Open Access Article. Published on 22 May 2024. Downloaded on 1/10/2026 9:49:34 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Digital
Discovery

#® ROYAL SOCIETY
PPN OF CHEMISTRY

View Article Online

View Journal | View Issue

i '.) Check for updates ‘

Cite this: Digital Discovery, 2024, 3,
1319

Received 19th February 2024
Accepted 8th May 2024

DOI: 10.1039/d4dd00046¢

Chemspyd: an open-source python interface for
Chemspeed robotic chemistry and materials
platformst

Martin Seifrid, @ $3°° Felix Strieth-Kalthoff, © ** Mohammad Haddadnia, & °¢
Tony C. Wu,”© Emre Alca,§° Leticia Bodo,? Sebastian Arellano-Rubach,®
Naruki Yoshikawa, <@ Marta Skreta,°® Rachel Keunen®’ and Alan Aspuru-
Guzik*bcdfghi

We introduce Chemspyd, a lightweight, open-source Python package for operating the popular laboratory
robotic platforms from Chemspeed Technologies. As an add-on to the existing proprietary software suite,
Chemspyd enables dynamic communication with the automated platform, laying the foundation for its
modular integration into customizable, higher-level laboratory workflows. We show the applicability of
Chemspyd in a set of case studies from chemistry and materials science. We demonstrate how the
package can be used with large language models to provide a natural language interface. By providing
an open-source software interface for a commercial robotic platform, we hope to inspire the
development of open interfaces that facilitate the flexible, adaptive integration of existing laboratory

rsc.li/digitaldiscovery

Introduction

Laboratory automation has been identified as a key strategy for
increasing the rate at which new discoveries are made in
chemistry and materials science.® Automation serves two
central purposes: (1) to increase the experimental throughput
via continuous and/or parallel execution of otherwise repetitive,
manual tasks, and (2) to foster more standardized and repro-
ducible results. While the history of automation in chemistry
traces back to the mid-20th century,' recent years have seen

“Department of Materials Science and Engineering, North Carolina State University,
Raleigh, NC, USA

*Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada.
E-mail: alan@aspuru.com

‘Department of Computer Science, University of Toronto, Toronto, ON M5S 3H6,
Canada

“Vector Institute for Artificial Intelligence, Toronto, ON M5S 1M1, Canada
“University of Toronto Schools, Toronto, ON M5S 2R7, Canada

fAcceleration Consortium, University of Toronto, Toronto, Ontario M5S 3H6, Canada
¢Department of Chemical Engineering & Applied Chemistry, University of Toronto,
Toronto, ON M5S 3E5, Canada

"Department of Materials Science, University of Toronto, Toronto, Ontario M5S 3E4,
Canada

‘Lebovic Fellow, Canadian Institute for Advanced Research, Toronto, ON M5S 1M1,
Canada

t Electronic supplementary information available. See DOI
https://doi.org/10.1039/d4dd00046c

1 Authors contributed equally.

(EST)

§ Present address: Department of Systems Biology, Harvard Medical School,
Boston, MA, USA.

© 2024 The Author(s). Published by the Royal Society of Chemistry

equipment into automated laboratories.

a “renaissance” of automation in both academic and industrial
laboratories. Advances in robotics and engineering have
enabled the automation of increasingly challenging laboratory
operations such as thin-film fabrication,” sample handling
under inert gas,*® or dosing of powders, gels and slurries.'>*
Integrating such automated modules into larger workflows has
demonstrated the potential to tackle increasingly complex
scientific challenges in an automated fashion.'? This surge in
automated experimentation has produced a growing market of
instruments, particularly platform solutions consisting of
multiple experimental modules. Arguably, the most prominent
such systems have come from companies such as Chemspeed
Technologies and Unchained Labs, and have shown the enor-
mous potential to enable highly complex discovery workflows
across various fields in chemistry and materials science.
Examples include the discovery of battery electrolytes,"® new
catalysts,’*'® organic laser = materials,"*® polymer
formulations,*** or stereoselective synthesis.?

