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The need to efficiently develop high performance liquid chromatography (HPLC) methods, whilst adhering

to quality by design principles is of paramount importance when it comes to impurity detection in the

synthesis of active pharmaceutical ingredients. This study highlights a novel approach that fully

automates HPLC method development using black-box single and multi-objective Bayesian optimization

algorithms. Three continuous variables including the initial isocratic hold time, initial organic modifier

concentration and the gradient time were adjusted to simultaneously optimize the number of peaks

detected, the resolution between peaks and the method length. Two mixtures of analytes, one with

seven compounds and one with eleven compounds, were investigated. The system explored the design

space to find a global optimum in chromatogram quality without human assistance, and methods that

gave baseline resolution were identified. Optimal operating conditions were typically reached within just

13 experiments. The single and multi-objective Bayesian optimization algorithms were compared to

show that multi-objective optimization was more suitable for HPLC method development. This allowed

for multiple chromatogram acceptance criteria to be selected without having to repeat the entire

optimization, making it a useful tool for robustness testing. Work in this paper presents a fully “operator-

free” and closed loop HPLC method optimization process that can find optimal methods quickly when

compared to other modern HPLC optimization techniques such as design of experiments, linear solvent

strength models or quantitative structure retention relationships.
Introduction

Analytical High Performance Liquid Chromatography (HPLC) is
used extensively in the pharmaceutical industry for quality
control, reaction monitoring and quantitative analysis.1–3 Short
method times are essential to increase the sampling rate for
reaction monitoring or quality control purposes. Failure to
obtain sufficient peak resolution can result in coelution of
peaks, which is important to avoid for the accurate character-
isation and quantication of impurities in the pharmaceutical
industry to ensure regulations are met.2 Quantifying impurities
ensures the manufactured Active Pharmaceutical Ingredients
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the Royal Society of Chemistry
(APIs) are safe for human consumption through analysis of
their pharmacological and toxicological properties, and will
dictate if further purication or reaction condition modica-
tions are required during the manufacture of the API.4 However,
the ability to nd HPLC methods that optimize for these
parameters is costly due to the time and resources required to
screen different conditions.

HPLC methods separate analytes in a mixture based on their
affinity for a stationary and a mobile phase. The technique is
believed to separate between 60–80% of all existing
compounds,5 making it the most used separation technique for
the identication of impurities in the pharmaceutical industry.6

In addition, the method can be easily integrated as an online
technique for monitoring reactions in ow.7 There is a demand
for robust HPLC methods that give baseline resolution in the
shortest amount of time, but the method development process
can take several days for even the most experienced analytical
chemists.

There have been many advancements in the efficiency of
HPLC method optimization. Design of experiments (DOE) and
modelling based method development tools are among the
most popular.8,9 Soware packages such as DryLab,10 ACD/LC
Simulator11 and ChromSword12 aim to automate method
Digital Discovery, 2024, 3, 1591–1601 | 1591
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development by selecting experiments based on different vari-
ations of DOE and offer tools such as peak tracking. Given data
from a DOE, the retention time of each peak under different
method conditions is tted to a model. Using these models,
a range of different method conditions can be simulated and
the chromatogram quality assessed.13,14 Those conditions that
match the desired qualities computationally are then run on the
HPLC to give the optimal method. These models range from
simple quadratics to linear solvent strength (LSS) models,
which can be evaluated computationally to optimize parameters
such as gradient steepness, isocratic hold times, pH or
temperature. This methodology has also been used to automate
robustness testing, ensuring baseline resolution in the chro-
matogram is maintained even with slight alterations in method
conditions. Many examples have used this approach to optimize
HPLC method conditions.15–21

Recent advancements in elution time prediction include in
silico quantitative structure retention relationships (QSRR), that
use machine learning models to map molecular ngerprints
and molecular descriptors to retention times, so that molecules
with unknown retention properties can be estimated using only
their structures.22,23 This novel data driven optimization allows
for information about ideal separation conditions to be ob-
tained without needing to do any prior screening.

The main disadvantages with model-based approaches
include the human processing time to label peaks and verify the
models. The effectiveness of these models to simulate any
secondary separation mechanisms or size exclusion effects can
also lead to incorrect predictions.24 QSRR also requires large
amounts of balanced datasets which are not always available.
Although these methods can provide some automation, their
functionality is not fully automated or closed-loop.

