a learning rate of 0.1
as the best hyperparameters (aer a random search for tuning).
2.4 Data preprocessing

To ensure an unbiased evaluation of the model's generalization
performance, we initially split the data randomly into training
and test sets with an 80 : 20 ratio. Subsequently, we normalized
both train and test data for model training and evaluation,
respectively. Normalization of input data is crucial for the
effectiveness of machine learning models. Maintaining consis-
tent scales across features prevents certain variables from
exerting a disproportionate impact during the training process.
In our study, node and edge features in graph data, being one-
hot encoded, do not require normalization. However, for the
other two modalities, point cloud and tabular features, we
employed the Min–Max scaling approach. Specically, ESP
maps, representing point cloud data, underwent careful
normalization to preserve the spatial shape of molecules. To
achieve this, we ensured consistency in the normalization
process by rst calculating the global minimum and maximum
values across all x, y, and z coordinates in all training data. Min–
Max scaling was then applied to each coordinate independently
using these global min and max values, preserving the relative
spatial relationships of the points in the normalized feature
Digital Discovery
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space. The fourth feature of each point in the point clouds,
which is independent of the spatial coordinates, was scaled
based on the global minimum and maximum ESP values
calculated from the entire training dataset. Furthermore, for
tabular data, all extracted features were normalized to
a uniform range of (0, 1), taking into account the minimum and
maximum values of each feature across all entries.

In the results section, the performance of the proposed
models will be evaluated using three metrics: Mean Absolute
Error (MAE), Root Mean Squared Error (RMSE), and R-squared
(R2). These metrics are calculated using the formulae dened in
ESI (S2).†
3. Results and discussion
3.1 Datasets analysis

3.1.1 Solubility distribution in datasets. We utilized three
high-quality datasets: ESOL, AQUA, and PHYS. Additionally, to
expand our dataset, we generated a unique molecule list called
“All-Data,” consisting of 3942 unique molecules (Table S1, in
the ESI†) from the aforementioned datasets and OCHEM
(ranked fourth in quality). The distribution of solubility in
terms of logarithm of molar solubility (log S), depicted in Fig. 3,
ranges from poorly soluble drug molecules (typically with log S
less than −1.5) to more soluble ones (with log S greater than
−1.5), with a predominant presence of poorly soluble drugs.
This pattern underscores the datasets' emphasis on compounds
dealing with poor water solubility, aligning with the goal of
identifying drugs susceptible to bioavailability issues.

3.1.2 Chemical space diversity of molecules in datasets.
Training on a diverse solubility dataset expands the model's
Fig. 3 Solubility distribution of molecules in selected datasets of All Dat

Digital Discovery
exposure, promoting fairness and reducing biases by mitigating
issues arising from skewed or limited data, while also
improving generalization to new scenarios. To highlight the
importance of model robustness and generalization, we
assessed the diversity of molecular attributes present in the
selected aqueous solubility datasets. We employed t-Distributed
Stochastic Neighbor Embedding (t-SNE),58 a non-linear dimen-
sionality reduction algorithm, to visualize molecules' chemical
space using molecular tabular features. t-SNE positions each
high-dimensional point (with 1905 features) in a lower-
dimensional space (2D), emphasizing the preservation of local
similarities and patterns among neighboring data points. In
Fig. 4, the chemical space of all unique molecules (“All Data”) is
visualized using blue hexagons, with lighter blue indicating
lower molecular density in that area. Moreover, the represen-
tation of the chemical space by three high-quality datasets
(ESOL, PHYS, AQUA) is illustrated. While all three datasets
exhibit appealing diversity, AQUA and PHYS demonstrate
superior diversity and sparsity across nearly all regions, whereas
ESOL lacks representation in certain areas.

For each evaluation, we randomly selected 20% of the
molecules in each dataset as unseen or test data for the model.
The chemical space distribution in the training and test data is
illustrated in Fig. 5, conrming that the test data for the four
considered datasets is diverse and capable of validating the
trained model across a wide range of chemical space.