The current phase in the evolution of automated laboratories
involves the transition from static, pre-defined automation
workflows to modular and flexible labs where decisions about
the next experimental steps are adaptively made in real time
(Fig. 1a).**?* Particularly with recent strides in data-driven
design and machine learning,* this has the potential to opti-
mize the use of automated resources, and thereby accelerate
scientific discoveries. Especially against the background of
modularity and adaptive decision making, the availability of
open software interfaces (application programming interfaces,
APIs) for automated platforms are essential for the seamless

Digital Discovery, 2024, 3,1319-1326 | 1319

http://crossmark.crossref.org/dialog/?doi=10.1039/d4dd00046c&domain=pdf&date_stamp=2024-07-06
http://orcid.org/0000-0001-5238-0058
http://orcid.org/0000-0003-1357-5500
http://orcid.org/0009-0007-1185-0616
http://orcid.org/0000-0003-1546-8709
https://doi.org/10.1039/d4dd00046c
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00046c
https://pubs.rsc.org/en/journals/journal/DD
https://pubs.rsc.org/en/journals/journal/DD?issueid=DD003007

Open Access Article. Published on 22 May 2024. Downloaded on 1/10/2026 9:49:34 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Digital Discovery

a) Static and Dynamic Control of Laboratory Equipment

View Article Online

Paper

E==)
= =0
Fixed Parameters Predefined Execution \’QQ
Actions - (©
)
' Ol
¢ Closed-Loop Integration to other ‘
workflows/databases
(ee=)
=) — (&)
EIﬁIE Eﬂ;ﬂ Adaptable Parameters Modular Execution “’e
Actions o S
e
l o
+ Instrument Feedback I

b) The Chemspyd Package for Dynamic Control of Robotic Platforms from Chemspeed Technologies

', Feedback
Chemspyd ¢ = V Chemspeed
| l’Jgtform
|| Commands AutoSuite | Execition |
=) [Manager app]
[csv |

Feedback "

Fig. 1 The Chemspyd API enables dynamic control of Chemspeed Technologies platforms. (a) Dynamic instrument control is needed for
adaptive decision-making and SDLs. (b) Schematic overview of the integration of Chemspyd with the existing software and hardware framework

from Chemspeed Technologies.

incorporation into flexible, customizable workflows.>**” At the
same time, such dynamic APIs are often not provided by
instrument manufacturers, whose software tends to follow
a workflow- and instrument-centric philosophy. In fact, avail-
able APIs are often constrained to the configuration and post-
run evaluation of static workflows. This presents a major
barrier to integrating further instruments into the workflow, or
to making adaptive data-driven decisions in real time.

To address these gaps, we introduce Chemspyd, an open-
source Python API specifically designed for Chemspeed plat-
forms. Python has long been a foundational element of scien-
tific computing and of automated laboratories, in particular.
This API enables real-time, adaptive control of Chemspeed
instruments by providing a simple interface through which
Chemspeed instruments can be integrated with the rest of the
scientific Python ecosystem. Users are able to integrate with
other open source tools such as packages for optimization or
design-of-experiment, other lab automation, online analysis,
and in silico predictions. Ultimately, this empowers researchers
to seamlessly integrate Chemspeed robots into custom work-
flows and automated or self-driving laboratories (SDLs). We use
three experimental case studies to demonstrate how Chemspyd
can be used for experiments in the chemical and materials

1320 | Digital Discovery, 2024, 3, 1319-1326

sciences. Most importantly, Chemspyd is designed as a modular
and expandable open-source project,” and can therefore serve
as a blueprint for the development of similar interfaces that
meet the evolving demands of modern, flexible, and custom-
izable automated laboratories.

“Under the hood": the design of
Chemspyd

Chemspyd's architecture is guided by three core design princi-
ples: (1) dynamic and fine-grained control over the robot's
actions; (2) easy installation and usage with existing Chem-
speed setups; (3) modular, extendable open-source architecture,
facilitating continuous development by the community, and
enabling effortless integration with experiment planning and
scheduling workflows. Because of (2) and (3), Chemspyd comes
as a lightweight Python package (i.e., easy to install and lacking
heavy dependencies) that dynamically interacts with Chem-
speed's proprietary AutoSuite software.

Chemspyd is organized following object-oriented design
principles and is structured into two main classes: the
Controller and the Executor. Whereas the Executor handles the

© 2024 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00046c

Open Access Article. Published on 22 May 2024. Downloaded on 1/10/2026 9:49:34 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

communication with the instrument's control software (for
details, vide infra), the Controller provides a standardized,
public API for users to develop customizable, adaptive work-
flows in Python. For this purpose, it houses an extensive catalog
of elementary actions that encompass a wide range of the
functionalities that the Chemspeed robotic platforms offer.
These elementary actions enable dynamic and fine-grained
control over the action space. A full list of elementary actions
is provided in the ESI, as well as the detailed package
documentation.?