Operator-free optimization has shown to be successful in
ow chemistry, where systems have been developed to be able to
autonomously self-optimize input conditions such as residence
time, equivalents and temperature to nd optimal conditions
for objectives such as yield, space-time yield and purity.25–32

These systems make use of optimization algorithms, which are
most commonly used to optimize expensive-to-evaluate func-
tions, where a considerable amount of computer processing or
Fig. 1 A schematic of the closed loop HPLC method optimization syste

1592 | Digital Discovery, 2024, 3, 1591–1601
long experiment times are required. This can result in opti-
mizing input conditions in fewer experiments compared to
other machine learning techniques.33 As chemical reactions can
take a signicant amount of time to run, it makes them an ideal
candidate for optimization algorithms.34 Provided a system can
become “closed-loop”, where input conditions can be freely
modied and objectives can be analyzed and interpreted auto-
matically, an optimization algorithm can be integrated to fully
automate nding optimal conditions. Therefore, the same
approach can be used to optimize HPLC method conditions.

Berridge in 1986 stated that the use of optimization algo-
rithms in HPLC method development is limited as they were
previously only local and single-objective, one example being
the Simplex algorithm.35,36 However recent advancements in
optimization algorithms have increased their functionally to
optimize globally and handle multiple objectives at once,
making the concept of fully autonomous HPLC method opti-
mization possible.34,37 Simplex was used to optimize for chro-
matogram quality.38,39 An iterative stochastic search, based on
a pure random search where the design space is shrunk with
each iteration, was also developed.40 However, both of these
optimization approaches are unlikely to reliably nd the global
optimum in a HPLC method optimization.

Recent research has shown Bayesian optimization algo-
rithms to be particularly efficient at solving complex optimiza-
tion problems.41 They are described as being black box,
meaning no previous intuitive knowledge about the optimiza-
tion problem is required for them work.34 Therefore, other than
developing a way to measure the chromatogram quality, no
fundamental HPLC theory would need to be programmed to use
these algorithms. This may offer an advantage when developing
analytical methods on novel systems as no previous knowledge
about the system would be assumed.

The use of Bayesian statistical modelling has been investi-
gated by Lebrun et al. where multivariate models were used on
experimental data to make predictions about retention time.42 A
Bayesian design space has also been used for robustness testing
for pharmaceutical assays.43 This work aims to incorporate
Bayesian optimization algorithms as a means to nd the global
optima of chromatogram quality by changing method variables.
m.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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One drawback of Bayesian modelling is that it does not scale
well with problems containing 10–20 variables.44 However,
HPLC method optimization should t comfortably within the
required dimensionality for this.

Boelrijk et al. demonstrated the use of Bayesian optimization
algorithms to optimize HPLC methods for two complex dye
mixtures in as few as 35 experiments.45 Both single and multi-
objective optimization algorithms were used using input
conditions that dened a multi-linear gradient program to
separate the analytes, and custom objective functions such as
‘separation quality’ which combined the number of peaks
detected with the method time. Building on this approach, we
report herein the development of an autonomous impurity
scouting method which focuses on achieving baseline resolu-
tion in the shortest time possible for full quantitative analysis.

Guidelines known as the Quality by Design (QbD) principles
for liquid chromatography were written to ensure HPLCmethod
conditions are explored effectively, ensuring impurities are
identied and methods are robust.46 Coupling single and multi-
objective Bayesian optimization algorithms with automated
data analysis integrated into a closed loop optimization plat-
form, offers a novel approach to HPLC method optimization. A
schematic of this approach is described in Fig. 1. Work detailed
in this paper aims to highlight the advancements of an industry
4.0 approach on HPLC method optimization, aiming provide
a methodology that can be used automate and accelerate the
identication of impurities in chemical reactions for the phar-
maceutical industry.

HPLC automation platform

An automated ‘closed-loop’ HPLC method optimization system
was developed by writing some custom MATLAB code which
could interface with macros in ChemStation. All HPLC
methods, data analysis and generation of new conditions were
performed autonomously, governed by an optimization algo-
rithm. All the code has been made available on GitHub.47

Input conditions

The design space of the optimization is dened by the lower and
upper bounds of the three variables stated in Table 1, along with
a description for each variable.
Table 1 Definition of input variables for the optimization

Variable Description

Initial organic modier
concentration (%)

The organic modier
when time is zero

Initial isocratic hold time/minutes The length of time the
organic modier conc
held for before a grad
begins

Gradient time/minutes The length of time fro
organic modier conc
an organic modier co
of 95% aer the initia
hold

© 2024 The Author(s). Published by the Royal Society of Chemistry
Optimization algorithms and objective functions

The optimization algorithms used were: a single-objective
Bayesian optimization algorithm with an adaptive expected
improvement acquisition function (BOAEI), with the Gaussian
process model using a ARD Matern kernel with V = 5/2;26,48 and
a Thompson sampling efficient multi objective (TS-EMO) opti-
mization algorithm.49,50 These algorithms are categorised as
black box.