3.1.3 Diversity in molecular structures. Fig. 6a provides
a quantitative overview of functional group distribution and
aromatic ring prevalence across the dataset. The bar chart
illustrates the absolute count of molecules containing each
functional group, revealing that carbonyl, hydroxyl, and
a, ESOL, PHYS and AQUA.44

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 t-SNE based analysis of chemical space covered in each dataset of All Data, ESOL, PHYS and AQUA.
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halogen groups are the most abundant, while phosphate and
sulfonic groups are comparatively rare. Approximately half of
the molecules incorporate aromatic rings.

The Venn diagrams in Fig. 6b delve deeper into the co-
occurrence of key functional groups with aromatic rings in
datasets molecules. Notably, carbonyl, hydroxyl, and halogen
groups exhibit higher overlap with aromatic rings compared to
ester. Aromatic rings are signicantly more prevalent in
conjunction with carbonyl and hydroxyl groups compared to
ester and halogen groups (more than twice). Furthermore, the
diagram highlights a considerably lower overlap between
halogen and ester groups compared to their respective associ-
ations with aromatic rings. While both hydroxyl and carbonyl
groups frequently coexist with aromatic rings more than with
each other. Collectively, this analysis illustrates the diverse
chemical space within the dataset, emphasizing the prevalence
of specic functional groups and their interactions with
aromatic rings.

3.1.4 Analysis of molecular structures and features. The
analysis in this section sheds light on how functional groups
inuence solubility and howmolecular feature similarity affects
solubility ranges. Fig. 7a illustrates the correlation between the
number of different functional groups and log S. A strong
negative correlation is observed between log S and the count of
halogens and aromatic rings, indicating that the presence of
© 2024 The Author(s). Published by the Royal Society of Chemistry
these groups increases hydrophobicity and decreases solubility.
Conversely, a positive correlation exists between log S and the
number of hydroxyl and carboxylic acid groups, suggesting their
hydrophilic nature. While amine, ester, and carbonyl groups
also exhibit positive correlations with log S, these relationships
are less pronounced.

Fig. 7b presents the distribution of log S values for molecules
containing specic functional groups. The presence of sulfonic
acid groups is associated with signicantly higher solubility
compared to other groups. Additionally, the presence of
halogen or aromatic rings tends to correlate with a lower solu-
bility range, with a median of −6 (log S).

Fig. 7c and d delve deeper into the relationship between
functional group counts and average log S values. Fig. 7c high-
lights the strong positive correlation between the number of
hydroxyl groups and average log S, particularly when combined
with a lower count of halogen and aromatic rings. Fig. 7d
suggests that an increasing number of halogen and aromatic
rings generally correlates with a decreasing average solubility.

Fig. 7e employs Principal Component Analysis (PCA) to
visualize the relationship between molecular features and
solubility. The plot reveals a clear trend where molecules with
higher solubility tend to cluster in the upper le quadrant,
suggesting that the underlying molecular features in this region
are associated with increased hydrophilicity.
Digital Discovery
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Fig. 5 Visualization of the chemical space covered by the training and test data in All Data, ESOL, PHYS, and AQUA datasets.
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In addition to structural analysis, we also evaluated key
features from the ESP map and Mordred descriptors. Fig. 8a
ranks the top 10 features by their SHAP values, which will be
discussed in the Explainability analysis section (below). A
comprehensive list of all Mordred descriptors is available in
their original source,59 but descriptions of the top 10 features,
including those from ESP maps, are provided in ESI (S3).†
Among these, SLogP, aMordred estimate of lipophilicity, stands
out as the most inuential descriptor. It is followed by Filter-
itLogS, a Mordred estimate of solubility, and Beta_1, the
strongest hydrogen bond acceptor parameter. Additionally,
several piPC descriptors (piPC2, piPC6, piPC7), which are
related to p-electron count, also exhibit signicant impact.
Digital Discovery
The high correlations observed among piPC descriptors
indicate potential redundancy (Fig. 8b), while Beta_1 stands out
with minimal correlation to other features, highlighting its
unique contribution and its role in reducing multicollinearity.
Fig. 8c visualizes the sum of absolute correlation values for each
descriptor, reinforcing Beta_1's low correlation with other
features and highlighting the interconnectedness of piPC
descriptors. Overall, SLogP and Beta_1 can be identied as key
features for solubility prediction in terms of correlation with
solubility and minimal redundancy.