Chemspyd communicates with AutoSuite through the Exec-
utor, which reads and writes shared CSV files, providing
a standardized means of communication that is human-
readable and supported by both Python and AutoSuite
(Fig. 1b). This enables bidirectional communication between
AutoSuite (and thereby, the Chemspeed robotic platform) and
Chemspyd, containing the instrument status, execution
commands and parameters, instrument return values, and
general metadata. A full description of the communication
protocol is provided in the ESL{

To enable dynamic control on the Chemspeed side, we
created a dedicated AutoSuite application file, referred to as the
Manager (see installation guide in the package documentation
for file location), that listens for command files, and executes
actions based on the provided keywords and parameters. Each
elementary Controller method has an execution counterpart in
the Manager. As a result, Chemspyd allows users to perform
individual actions (helpful during development and trouble-
shooting) or perform different routines without needing to
restart the platform.

Beyond the fine-grained control over elementary actions, we
developed Chemspyd to contain a series of optional tools to
assist with operation safety, accurate resource management,
and standardized data collection. These safety checks include
a simulation mode within Chemspyd that can be used to verify
that the code will execute without generating internal Chemspyd
errors prior to testing the operations in AutoSuite's own simu-
lation mode, which validates other operational parameters.

Installing Chemspyd

@

Install the Python Package
from the Python Package Index (PyPl)

Extract Instrument Configuration

F/é automated workflow provided in Chemspyd
O Generate Chemspyd Configuration File
o) automated workflow provided in Chemspyd

Fig. 2

View Article Online

Digital Discovery

Together, these form a “digital twin” that enables users to
simulate processes without the need to access a Chemspeed
instrument. Chemspyd's resource management features also
allow users to validate operations of workflows prior to execu-
tion to ensure that liquids or solids can be added or removed
from the specified wells, and that the wells will not be overfilled
or depleted. The required attributes of each well (type, volume,
etc.) are automatically extracted from the instrument configu-
ration, avoiding manual input by the user (see section “Instal-
lation and usage” for further details).

To streamline workflow development and enhance conve-
nience for the user, we have organized common experimental
routines within the routines sub-package. Examples of such
routines include the priming of syringe pumps, evacuate-
backfill cycles (i.e., “Schlenk cycles”), filtration and collection
steps, and injection to on-deck HPLC ports. Notably, the
routines sub-package provides a framework for implementing
further custom experimental routines, highlighting the
modular, open-source nature of Chemspyd, and fostering
continued active development by the community.

Installation and usage

The Chemspyd Python package can be installed from the PyPI
repository (Fig. 2a).** The source code repository can be
accessed at its GitLab page®' under the Apache 2.0 license, and
provides extensive documentation,® including installation
instructions, usage guides and tutorial examples. Once
installed, Chemspyd code can be written entirely in Python
(versions =3.9), and, thus, enables users to developed and test
their code on any platform.

The process of setting up Chemspyd on any local platform
involves two stages: (1) creating a custom, local manager and (2)
extracting the platform's hardware configuration. In the first
stage, users should create a new manager application file in
AutoSuite whose instrument configuration matches that of their
platform. All pre-defined commands, which are provided as part
of Chemspyd (see package documentation for further details)

Using Chemspyd

A

Generate Python Code

Simulate and Validate Code
</> using Chemspyd's internal simulator

Execute Experiments
on the Chemspeed robotic platform

[N
f

Installing and using the Chemspyd Python library. During initial installation, Chemspyd can automatically read the platform's configuration

and convert it into the necessary configuration file. After installation, Chemspyd workflows can be coded and validated in Python before
executing the code on the actual robotic platform. Code examples for this workflow can be found in Fig. S1.1

© 2024 The Author(s). Published by the Royal Society of Chemistry

Digital Discovery, 2024, 3,1319-1326 | 1321

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00046c

Open Access Article. Published on 22 May 2024. Downloaded on 1/10/2026 9:49:34 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Digital Discovery

should be copied into this application file. Second, for extract-
ing the hardware configuration from the manager and making
it accessible to Chemspyd, we provide an automated solution to

