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The materials science literature contains a large amount of reliable and high-quality data and automatically
extracting useful information, including processing parameters and materials property data from this
scientific literature continues to be a challenge. The development of new materials is typically based on
experimental trial and error approach to identify the optimized processing parameters. In this work, we
present an approach at the intersection of Natural Language Processing (NLP) and Materials Science,
focusing on the extraction and analysis of materials and processing parameters associated with Pulsed
Laser Deposition (PLD). Using the MatSciBERT (Bidirectional Encoder Representations from
Transformers)-based architecture, we achieved precise identification and categorization of different PLD
synthesis parameters, including, deposition temperature and pressure, laser energy, laser wavelength,
thin film material and substrate, using the Named Entity Recognition (NER) model. This involved
meticulous data acquisition from over 6000 research articles, followed by pre-processing, feature
extraction, and model training. The trained NER model showcased impressive micro and macro F1
scores of 80.2% and 81.4%, respectively. This highlights the potential of Literature-based Discovery (LBD)
approaches in expediting material discovery processes. The insights gained from this study are expected
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Introduction

The interdisciplinary field of materials science involves the
study of materials, encompassing properties, compositions,
behaviors, design, and characterization, which yields a plethora
of high-quality and peer-reviewed published research works
present in the scientific literature. These publications serve as
reservoirs of invaluable knowledge essential for new discoveries
and advancements in the field. However, accessing this wealth
of knowledge demands an exhaustive exploration of literature,
which is an extremely time-consuming and labor-intensive task,
thus impeding the pace of new material discoveries. Therefore,
to accelerate materials discovery, an efficient data-driven
literature-based discovery (LBD) approach is needed, that is
capable of extracting and harnessing knowledge from pre-
existing literature.'® In this regard, Natural Language
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a searchable database, and accelerating discoveries in the domain of Pulsed Laser Deposition.

Processing (NLP), emerges as a powerful tool for extracting,
storing, and analyzing information from a variety of written
sources, including research articles, journal papers, review
articles, and websites.*® Over time, advancements in NLP
technology and computational power have enabled the pre-
training of large language models (LLMs), enhancing the effi-
ciency of entity/information extraction from scholarly literature
and in their ability to capture contextual relationships among
different tokens within a sentence or paragraph.®™*
ChembDataExtractor, ChemicalTagger, and other NLP tools
have been developed for materials science to extract data from
chemical text.” To increase the accuracy of chemical data
extraction, sophisticated models based on deep convolutional
and recurrent neural networks have recently been
proposed.*>*** The development of Bidirectional Encoder
Representations from Transformers (BERT) model, which is
a neural network architecture, has led to its wide-scale adoption
for training diverse Language Models tailored for domain-
specific tasks. BERT can generate contextual embeddings and
can be trained with vast training datasets. However, the stan-
dard BERT model, pretrained on English Wikipedia and Book-
Corpus, lacked the ability to comprehend domain-specific
jargon prevalent in material science literature, including
materials' properties and names.*® To bridge this gap, several
domain-specific BERT models such as BioBERT, SciBERT, and
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clinical-BERT have emerged, which have been further trained
on the respective literature and all of which exhibit superior
performance for domain-specific tasks.'®**** Recently, a mate-
rials-aware language model was also developed, namely, MatS-
ciBERT, which yielded state-of-the-art results for downstream
tasks such as Named Entity Recognition (NER), Relation Clas-
sification, and Abstract Classification within the material
science domain.” While prior NER models like Matscholar and
Materials Entity Recognition (MER) model exist, they lack
support for domain-specific tasks.>*?*** For example, Mat-
scholar relies on Word2Vec embeddings, incapable of capturing
token context, while existing (NER) models were pretrained on
general text corpora rather than domain-specific material
science corpora. Recently, LLMs have also been successfully
applied to extract synthesis parameters from chemistry and
materials science literature.>>>°

In this work, a specialized MER model was developed to
extract materials synthesized using the Pulsed Laser Deposition
technique and the corresponding processing parameters from
unstructured text. PLD is a Physical Vapor Deposition technique
used in materials science and device fabrication, which uses
a high-intensity laser to ablate a target material and then
deposit the ablated material onto a substrate to form a thin
film. Pre-trained weights of the MatSciBERT model were fine-
tuned by training on text describing the synthesis of materials
from PLD literature. The accuracy of the MER model was
demonstrated through its high macro and micro F1 scores on
a validation set, showcasing its reliable performance. Our work
provides a platform for systematic analysis of unstructured
PLD data and opens doors for future research to discover
optimal processing parameters for the synthesis of various
materials by PLD.