Fig. 8d explores the distribution of SLogP across different
solubility ranges. The violin plot reveals a clear trend of
increasing SLogP with higher solubility categories,
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 (a) Frequency of functional groups in all unique molecules in datasets, (b) overlap of functional groups and aromatic rings within the
molecules.
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underscoring its role as a key determinant of solubility. The
solubility ranges are categorized as follows: low log S (below the
25th percentile), medium log S (between the 25th and 75th
percentiles), and high log S (above the 75th percentile). The
distribution of the remaining top 9 features can be found in ESI
(S4).†
3.2 Models performance on test data

All three proposed models trained individually on 80% of train
split of four considered datasets. Then the predictive perfor-
mances of models on different datasets were quantied using
key performance metrics of MAE, RMSE, and R2. Therefore, the
prediction results of three models are compared to each other
for test split of each dataset of ESOL, AQUA, PHYS, and All Data
© 2024 The Author(s). Published by the Royal Society of Chemistry
in Fig. 9. Also, a comparison of three models in terms of
number of parameters, training and prediction time are
included in ESI (S5).†

Each of the three proposed models was trained indepen-
dently on 80% of the training split across the four datasets
under consideration. Subsequently, the predictive performance
of the models on various datasets was assessed using key
performance metrics, including MAE, RMSE, and R2. The
comparison of the prediction results for the threemodels on the
test split of each dataset (ESOL, AQUA, PHYS, and All Data) is
depicted in Fig. 9. The ndings reveal that, for the ESOL dataset,
both the EdgeConv and GCN models exhibit nearly identical
performance, while the feature-based model outperforms them.
Assessing the results across the other three datasets,
Digital Discovery
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Fig. 7 (a) Correlation between the number of different functional groups and solubility (log S). (b) Distribution of log S for molecules containing
sulfonic, carboxylic, hydroxy, and halogen/aromatic rings. (c) Effect of hydroxyl group count relative to the sum of halogen and aromatic rings on
log S. (d) Influence of halogen and aromatic ring counts on log S. (e) PCA visualization of molecular features and their relationship to solubility.
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a consistent pattern emerges, with the feature-based model
consistently achieving the best results, followed by GCN and
EdgeConv as the second and third in rank, respectively. The
three models exhibited their optimal predictive performance on
the PHYS dataset, achieving RMSE scores of 0.856, 0.731, and
0.577 for EdgeConv, GCN, and the feature-based model,
respectively.
Digital Discovery
The RMSE values above 0.5 can largely be attributed to
unavoidable measurement errors, as evidenced by the signi-
cant variability in solubility data from two well-known solubility
challenges (SC-1 and SC-2),60 where standard deviations were
0.6 and 0.17 log units, respectively. Since interlaboratory devi-
ations are oen unreported in experimental datasets, similar
levels of measurement error are likely, making it challenging to
achieve RMSE values signicantly below 0.5.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 8 (a) Ranking of top 10 features by SHAP values, (b) correlationmatrix of top descriptors, (c) sumof absolute correlations for each descriptor,
(d) distribution of SLogP across solubility ranges.
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Among the datasets, all models demonstrated their superior
prediction performance when trained on PHYS dataset. Unlike
the other datasets, where records had variable weights due to
inconsistent solubility measurements, all records in PHYS were
assigned a weight of 1,31 indicating high consistency and low
uncertainty. Training models with the PHYS dataset, therefore,
led to the best predictive and generalization performance,
reecting its higher data quality.

An alternative evaluation of model performance for each
dataset is illustrated in Fig. 10. The scatter plot showcases the
experimental and predicted values of solubility for the test data.
A bold line represents a perfect match, while two dashed lines,
with a distance equal to the RMSE, provide a visual indication of
the quality of the matching between predictions and experi-
mental results. Additionally, a histogram illustrating the
distribution of errors accompanies each scatter plot, providing
complementary insights into the predictive performance. The
convergence of results from three distinct representations
mutually reinforces their validity. In a comprehensive compar-
ison across all datasets, the feature-based model consistently
exhibits superior predictive outcomes, showcasing excellence in
performance metrics, prediction versus experimental matching
© 2024 The Author(s). Published by the Royal Society of Chemistry
(nearly 0.918 on average), and error distribution. Notably, this
model demonstrates minimal uctuations across the four
datasets, with an average MAE and RMSE of 0.458 and 0.613,
respectively. This highlights the signicance of an efficient
molecular representation, as evidenced by the superior perfor-
mance of the less complex XGBoost model when fed with
features extracted from a molecular mix with ESP maps. This
emphasizes the effectiveness of a simple, yet efficient data
structure (tabular extracted features) combined with a machine
learning technique. It outperforms the more complex end-to-
end deep learning methods in mapping unstructured point-
cloud-based ESP maps and molecular graphs to solubility.