For initialisation, the algorithms require an initial data set
which is generated using Latin hypercube sampling (LHS).51 Seven
initial conditions were generated using LHS for the three input
variables dened in Table 1. A different set of seven initial LHS
conditions were generated for each optimization experiment.

For the optimization algorithm to nd conditions that
maximize chromatogram quality, an objective function(s) must
be dened. This can be done using a range of different chro-
matogram factors. One such factor is the separation between
two peaks, known as resolution (Rs) which is dened in eqn (1).
This factor denotes the separation between two Gaussian peaks,
where tRx is the retention time of peak x and whx is the width of
peak x at half height.

Rs ¼ 1:18ðtR2 � tR1Þ
wh1 þ wh2

(1)

The larger the resolution between two peaks, the greater the
separation. Perfect separation between two Gaussian peaks is
achieved when Rs = 1.5. Separating all the peaks in a chro-
matogram with an Rs greater than 1.5 is optimal in most situ-
ations. The smallest overall Rs between any two consecutive
pairs of peaks in a chromatogram is dened as the critical
resolution (RsCrit) shown in eqn (2), where n is the number of
consecutive peak pairs.

RsCrit ¼ min

0
BBBBBBBB@

2
666666664

Rs1

Rs2

.

Rsn

3
777777775

1
CCCCCCCCA

(2)
Lower bound Upper bound

concentration 5 60

initial
entration is
ient method

0 10

m the initial
entration to
ncentration
l isocratic

1 10
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An optimal HPLC method resolve all the analytes in
a mixture with a RsCrit greater than 1.5 in the shortest possible
time. Shorter method times are desirable to increase analysis
throughput. Therefore, it was decided that the overall quality of
the chromatogram would be governed by three factors: The
number of peaks, the time the last peak elutes and RsCrit.

BOAEI was initially used to optimize HPLC method condi-
tions. A weighted objective function (R) was created to represent
the overall chromatogram quality based on these three HPLC
factors. R is summarized in eqn (3), where N is the number of
peaks detected and tRL is the retention time of the last peak in
the chromatogram.

R ¼

8>>>>>>>>>><
>>>>>>>>>>:

0:6

�
7�N

7

�
þ 0:3

�
2� RsCrit

2

�

þ0:1
�tRL

22

�
; RsCrit # 2

0:6

�
7�N

7

�
þ 0:1

�tRL

22

�
; RsCrit . 2

minimize½R�

(3)

As R tends towards zero, the chromatogram quality is
increased. R = 0 denotes a chromatogram with seven peaks,
RsCrit$ 2 and the time the last peak elutes at zerominutes. R= 1
denotes a chromatogram with zero peaks, RsCrit = 0 and the
time the last peak elutes at 22 minutes. R will always be between
zero and one. BOAEI will aim to minimize R by varying the three
input variables dened in Table 1.

N, RsCrit and tRL are calculated from chromatogram data,
normalized between 0 and 1 using pre-dened limits and then
multiplied by a pre-dened weighting factor based on its
importance. Each factor with its normalisation and weighting is
described in Table 2. A special case for eqn (3) was also dened
so when RsCrit > 2, the 0.3 ((2-RsCrit)/2) term is removed, pre-
venting the term from becoming negative and from giving
optimal values to chromatograms with large RsCrit values over N
and tRL.

N was deemed the most important HPLC factor and so was
given the largest weighting, followed by RsCrit and then tRL.
Therefore, a 6 : 3:1 ratio respectively of the weightings was
selected to focus on this order of importance in the objective
function. Normalisations were dened based on the maximum
and minimum possible values that could be obtained for each
objective in an experiment, based on the input variables dened
in Table 1 and a mixture containing up to seven analytes. The
selection of weightings is difficult without prior information
Table 2 The different HPLC factors used for the BOAEI HPLCmethod op
weighted objective function (R)

Factor Desired result

Number of peaks (N) Maximize
Critical resolution (RsCrit) Greater than or equal to t
Time last peak elutes (tRL) Minimize

1594 | Digital Discovery, 2024, 3, 1591–1601
about the system and can have a signicant impact on the
trajectory of the optimization.52 This is overcome with themulti-
objective optimization approach, where the need to dene
weightings and normalisation parameters is removed.