Data acquisition

The acquisition of data is a critical aspect of scientific research,
providing the foundational basis upon which analyses,
conclusions, and advancements are made. In this study, text
data was mined from a vast corpus of scientific literature,
specifically focused on research related to thin film deposition
using Pulsed Laser Deposition (PLD). By employing web
scraping, XML/HTML article extraction, and paragraph-level
extraction and classification, a comprehensive dataset was
compiled upon which further analysis was done.

Digital object identifier (DOI)

DOI acquisition was performed to procure research articles
pertinent to PLD, by doing a Scopus search, coupled with
precise filters (keywords, journal type, article access, subject
area, and year), shown in Fig. 1a, yielding a total of about 20 000
DOIs. The DOIs were segregated based on the respective
publishers, enabling the development of publisher-specific
Python scripts for subsequent download requests. An auto-
mated pipeline was established for efficient article downloading
based on the curated DOIs list. This pipeline, employing
publisher-specific approaches, successfully downloaded journal
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and conference articles by major publishers like Elsevier,
Springer Nature, and other open-source articles in HTML and
XML formats. The dataset thus obtained included a substantial
collection of 5300 XML and 3677 HTML research articles,
published between the years 2000-2022, as shown in Fig. 1a.

Web scraping and XML/HTML article extraction

Web scraping was utilized to retrieve the research articles based
on the DOI list of the research articles relevant to PLD (Figure 1b
A). By using customized web scrapers, relevant information
including article titles, authors, abstracts, publication dates, in
addition to the raw-text files were downloaded in HTML/XML
format (Fig. 1b, B-C). The extracted web content, often in the
form of HTML or XML, necessitates structured processing to
further extract useful information using NER. Leveraging XML's
hierarchical structure and HTML's markup tags, ElementTree
Python library was used for effective parsing of the articles
(Fig. 1b, D). This process involved extracting specific sections
like metadata (comprising DOI, title, abstract, and authors’
details), paragraphs, and object information (pertaining to
figures and tables) in a systematic and efficient manner.

Paragraph extraction

Further, the processed text was used to extract individual
paragraphs in the research articles (Fig. 1b, E). The ‘para’ tag in
XML served as a vital indicator for paragraph identification.
Similarly, BeautifulSoup, another python library, which can
extract specific data from HTML documents by searching for
tags, attributes, or text content, was used for the extraction of all
the paragraphs and metadata of HTML articles. In this step, the
individual paragraphs were obtained and were associated with
their respective DO, title, and abstract. The result was a struc-
tured database of articles' textual contents, enhancing the
granularity of our dataset and facilitating targeted analysis, as
shown schematically in Fig. 1b. In addition, in the process of
paragraph extraction, it was important to ensure data quality by
identifying and addressing outliers. We encountered para-
graphs that were either irrelevant or exceptionally small in size.
Employing Python's regular expression library, we designed
a robust mechanism to detect and remove these outlier para-
graphs. Additionally, we addressed paragraphs riddled with
unusual whitespaces, further refining our dataset and
enhancing its quality and reducing the computational cost for
the subsequent analysis. The code details are provided in the
Data and Software Availability section.

Methodology
Pre-processing

Text pre-processing was performed at various stages, including
data cleaning, normalization, and entity categorization. In data
cleaning, irrelevant paragraphs were removed, and consistency
in formatting was ensured. Normalization encompassed stan-
dardizing units and formats of extracted parameters such as
temperature, pressure, and energy. Entity categorization
involves labeling the entities using an annotation tool by
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(a) Query search filters for the selection of relevant research articles published in the field of Pulsed Laser Deposition, (b) creation of the

Materials Science corpus related to PLD through an automated article downloader followed by the extraction of paragraphs using HTML/XML

parser (A-E).

associating each entity with its respective entity, thereby
making a training dataset for MER model training. The details
of each of these steps are discussed later.