In more detail, we believe that the feature-based model
outperformed EdgeConv and GCN in predicting solubility due
to its comprehensive integration of various molecular features.
EdgeConv, which relies solely on ESP maps, excels in capturing
charge distribution, polarity, and molecular shape. However,
ESP maps oen struggle with non-polar and hydrophobic
molecules, which showminimal charge separation and result in
relatively at ESP maps. This limitation reduces the effective-
ness of ESP maps in extracting meaningful interaction infor-
mation for these types of molecules.
Digital Discovery
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Fig. 9 Comparison of performance metrics of MAE and RMSE and R2 for three different developed models applied on four datasets of (a) ESOL,
(b) AQUA, (c) PHYS, and (d) All Data which is unique molecules in ESOL, OCHEM, AQUA, and PHYS (EOAP).
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On the other hand, GCNs analyze atomic connectivity and
molecular bonds through atom connectivity graphs. While
GCNs effectively map the connectivity and topological structure,
they lack direct consideration of electronic properties such as
charge distribution and molecular shape. This gap can lead to
Digital Discovery
incomplete predictions, especially when detailed electronic
information is crucial for accurate solubility predictions.

The feature-based model combines ESP-derived features
with a comprehensive array of Mordred descriptors to overcome
the limitations of individual methods. By integrating hydrogen
bonding parameters and spatial features from ESP maps with
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 10 Plot of predicted vs. experimental solubility and histogram distribution of prediction errors across (a) EdgeConv, (b) GCN and (c) feature-
based.
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a wide range of Mordred descriptors—covering topological
indices, molecular connectivity, complexity, geometric proper-
ties, and electronic characteristics—the model offers a detailed
© 2024 The Author(s). Published by the Royal Society of Chemistry
and multifaceted representation of molecules. This fusion
enhances its capability to accurately predict solubility, particu-
larly for non-polar or hydrophobic molecules where ESP maps
Digital Discovery
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Fig. 11 Comparison of performance of four models of EdgeConv, GCN, feature-based, and Ensemble: (a) on test split of four datasets based on
MAE and RMSE and R2, (b) transferability results trained on PHYS and tested on ESOL, AQUA, and All Data: unique molecules in ESOL, OCHEM,
AQUA, and PHYS (EOAP).

Table 1 Evaluation of the Ensemble model performance on the test splits of each dataset, utilizing metrics of MAE and RMSE and R2

Model

ESOL AQUA PHYS ALL-data (EOAP)

RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2

Ensemble 0.569 0.425 0.928 0.580 0.432 0.926 0.559 0.423 0.931 0.638 0.466 0.917

Digital Discovery © 2024 The Author(s). Published by the Royal Society of Chemistry
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alone may be insufficient. As a result, the feature-based model
provides a more complete and nuanced view of molecular
properties, leading to superior predictive performance.
3.3 Ensemble prediction results

In this section, we present the results of an Ensemble model
that combines the predictions of three previously discussed
models to enhance overall performance and robustness. The
Ensemble model uses a weighted summation approach, where
the weights are determined by the inverse of the RMSE values of
each individual model (details of formulae are in ESI, S2†). This
weighting scheme ensures that models with smaller RMSE
values have a greater inuence on the nal predicted solubility
values. Obviously, the complexity and the computational effort
increases exponentially.