TS-EMO, a multi-objective Bayesian optimization algorithm,
was next used with three objective functions. This time the
HPLC factors dened in Table 2, N, RsCrit and tRL, were used
individually as the different objective functions. The natural log
of each objective was taken before it was fed into the optimi-
zation algorithm, as surrogate models tend to t better to log
transformed data.53 As TS-EMO aims to minimize its objective
functions, the result of the log transformed N and RsCrit objec-
tives were multiplied by −1, as these objectives are to be
maximized. The TS-EMO optimization with three objectives is
summarized in eqn (4).

Minimize[−lnN, −lnRsCrit, ln tRL] (4)

TS-EMO prioritizes solutions that maximize the hyper-
volume improvement of the design space. This makes use of
Thompson sampling, an acquisition function that balances
exploration of the design space versus exploitation of points that
are believed to be optimal from the Gaussian process model,
and NSGA-II, a genetic algorithm that uses Pareto ranking and
crowding distance computations to nd points that maximize
the hypervolume improvement. The result is an algorithm that
aims to nd the trade-off between different objective functions.
The points that lie on the boundary of the trade-off are
described to be Pareto dominant and can be used to plot
a Pareto front. This represents points in the design space for
a given objective that cannot be improved without having
a detrimental effect on another objective.34,50 Therefore, TS-
EMO will aim to nd the trade-off between N, RsCrit and tRL.
The optimization loop

The results from the initial conditions are processed and fed
into the objective function(s) to calculate the objective(s). All the
input conditions and the associated objective(s) is fed into the
optimization algorithm selected to generate a new HPLC
method, which is written to an excel le. A ChemStation macro
reads the data written to excel and alters the HPLC method
within ChemStation. Aer three minutes of equilibration at the
newly dened conditions the HPLC method is started. Once the
method has nished, the chromatogram data is read, and its
quality is assessed by the selected objective function(s). The
newly generated method condition along with the objective
function(s) is concatenated with the other conditions and fed
timization, with their normalisation and weighting values that define the

Normalisation Weighting

0–7 0.6
wo 0–2 0.3

0–22 0.1

© 2024 The Author(s). Published by the Royal Society of Chemistry
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back into the optimization algorithm, where a new data point is
generated. The cycle continues, each time with new data being
acquired to aid in the search for the global optimum of the
objective function(s). Fig. 1 shows a schematic of this process.

Automated data analysis

The chromatogram datales were read and normalized between
0 and 200 before being processed by a Gaussian peak picking
algorithm to automatically nd the width and retention time for
each peak detected.54

Experimental section
Materials

Acetonitrile and toluene were analytical grade and purchased
from Sigma-Aldrich. Ultrapure Water (18.2 MU) was obtained
using a Millipore Gradient water purication system. Ammo-
nium formate was purchased from Fluorochem. Thiourea,
benzyl alcohol, toluene, benzophenone, naphthalene, biphenyl,
anisole, benzaldehyde, phenol, benzyl benzoate and 4-nitro-
phenol were reagent grade and purchased from Sigma-Aldrich.
All reagents were used without further purication.

Sample preparation

Mixture A (seven molecules). Biphenyl, 4-nitrophenol,
benzaldehyde, anisole, toluene, phenol and thiourea (20 mg
each) in acetonitrile (30 mL).

Mixture B (eleven molecules). Thiourea, benzyl alcohol,
toluene, benzophenone, naphthalene, biphenyl, anisole, benz-
aldehyde, phenol, benzyl benzoate, 4-nitrophenol (30 mg each)
in acetonitrile (40 mL).

The structures of these molecules are shown in Fig. 2.
Fig. 2 Molecular structures of the components within Mixture A (7
components) and Mixture B (11 components).