Paragraph embeddings using BERT

In Natural Language Processing (NLP), converting textual
information into quantifiable features is essential for machine
learning models. To achieve this, we utilized BERT-based
embeddings to represent the contextualized features of each
labeled paragraph.?> The BERT model used for generating
embedding was a general pre-trained model from the Tensor-
Flow hub. BERT embeddings have been demonstrated to
encapsulate contextual understanding of the words, capturing
the intricate relationships and meanings between them. The
embeddings served as the feature vectors, which contain the
contextual information of the paragraphs, that helps to train the
subsequent classification model.

Paragraph classification model

Further, a classification model was built to categorize para-
graphs based on the presence or absence of processing
parameters related to PLD. Typically, a manuscript contains
only 1-2 synthesis paragraphs and not all papers follow the
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same format. Therefore, in order to generalize the process, we
chose a binary classification approach, where a paragraph was
labeled as a synthesis paragraph either containing relevant
parameters (labelled as 1) or not containing them (labelled as
0). Hence, manual labelling of 5200 paragraphs as 0/1 was done
for generating a training dataset. Out of 5200 labelled para-
graphs, 577 paragraphs were labelled as 1 i.e., those paragraphs
contained processing parameters and the remaining 4653
paragraphs were labelled as 0 i.e., paragraphs having no pro-
cessing parameters. Additionally, the labeling was verified by
another PLD domain expert to ensure consistency and accuracy.
Therefore, this approach helped minimize error. The training of
this classification model involved utilizing the embeddings
generated earlier and designing a neural network-based classi-
fication model, using TensorFlow and Keras frameworks, Adam
as the optimizer, and binary cross-entropy as the loss function
during training. The NLP pipeline for paragraph classification is
shown in Fig. 2a. The key evaluation metrics were precision,
recall, and F1 score, providing a comprehensive understanding
of the model's performance.

Due to the imbalanced nature of the training dataset, both
under-sampling and over-sampling techniques were explored to
mitigate bias toward the majority class (label 0). Under-
sampling involves reducing the number of instances of the

© 2024 The Author(s). Published by the Royal Society of Chemistry
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(a) NLP pipeline (A-D) employed for the development of paragraph classification model. Training data consists of paragraphs being

labeled as O or 1, which are converted to embedded vectors using a pretrained BERT model, for paragraph classification. (b) Model metrics
showing precision, recall, and F1 score of the classification model for the paragraphs labeled as 0 and 1 using over sampling and (c) under

sampling technique.

over-represented class to balance the dataset, while over-
sampling involves increasing the number of occurrences of
the under-represented data to balance the dataset. Under-
sampling, though simple, resulted in a significant loss of data
and a lower average F1-score of 0.76. In contrast, over-sampling
by replication of the minority class instances (label 1) proved to
be a more effective approach. By ensuring an almost equal
representation of both classes, the training dataset was
balanced which enhanced the model's ability to generalize
across the classes. The chosen model, trained on the balanced
dataset, using the over-sampling technique, was then utilized
for predicting paragraphs containing processing parameters of
interest. Finally, 5918 paragraphs out of a vast database of 163
228 paragraphs were classified as paragraphs containing
synthesis information with an average Fl-score of 0.93, as
shown in Fig. 2b and c.

Materials entity recognition (MER)

MER involved the recognition and categorization of specific
elements from unstructured textual data. In our context, these
elements primarily consist of materials’ formulae and names,
and materials synthesis parameters associated with PLD
experiments. By training a specialized NER model using

© 2024 The Author(s). Published by the Royal Society of Chemistry

MatSciBERT (discussed later), a BERT-based transformer model
tailored for materials science, these entities were accurately
identified and labelled from the text. The MatSciBERT model,
pre-trained on a massive corpus of materials science-related
text, provided a strong foundation for our NER task. MatSci-
BERT is a deep transformer encoder-based pre-trained language
model. By fine-tuning these models with the processed text
dataset, the model was able to recognize and classify material
entities with high precision and recall.