Table 1 summarizes the performance metrics of the
Ensemble model, including R2, RMSE, and MAE, across four
datasets. Additionally, Fig. 11a illustrates the comparative
performance of the Ensemble model with respect to the indi-
vidual models. The Ensemble model consistently outperforms
each individual model in terms of all three metrics across all
datasets. This performance improvement is attributed to the
Ensemble method's ability to integrate predictions from
multiple models, thereby mitigating individual model biases
and leveraging their collective strengths. By incorporating
predictions from three distinct models, each based on different
molecular representations, the Ensemble model offers
increased condence in its predictions. A complete comparison
summary of models, where small scale ML models based on all
Mordred features is included in the ESI (S6).† Moreover, the
mean error distribution based on specic functional groups is
also included in the ESI (S7).†
3.4 Transferability study results

The transferability of the four models, including the Ensemble
model, was evaluated by training on the highest quality dataset
(PHYS) and testing on three additional datasets: ESOL, AQUA,
and All-Data. The results are presented in Fig. 11b and Table 2
which display the RMSE, MAE, and R2 values for each model
and the Ensemble across these test datasets. The transferability
analysis highlights the generalization capabilities of all models
as they indicated roughly the same level of performance
compared to their results based on only 20% test data. The
feature-based and Ensemble models demonstrated generally
superior performance compared to the individual models,
Table 2 Transferability results – performance of models trained on the

Models

ESOL AQUA

RMSE MAE R2 RMSE

EdgeConv 0.874 0.645 0.835 0.887
GCN 0.683 0.492 0.899 0.752
Feature-based 0.545 0.365 0.935 0.595
Ensemble 0.529 0.373 0.940 0.481

© 2024 The Author(s). Published by the Royal Society of Chemistry
indicating its robustness and effectiveness in making accurate
predictions across diverse datasets.
3.5 Results on solubility challenge dataset

To evaluate the accuracy and generalizability of our Ensemble
model relative to previous predictive works, we utilized the
Solubility Challenge 2019 dataset, also known as the second
solubility challenge (SC-2). This experimental intrinsic solu-
bility dataset is particularly valuable for comparison as it
demonstrates improved interlaboratory reproducibility, with
a standard deviation of 0.17 log units, compared to the 0.6 log
units reported in the rst solubility challenge (SC-1).

The SC-2 dataset comprises intrinsic solubility measure-
ments of 100 druglike compounds, curated from multiple
published sources. For our evaluation, we performed DFT
calculations and prepared input data for our models. Impor-
tantly, we excluded all 100 molecules from our selected training
dataset (PHYS) to meet the challenge's requirements. Aer
training our models, we used the Ensemble model to assess its
performance. The evaluation metrics of RMSE and MAE for our
Ensemble model are 0.865 and 0.670, respectively.

In a comparative study by Llinas et al.,60 37 predictive
approaches were compared on the SC-2 dataset, utilizing
diverse training data, models (spanning from Multi-Linear
Regression to advanced methods like LightGBM, ANN, and
GCN), and molecular representations (encompassing RDKit
descriptors, Morgan ngerprints, and graph-based representa-
tions). Reported RMSE values for these 37 models ranged from
1.06 to 3.00, with an average of 1.62. Notably, our Ensemble
model outperformed all these methods, achieving a lower
RMSE. Our predictions for SC2 molecules, including compound
names, SMILES, and mean experimental solubility, are detailed
in the second sheet of the ESIData excel le.†
3.6 Explainability analysis

In this section, we perform an explainability analysis on our
feature-based model, which is the best among the three evalu-
ated models. To achieve this, we use the SHAP61 (SHapley
Additive exPlanations) method to enhance the interpretability
and transparency of our ML-based model's predictions. The
SHAP approach is based on Shapley values, which are rooted in
cooperative game theory and are used to distribute a total gain
among players based on their individual contributions.

In the context of feature-based ML models, Shapley values
indicate how each input feature contributes to the deviation of
PHYS dataset and tested across three additional datasets

All-Data (EOAP)

MAE R2 RMSE MAE R2

0.586 0.827 0.959 0.722 0.815
0.464 0.876 0.802 0.567 0.871
0.338 0.922 0.670 0.455 0.910
0.341 0.947 0.647 0.456 0.916

Digital Discovery
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Fig. 12 SHAP analysis of feature contributions in predictions: (a) global feature importance: ranking top features by average SHAP value
contribution to solubility, (b and c) local explanations: feature contributions to solubility predictions for 1,3-dimethyl-naphthalene and 2,4-
dimethyl-quinoline, respectively.