© 2024 The Author(s). Published by the Royal Society of Chemistry
Instrumentation

The liquid chromatography instrumentation used was an Agi-
lent Innity II HPLC that included a vial sampler, quaternary
pump VL, diode array detector wide range and multicolumn
thermostat. The instrumentation was controlled using Chem-
Station (version C.01.09 [144]). The chromatographic column
used was an Agilent Poroshell 120 EC-C18 (50 mm × 4.6 mm,
2.7 mm) thermostated at 30 °C and buffered using the following
solvent system: A = 10 mM ammonium formate in water, B =

10 mM ammonium formate in 9 : 1 acetronitrile : water. The
owrate was 1.5 mL min−1 and the injection volume was 2 mL.
All methods nished at 95% B for two minutes and newly
submitted methods were equilibrated for three minutes prior to
starting. Detection was at 210 nm with a bandwidth of 2 nm.

MATLAB (version R2021b), Excel (office 365) and Chem-
Station (version C.01.09 [144]) were used to automate the HPLC
method development process and were run on a HP Prodesk
computer with an Intel® Core™ i5-8500 processor @ 3.00 GHz,
6 cores, and 8 Gb RAM.

HPLC optimizations

Nine optimizations were run in total. All the experimental data
is available in the SI in Tables S1 to S9.† Traces for each opti-
mization are also available in Fig. S6 to S8.† The design space
for each optimization was dened according to Table 1.

Optimizations 1–3. Given the weighted objective function
dened in eqn (3), seven initial conditions were run using LHS
before 33 iterations of the BOAEI optimization algorithm were
used to optimize the HPLC method conditions for Mixture A
overnight. This optimization process was repeated three times
to give optimizations 1, 2 and 3.

Optimizations 4–9. Implementing the three objective func-
tions described in eqn (4), seven initial conditions were run
using LHS before 43 iterations of the TS-EMO optimization
algorithm with three objectives were used to optimize the HPLC
method conditions for Mixture A and Mixture B overnight. This
optimization process was repeated: three times for Mixture A to
give optimizations 4, 5 and 6, and three times for Mixture B to
give optimizations 7, 8 and 9.

Results and discussion

A range of molecules containing chromophore groups and
varying polarities were selected to test the effectiveness of the
automated HPLC method optimization system, shown in Fig. 2.
For Mixture A, seven molecules were selected including thio-
urea which is unretained on the C18 column used. Biphenyl is
commonly used as an internal standard for quantitative anal-
ysis. Structurally similar compounds with different functional
groups were selected to mimic the formation of a range of
products in a standard reaction.

BOAEI: single weighted objective optimization

Optimizations 1–3 used BOAEI and a weighted objective func-
tion R dened in eqn (3) to optimize for chromatogram quality
on Mixture A. For a HPLC method to be labelled as ‘optimal’ for
Digital Discovery, 2024, 3, 1591–1601 | 1595
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Fig. 3 The first chromatograms from optimizations 1 (top), 2 (middle)
and 3 (bottom) that satisfied the design space criteria (N = 7, RsCrit $ 2
and tRL # 6 minutes), representing experiments 12, 19 and 9
respectively.
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Mixture A, criteria were dened as N = 7, RsCrit $ 2, and tRL # 6
minutes. These criteria were selected to allow for one minute of
separation between each analyte peak and to ensure adequate
Fig. 4 The design spaces for optimizations 1–3 and the trade-off betwee
weighted objective function R.

1596 | Digital Discovery, 2024, 3, 1591–1601
baseline resolution. As R tends towards one, it represents
a poorer quality HPLC method with a chromatogram that has
a smaller N due to coelution, a smaller RsCrit from peak overlap
and/or a longer tRL. As R tends towards zero, the opposite is true
and will represent a chromatogram that is more likely to be
deemed optimal. BOAEI will aim to minimize R by varying the
input variables dened in Table 1. Optimizations 1–3 ran for 40
experiments overnight without interruption, facilitating usage
during a time that would normally be instrument downtime.
Fig. 3 shows the rst chromatograms that satised the optimal
criteria for each repeated optimization.

BOAEI was able to nd method conditions for optimizations
1–3 that satised the dened criteria in an average of 13
experiments. Experiments 12, 19 and 9 for optimizations 1–3
respectively were the rst experiments to reach optimal condi-
tions, achieving R values of 0.0195, 0.0222 and 0.0238
respectively.