In order to streamline the process, reduce the computational
cost, and increase the model efficiency, we took advantage of
initially classifying the paragraphs followed by running the
MER model on the extracted paragraphs. After extracting the
paragraphs containing the processing parameters, material-
specific entities and their respective processing parameters
were identified using a MER model. To facilitate the creation of
a labeled dataset for training the MER model, a labeling tool
was utilized. In this case, an open-source tool, NER Annotator
by Tecoholic, was employed to label entities.*® The resulting
annotated dataset, formed the training data essential for the
MER model.

The training data for NER included domain-specific infor-
mation related to PLD in materials science. Labels were classi-
fied as Deposited Material (MAT), Laser Fluence (ENERGY),

Digital Discovery, 2024, 3, 944-953 | 947
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Fig. 3 (a) NLP pipeline for the development of Materials Entity Recognition (MER) model (A-E). (b) Heatmap of the average F1 scores of the

individual entities for the three models. (c) Micro F1 and (d) Macro F1 score for the three BERT architectures: MatSciBERT, MatSciBERT-BIiLSTM-

CRF, and MatSciBERT-CRF on the validation dataset.

Frequency (FREQ), O, Partial Pressure (O2_PP), Substrate
(SUBSTR), Temperature (TEMP), Wavelength (WAVE_LT), and
Other (O). All these labels serve as key experimental parameters
for thin film deposition using PLD. Fig. 3a shows an example of
the predicted labels in a paragraph, after the MER model was
trained on the labeled dataset. Further, three architectures were
explored - MatSciBERT, MatSciBERT-CRF (Conditional
Random Fields), and MatSciBERT-BiLSTM-CRF (Bidirectional
Long Short-Term Memory with Conditional Random Fields),
using the MatSciBERT embeddings. MatSciBERT-CRF, inte-
grating MatSciBERT and a Conditional Random Field layer,
demonstrated superior performance, compared to the other two
architectures, in capturing label dependencies and making
globally optimal predictions. With this model, the relevant
materials entities were extracted from scientific literature, as
shown in Fig. 3a. Note that in contrast to the MatSciBERT
embeddings used for the MER model, we used BERT embed-
dings for paragraph classification as described above. Further
refining of the obtained dataset was done by removing the
outliers through a manual inspection to eliminate redundant or
irrelevant entities, to ensure the accuracy and precision of our

dataset. A few cases were encountered where there were
multiple sets of synthesis parameters, for example, a paragraph
having multiple temperature and pressure values. In such cases,
our model returned a list of values, and then we used our
human domain experts to further post-process those data
points. For example, if a sample was deposited at multiple
temperatures and pressures, then the mean value was taken. A
systematic normalization approach (discussed later) was
devised to standardize the units across the dataset, ensuring
uniformity and facilitating meaningful comparisons and
analyses.

Material entities extraction by MER model

The fine-tuned MatSciBERT model (PLD-BERT) was applied to
extract processing parameters. These material and respective
processing parameters were extracted and stored in an orga-
nized way from ~6000 paragraphs.

Unit normalization

The extracted data often comprises diverse units and incon-
sistent representations. Therefore, the normalization of units is

Table 1 Table showing the entity-wise average F1 scores for the three BERT architectures: MatSciBERT, MatSciBERT-CRF. and MatSciBERT-

BiLSTM-CRF

Model Energy Freq Mat O, PP Substr Temp Wave Lt Micro F1 score Macro F1 score
MatSciBERT 90.63 100 72.73 86.96 41.86 76.67 83.72 78.21 78.93
MatSciBert-CRF 90.09 98.90 76.29 77.42 60.98 81.63 84.78 80.25 81.44
MatSciBert-BILSTM-CRF 90 98.92 75.54 79.24 56.47 80.98 82.83 79.72 80.57
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points are extracted using the PLD-BERT model.

a pivotal step in standardizing the representation of extracted
processing parameters. It involves bringing all data into
a consistent and uniform unit, facilitating meaningful
comparisons and analyses. In the domain of material science,
where units can vary widely, this process is particularly impor-
tant. Therefore, normalization was performed for all the
extracted entities, including material, wavelength, frequency,
energy, temperature, and pressure. Following are the methods
we used to normalize each parameter.