Digital Discovery © 2024 The Author(s). Published by the Royal Society of Chemistry
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a particular prediction from the average prediction. This
method is additive, meaning the sum of all features' SHAP
values equals the difference between the model's prediction for
a specic instance and the average prediction across all
instances. This explainability analysis helps build trust in the
model's decisions, thereby improving transparency and
interpretability.

In Fig. 12a, the beeswarm plot illustrates the overall effect of
the top 10 features on the model's predictions using SHAP
values. This plot shows how different levels of features inuence
the model's output. Negative SHAP values on the x-axis indicate
a negative impact of the feature on predicted solubility, while
positive values indicate a positive effect. The color bar corre-
sponds to low (blue) and high (red) feature values and the range
in between.

From Fig. 12a, we can interpret that higher SLogP values lead
to a more negative impact on solubility, and vice versa. In
contrast, the trends for FilterItLogS and Beta_1 show a consis-
tent effect on predicted solubility, which aligns with chemical
intuition. For instance, higher Beta_1 values indicate a stronger
hydrogen bond acceptor in molecules, resulting in higher
solubility. Additionally, the plot suggests that low sphericity
(sph) negatively impacts molecule solubility, whereas high
sphericity has a negligible effect.

The SHAP waterfall plots in Fig. 12b and c illustrate the
application of our feature-based model to 1,3-dimethyl-
naphthalene and 2,4-dimethyl-quinoline, respectively. These
molecules were selected to assess the impact of replacing
amethine group with a nitrogen atom to form a pyridine ring on
the molecular properties predicted by the model. The y-axis in
each plot shows the normalized feature values on a scale from
0 to 1. The mean prediction of the model across all data is
displayed at the bottom of the gures (E[f(x)]), while the pre-
dicted solubility for each molecule is shown at the top (f(x)).

The SHAP values, represented by blue and red bars, indicate
the contribution of each feature to the specic solubility
prediction relative to the average predicted solubility. SLogP, as
the most inuential feature, affects solubility by −0.9 and −0.5
for the rst and second molecules, respectively. Comparing the
contributions of features for the two examples, we observe that
with the addition of a pyridine ring, Beta_1 increases signi-
cantly from 0 to 0.358 (on a scale of 0 to 1), resulting in a 0.33
increase in average predicted solubility. Similarly, an increase of
0.331 in RNCG, which represents the relative negative charge,
contributes to a net increase of 0.28 in solubility. Further
explanation analysis of four additional examples of molecule
pairs is provided in Fig. S4 and S5 in ESI (S8).†

4. Conclusions

This study presented three machine learning-based models for
the prediction of solubility of pharmaceuticals in aqueous
medium at 25 °C. Each model employs distinct molecular
representation modalities. The initial two approaches leveraged
end-to-end deep learning, utilizing ESP maps and molecular
graphs. In contrast, the third approach employed a simpler
XGBoost model, incorporating features extracted from ESP
© 2024 The Author(s). Published by the Royal Society of Chemistry
maps and Mordred descriptors, focusing on the most crucial
molecular properties for aqueous solubility prediction. High-
quality and curated datasets were employed for model
training, and their diversity was carefully assessed to gain
insights into the generalizability of the developedmodels across
a broad spectrum of molecules. The t-SNE analysis revealed that
while all three high-quality datasets demonstrated appealing
diversity, AQUA and PHYS datasets exhibited superior diversity
and sparsity compared to ESOL.

Through the comprehensive comparison of three method-
ologies, it becomes evident that the combined utilization of ESP
map features and Mordred descriptors, yielding an average
RMSE of 0.613, outshines the performance of more intricate
deep learning models such as EdgeConv (0.893) and GCN
(0.755). This underscores a crucial takeaway: the effectiveness of
the input data representation holds greater signicance than
the complexity of the model. An ensemble of the three models
improved the error metrics for all datasets. The Ensemble
model achieved an RMSE of 0.865 on the Solubility Challenge
2019, surpassing the average RMSE of 1.62 reported by 37
models. Transferability analysis conrmed the robustness of
both the individual models and their ensemble across datasets.
The explainability analysis demonstrated the interpretability of
key features in solubility predictions.
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