Further experimentation resulted in even more optimal
HPLC method conditions being discovered, where tRL was
reduced to 3.9 minutes aer 33 experiments (R = 0.0178), 3.3
minutes aer 24 experiments (R= 0.0150) and 5.1 minutes aer
28 experiments (R = 0.0230) for optimizations 1–3 respectively,
which also satised the N = 7 and RsCrit $ 2 criteria. The design
spaces for optimizations 1–3 are shown in Fig. 4 and have been
n RsCrit and tRL where N = 7. The color scale represents the value of the

© 2024 The Author(s). Published by the Royal Society of Chemistry
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plotted in a four-dimensional design space with R represented
by a blue to green color scale (for 2D matrix plots see Fig. S9†).
The crosses represent the rst experiments to satisfy the design
space criteria and correspond to the method conditions used to
acquire the chromatograms in Fig. 3. The green stars represent
the experiments with the smallest value of R achieved by each
optimization. Despite more optimal conditions being found in
later experiments, the algorithm was highly effective at nding
the optimal regions of the design space in early experiments,
demonstrated by the near overlap of the crosses and stars for
each optimization in Fig. 4.

Fig. 4 shows that there are two optimal regions in the design
space that lead to small values of R. The most optimal region lies
with an initial organic modier between 30 and 40%, a gradient
time of one minute and the initial isocratic hold time between
one and three minutes. The BOAEI algorithm in optimizations 1
and 2 found R to beminimized in this region of the design space.
However, a second optimal region is observed when longer
gradient times between six and ten minutes are selected, the
initial isocratic hold time is close to zero minutes and the same
initial organic modier concentration is used. This is where the
BOAEI identied R to be minimized in optimization 3.

The results from optimization 3 demonstrated that methods
with long, shallow gradients, that allow the rst four peaks to
elute with a RsCrit $ 2, were just as optimal as methods with fast
and steep gradients but with a longer initial isocratic hold time
to enable efficient separation of the last three peaks, shown in
optimizations 1 and 2.

Despite the success of BOAEI using R to nd optimal chro-
matograms in as few as nine experiments, one drawback is
demonstrated by the differences in the optimal chromatogram
tRL aer 40 experiments. The most optimal method condition
found in optimization 2 had a tRL of 3.3 minutes, which is
clearly more desirable than the most optimal methods in opti-
mizations 1 and 3 which were only able to achieve 3.9 and 5.1
minutes respectively. Consequently, the R values are too similar
for each optimal condition, with a difference of only 0.0043
between them. The weighting for the tRL term in R had a smaller
inuence on the overall value of R compared to the N and RsCrit

terms, making the two regions in design space similarly optimal
for the BOAEI algorithm.

Re-dening the individual weightings and normalisation
factors for R may help to prevent this, however further experi-
mentation and knowledge about the system being optimized
would be required, which contradicts the aims of this research.
Simply increasing tRL weighting could have other detrimental
effects, such as favouring small tRL times over maximising N.
Therefore, more complicated mixtures with unknown numbers
of analytes may not be suitable for this type of optimization as
an outside knowledge is required to compose an ideally suitable
weighted objective function.

The trade-off between the RsCrit and tRL for optimizations 1–3
where N= 7 is also shown in Fig. 4. The red dashed box denotes
the experiments that satised the design space criteria. A total
of 13 experiments from optimizations 1–3 were found to satisfy
these criteria. Most of the data points in the trade-off plot lie to
the right-hand side where RsCrit is maximized. This is due to the
© 2024 The Author(s). Published by the Royal Society of Chemistry
RsCrit term in R having a larger weighting associated with it
compared with the tRL term, so the BOAEI algorithm will focus
on these methods more as the value of R is smaller.

The trade-off graph in Fig. 4 shows that if the critical resolu-
tion criteria were to be lowered to 1.5, a tRL of 2.05 minutes for the
separation of Mixture A could be achieved, which was experiment
25 in optimization 2. R for this point is only 0.0694 as the R
favours methods with RsCrit $ 2. For the algorithm to effectively
explore methods with RsCrit $1.5 instead, the normalisation
factors in R would have to be rewritten and the optimization
repeated. A more suitable approach to optimising HPLCmethods
would involve an algorithm that removes the need for normal-
isation and weighting factors, and instead explores this trade-off.
Therefore, it was decided that a multi-objective optimization
algorithm such as TS-EMO, which is designed to effectively
explore the trade-off between objectives such as N, RsCrit and tRL,
would be more suitable. This Pareto front can then be used to
select optimal conditions based on the user's requirements. It
would also ensure that if the requirements ever changed, the
optimization would not need to be repeated. Removing the
weightings and normalisation factors would also mean less
information about themixture being optimized would be needed.
TS-EMO: multi-objective optimization

For optimizations 4–6 TS-EMO was used to optimize Mixture A.
Three objective functions were constructed that dictated the
overall quality of the chromatograms, dened in eqn (4). All
three of these objectives were optimized for simultaneously,
removing the need to dene a custom weighted objective
function. This makes using this HPLC method optimization
system more applicable when working with mixtures with an
unknown number of analytes.