Material normalization. During extraction, the MER model
extracted both full material name as well as shorthand of that
material. For example, in the extracted list [ LCMO’, ‘LCMO(n)’,
‘La0.88Ca0.12Mn03’, ‘YBCO(m)'], the entities LCMO, LCMO(n)
and ‘La0.88Ca0.12MnO3’ refer to the same material. Finally,
only ‘La0.88Ca0.12MnO3’ was kept as the final deposited
material. The remaining entities were removed from the list.
Some of the extracted material list contained the same target
material with various compositions. In that case, a manual
inspection was done to select the prominent composition.

Wavelength normalization. For the wavelength, the unit
(nm) was uniform across all the extractions, and very few
paragraphs were found with multiple wavelengths. In the case
of multiple wavelengths, manual inspection was performed to
finalize the laser wavelength.

Frequency normalization. All instances of frequencies had
a unit of ‘Hz’. However, in some instances the material had
been deposited at multiple frequencies. Consequently, multiple

© 2024 The Author(s). Published by the Royal Society of Chemistry
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frequencies were extracted. In such cases, the average of all
available frequencies was taken as final frequency for analysis.

Energy normalization. The laser fluence energies were
present in various units. The widely used fluence energy was in J
cm 2. The other units for energies present were ‘mJ cm™ >, ‘mJ
em™>, ‘mJ’ and ‘J'. Since ‘J em~* provides an incident area
independent energy, the datapoints of ‘J’ and ‘m]’ were con-
verted to ‘] cm ™~ assuming a laser pulse size of 5 mm?3%%

Temperature normalization. Among temperature extrac-
tions, degree Celsius and Kelvin were two units. All the
temperatures were converted to degrees Celsius. Typically,
Pulsed Laser Deposition temperatures range from 150 °C to
1000 °C. Therefore, only temperatures extracted between 150 °C
to 1000 °C were considered. In case of multiple occurrences of
temperature in a paragraph, all values were averaged.

Oxygen partial pressure normalization. Oxygen Partial Pres-
sures were present in different units including bar, mbar, Torr,
mTorr and Pa. All pressures were converted to mTorr with using
a regular expression approach. All the pressure extractions were
converted into mTorr after multiplying with the appropriate
multiplication factor.

Results
Trained MER Model's evaluation

Typical metrics, including accuracy, precision, recall (sensi-
tivity), and F1 Score, were calculated to evaluate the accuracy of
the trained model. In our case, there were 8 different labels,
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which is a multi-class classification. In the case of multi-class
classification, one can calculate two versions of the F1 Score,
i.e., micro and macro F1 Score. Both micro and macro F1 scores
were calculated to decide the model performance. Micro F1
score, a composite metric, assesses the model's effectiveness by
considering true positives, false positives, and false negatives
across all classes. It treats the classification task as a single,
multi-class problem, generating a singular F1 score that repre-
sents the overall model performance. This approach aggregates
performance measures across all classes, making it suitable for
scenarios with imbalanced class distributions, offering equal
importance to each class. On the other hand, the macro F1 score
calculates the F1 score for each class independently and then
computes the average across all classes. Each class is given
equal weight, irrespective of its prevalence in the dataset. This
metric is beneficial when evaluating the model's performance
in individual classes, providing a sense of its average perfor-
mance across all classes.
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Fig. 3c and d shows the micro and macro F1 score for the
three MatSciBERT architectures: MatSciBERT, MatSciBERT-
BiLSTM-CRF, and MatSciBERT-CRF. MatSciBERT is combined
with a layer of Conditional Random Field (CRF) in MatSciBERT-
CRF. When tasked with assigning a label to each element in
a series, sequence labeling jobs make use of CRF. MatSciBERT-
BiLSTM-CRF combines MatSciBERT with layers of CRF and
Bidirectional Long Short-Term Memory (BiLSTM). Recurrent
neural networks (RNNs) of the BiLSTM type are capable of
identifying sequential patterns in data.** The best Micro F1
Scores were 78.2%, 80.2% and 79.7% for MatSciBERT,
MatSciBERT-CRF and MatSciBERT-BiLSTM-CRF, respectively
on the validation dataset, and was the metric based on which
the final model was chosen (Fig. 3c). The Macro F1 Scores (for
the corresponding best Micro F1 scores) were calculated as
78.9%, 81.4%, and 80.5% for MatSciBERT, MatSciBERT-CRF,
and MatSciBERT-BiLSTM-CRF, respectively on the validation
dataset (Fig. 3d). The detailed results of the F1 scores for the