Optimizations 4–6 ran for 50 experiments each overnight
without interruption. Fig. 5 shows the design space for all three
of these optimizations overlayed (for 2D matrix plots see
Fig. S10†), along with the trade-off between the RsCrit and tRL
when N= 7, with the blue to orange color scale representing the
distance to the Pareto front when RsCrit $ 1.5. This metric
represents the smallest normalized distance of each point to the
pareto front. Points that have RsCrit < 1.5 were deemed sub-
optimal and so have been set to the maximum distance of 1.
This metric aims to show the optimal conditions that are close
in proximity to the pareto front so that they can be visualised in
the design space clearly.

Fig. 5 shows that the optimal HPLC method conditions for
optimizations 4–6, that lie close to these best conditions, are in
a very similar location of the design space compared to the
method conditions where R is minimized for optimizations 1–3
in Fig. 4, showing that both algorithms were successful at
effectively exploring the design space and identifying optimal
conditions. As TS-EMO is a multi-objective optimization algo-
rithm, it was efficient at nding points that lie close to the
Pareto front between RsCrit and tRL when N = 7 in the trade-off
graph in Fig. 5, unlike BOAEI in Fig. 4 where most of the data
points in the trade-off graph were focused to the right-hand side
with large RsCrit values.
Digital Discovery, 2024, 3, 1591–1601 | 1597
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Fig. 5 The design spaces for optimizations 4–6 and the trade-off between RsCrit and tRL where N = 7. The color scale represents the distance to
Pareto front when RsCrit $ 1.5, represented by points to the right-hand side of the dotted line in the trade-off plot.
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The number of experiments required to reach an optimal
method condition where N = 7, RsCrit $ 2, and tRL # 6 minutes
for optimizations 4–6, excluding the initial LHC, was 17, 40 and
22 respectively, making the average number of experiments
required to reach the design space criteria, 26.3, over double the
average of 13 experiments when compared to optimizations 1–3.

The overall best methods out of the 50 experiments for opti-
mizations 4–6 were able to reduce tRL to 2.8 minutes aer 17
experiments, 3.5 minutes aer 44 experiments and 3.2 minutes
aer 22 experiments respectively, as well as satisfyingN and RsCrit
criteria. Although TS-EMO required more experiments, it out-
performed BOAEI as it was able to consistently ndmore optimal
HPLC method conditions with a smaller average tRL. It was
additionally able to efficiently explore the Pareto front between
RsCrit and tRL, which can be used to select chromatograms with
other characteristics, such as methods with RsCrit $ 1.5, without
the need to repeat the optimization. Therefore, if new design
space criteria were to be dened as: RsCrit $ 1.5, N = 7 and tRL #
6, the algorithm (excluding LHC experiments) was able to opti-
mize the method conditions in as few as 11, 12 and 10 experi-
ments for optimizations 4–6 respectively. The fastest overall
experiment that satises these new criteria was experiment 32 in
optimization 6 with tRL = 2.4 minutes. Given that in the phar-
maceutical industry, methods need to undergo robustness
testing, which is part of the QbD process for HPLC method
development, the exibility to change criteria without needing to
repeat experimentation could be a useful time saving tool.

Some datapoints unfortunately in Fig. 5 were just below an
Rscrit of 1.5 and therefore deemed sub-optimal. For example,
experiment 31 in Optimization 4 had a tRL of 2.04 and an Rscrit of
1.46, which is very similar to experiment 25 in optimization 2
shown in Fig. 4, which had a tRL of 2.05 and Rscrit of 1.60. As TS-
EMO aims to nd the trade-off between objectives, conditions
where RsCrit # 1.5 were also explored, which may be undesir-
able. A constraint on the objective function could be added here
to help reduce the number of experiments in this region and
focus on more useful HPLC conditions.
1598 | Digital Discovery, 2024, 3, 1591–1601
To further test the effectiveness of using TS-EMO for HPLC
method optimization, Mixture B which was a more complex
mixture with 11 analytes was created. This mixture contained the
same analytes as Mixture A but added four new molecules that
were again varied in polarity and represented typical molecules
found in reactions. The same design space that was used for
optimizations 1–6 dened in Table 1 was selected to make the
optimization process challenging, even though more molecules
were present in Mixture B. Optimizations 7–9 ran for 50 experi-
ments each, without interruption overnight. Fig. 6 shows the
design space for all three of these optimizations overlayed (for 2D
matrix plots see Fig. S10†), along with the trade-off between the
RsCrit and tRL when N = 11, with the blue to orange color scale
representing the distance to the Pareto front when RsCrit $ 1.5.

All three optimizations were unable to nd HPLC method
conditions that gave RsCrit $ 2, given the dened design space.
Only a total of 12 experiments across optimizations 7–9 were
found where RsCrit was greater than 1.5. Subsequently the design
space criteria were redened so RsCrit $ 1.5, N = 11 and tRL # 10.
This was rst observed rst for experiment 8 for Optimization 7
and experiment 10 for optimization 9. However, optimization 8
failed to nd any optimal method conditions within 50 experi-
ments. Points that were optimal appear to have their initial
organic modier concentrations between 5 and 35%, with short
isocratic hold times and long gradient times, therefore most of
the optimal conditions lie in the corner of this design space.

The randomness incorporated into selecting initial condi-
tions using LHS may have been the reason why optimization 8
was unable to nd any chromatograms that satised the design
space criteria, when compared to optimizations 7 and 9. In this
instance, using a 2k factorial DOE instead of LHS for initial
conditions, where the corners of the design space are explored
rst, may have beenmore suitable as an initial starting point for
TS-EMO to explore a wider range of conditions more quickly.

Extra experiments were run on optimization 8 and an
optimal point was eventually found on experiment 68, which
was signicantly slower compared to optimizations 7 and 9,
resulting in an average of 29 experiments across all three
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 The design spaces for optimizations 7–9 and the trade-off between RsCrit and tRL whereN= 11. The color scale represents the distance to
Pareto front when RsCrit $ 1.5, represented by points to the right-hand side of the dotted line in the trade-off plot.

Fig. 7 Optimal chromatograms for Mixture A (top) and Mixture B
(bottom) using TS-EMO, representing optimization 4 experiment 17
and optimization 7 experiment 30 respectively.
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optimizations to satisfy the design space criteria. One experi-
ment for optimization 8 was however able to reach an RsCrit of
1.48 by experiment 44, and located in a similar region of the
design space to the optimal points in optimizations 7 and 9.

Despite few optimal chromatograms being discovered, the
region of the design space that contains the optimal solutions is
small. These experiments show that for more optimal solutions
to be found, expansion of the design space, specically changing
the gradient time parameter to an upper bound of 15–20
minutes,may have enabled expansion of the Pareto front towards
methods that give RsCrit$ 2. Selecting a suitable parameter space
for the optimization will vary depending on the mixture being
optimized. Generally, some prior knowledge about the mixture
being optimized will be known. However, starting with a design
space with a large range between variables and running an
optimization will allow the user to see where the optimal points
© 2024 The Author(s). Published by the Royal Society of Chemistry
lie. This may be more benecial to do before then reducing the
range of the variables in the design space and repeating to ne
tune more optimal conditions along the Pareto front.

Optimization 7 found the fastest tRL that satised the design
space criteria, with separation in 5.2 minutes with an RsCrit of
1.58 by experiment 30. Optimal chromatograms for both
Mixture A and Mixture B are shown in Fig. 7.
Conclusion

This research has demonstrated the use of both BOAEI, a single
objective optimization algorithm, and TS-EMO, a multi-
objective optimization algorithm, to autonomously nd HPLC
method conditions that result in optimal chromatograms in as
few as nine experiments for two different mixtures of analytes.
Optimizations were run overnight with minimal interruption,
making use of potential instrument downtime and alleviating
method development during the working day so that increased
focus on characterisation of peaks and robustness testing can
be achieved, aiming to help accelerate impurity scouting during
the manufacture of APIs.

Further modications to this soware could include the
implementation of discrete and continuous variable optimiza-
tion algorithms to allow for different columns, pH's and
solvents to be investigated, such as MVMOO.55 Dening desired
input conditions and implementing custom written objective
functions could enable the soware to be used to optimize for
methods across a range of different applications, including in
the separation of polymers in GPC, proteins in size exclusion
chromatography and for nding preparative HPLC conditions.
Data availability

All data from the optimisations is available in the electronic
(ESI†). Code used for data analysis, graphics and the HPLC
automation application is available via GitHub, details of which
are also available in the ESI.†
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