© 2024 The Author(s). Published by the Royal Society of Chemistry
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three models are included in the ESI (Tables 1-3%). Further,
Fig. 3b shows a heatmap of the average F1 scores of the indi-
vidual entities for each model. Table 1 summarizes the entity-
wise average F1 scores for the three MatSciBERT architec-
tures. MatSciBERT-CRF claims the best performance for 4
entities and slightly lags behind in two entities: ENERGY and
FREQ. MatSciBERT-CRF lags behind in ‘O2_PP’ entity compared
to MatSciBERT, however, it significantly outperforms in the
‘SUBSTR’ entity leading to overall higher Micro F1 score. The
second-best performance is for MatSciBERT-BiLSTM-CRF, fol-
lowed by the MatSciBERT model.

Synthesis insights

The distributions of normalized extracted parameters are
shown in Fig. 4. The distribution plots provide useful insights
on the key parameters in PLD experiments. Notably, tempera-
ture distribution indicated a prevalent range of 400 °C to 700 °C
(65.53%) for thin film deposition, with the peaks usually at an
interval of 50 °C in these experiments. Pressure distribution
highlighted a common range below 100 mTorr, with a signifi-
cant number of depositions occurring between 5 to 15 mTorr.
These peaks in deposition temperature and pressure are typical
of oxide thin film deposition, the reports of which are present in
large numbers in the literature. Laser and laser fluence distri-
bution is shown in Fig. 4c. Laser fluence energy distribution
exhibited a prevalent range of 2 J cm > to 6 J cm™>. The laser
wavelength distribution is shown in Fig. 4d and it predomi-
nately shows a wavelength of 248 nm, that is widely utilized for
PLD, using KrF excimer laser. Additionally, frequency distribu-
tion revealed common usage at 5 Hz and 10 Hz. Further, the
temperature and pressure distribution for some specific mate-
rials, namely ZnO, VO,, and BaTiO; is also plotted and shown in
Fig. 5. Clearly, the majority of the thin film depositions have
been performed at 600 °C, 500 °C, and 700 °C for ZnO, VO,, and
BaTiO; respectively, which is typical for these materials.***°
While the oxygen partial pressure indicate a vacuum deposition
or very low oxygen partial pressures (0-10 mTorr) for most of
these thin film depositions. For example, VO, is a metastable
phase deposited using the V,05 target that shows a very narrow
growth window near 10 mTorr oxygen partial pressure.**** The
difference in growth temperature for the different materials can
arise due to several factors, including bonding energy, substrate
crystal structure, vapor pressure, diffusion coefficient, etc.
Therefore, such a database can greatly help in quickly deciding
the appropriate deposition parameters for a variety of materials.

Conclusion

In this study, we successfully applied a large language model to
extract experimental processing parameters for thin film
deposition using PLD. We developed a MER model by fine-
tuning the MatSciBERT model on PLD-specific literature. A
meticulous approach to outlier removal and unit normalization
ensured data quality and uniformity, essential for meaningful
analysis. Model performance was assessed by calculating micro
and macro F1 scores. The trained model achieved precise

© 2024 The Author(s). Published by the Royal Society of Chemistry
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extraction and categorization of critical processing parameters
such as deposition temperature, pressure, laser fluence and
wavelength, and substrate from an extensive corpus of
unstructured textual data. The insights derived from this work
are anticipated to catalyze further advancements in materials
research, streamlining knowledge acquisition and facilitating
future discoveries in the domain of thin film deposition using
PLD.

Data and software availability

Code details for web scrapping and paragraph extraction with
data cleaning is available as a jupyter notebook on Figshare at:
10.6084/m9.figshare.25265431. The fine-tuning code is avail-
able as a jupyter notebook on Figshare at: 10.6084/
m9.figshare.24770952. The fine-tuned PLD-BERT model can
be found on Figshare at: 10.6084/m9.figshare.24770895 and the
annotated data sets used for fine-tuning can be found at:
10.6084/m9.figshare.24770916.
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