View Article Online

Paper

chemspyd.autosuite.get_config() function (Fig. 2a, see
package documentation for further details). As a result, the
installation of Chemspyd is largely automated, and does not

ease the installation process. For this purpose, Chemspyd
interacts with AutoSuite's.NET API. For user convenience, this
process is wrapped in the

require a tedious configuration procedure, but is designed for
the seamless integration with existing robotic setups. Should
fully

a) Condition Screening for Silver Nanoprism Formation

Overview of all Experiments Selected Absorption Spectra

48 Parallel \% _ ,\
Experiments -4 v y v = /
~N v = 6
< o
25 \ ' T / \
U““” Reagent Dispensing é- v ' v ,,i 4 / A\
ss4s AgNO; NaBH,, H,0,, 8-6 { = /
KBr, Na;(CgHsO;) w v SR
% 52|,
A \ i
AV o /_/
0 S —

/X\ UVNis Y
-8
@ Spectroscopy -1 0 1 2

400 500 600 700
t-SNE Component 1 Wavelength [nm]
b) Condition Screening for Buchwald—Hartwig Couplings oy e . .
A/O‘Voj -\9‘\ 0,\0\\ 1\8‘\ g;‘w & oF 8‘\0‘00‘9
Pd Sourco (10 mat) ofoq"x 4 Q¥ XL K
N B~ az:(:s.:;zw;’ DI
o |
Me K Tx G
%, 4% 2
")x -
wor MV HEEEE |
Inertization Heat—Stir HPLC 2 x % . 2
NS B | |
® W s ¥] -
ll “%
‘ . HEEE
48 Parallel 4 x Reagent Filtration
Experiments Dispensing Heatmap of Relative HPLC Yields

¢) Kinetic Monitoring of an Amide Coupling Second
Step
MeO (o] 1.0 -

o W e W e

o
@) Timed ©) § 0.6

CDI (2.0 equiv) “ |I HPLC l l %

THF, 4 h, rt. >04

HoN '

MeO O MeO O

(1 0 equiv) 0.0

@AU‘ B @AH

Fig. 3 Experimental use cases of Chemspyd. (a) Condition screening for silver nanoparticle formation. (Left): 48 parallel experiments for silver
nanoprism formation were conducted using different stoichiometric ratios of the ingredients, followed by analysis via optical spectroscopy.
(Center): a t-SNE plot shows the colors and extinction coefficients (depicted by marker size) of obtained nanoprisms. (Right): optical absorption
spectra of selected nanoprisms. (b) Condition screening for Buchwald—Hartwig couplings. (Left): a combinatorial screen of 48 Buchwald—
Hartwig coupling conditions was performed by automated reaction execution, followed by filtration and direct HPLC injection. (Right): heatmap
of relative HPLC yields for all 48 reactions. (c) Kinetic monitoring of an amide coupling reaction. (Left): a two-step amide coupling was performed
on the Chemspeed platform, and aliquots were automatically derivatized and submitted to an in-line HPLC at defined time intervals. (Right):
relative quantities of reactants, intermediates and products, as determined by HPLC-UV.

Time [h]

1322 | Digital Discovery, 2024, 3, 1319-1326 © 2024 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00046c

Open Access Article. Published on 22 May 2024. Downloaded on 1/10/2026 9:49:34 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

the API not be accessible, the resulting configuration file can
also be created manually.

Once the Python package and the corresponding AutoSuite
Manager have been properly set up, executing Chemspyd code
on a Chemspeed platform requires the following two steps: (1)
start the manager in AutoSuite, (2) execute one or multiple
Chemspyd scripts, an example of which is shown in Fig. 2b.

Experimental use cases

In order to showcase the different features of Chemspyd, we
demonstrate a set of experiments from inorganic and organic
chemistry as possible use cases of the software in automated
laboratories. All experiments were performed on the Chem-
speed SWING XL robot available in our laboratory at the Matter
Lab at the University of Toronto.

As a first use case, we performed a systematic evaluation of
reaction conditions for the formation of silver nanoprisms.**>*
The size distribution of the nanoprisms - and thereby, their
absorption properties — are determined by the stoichiometric
ratios of the silver source (AgNOs;), the reductive component
(NaBH,), the oxidative component (H,0,), the buffer (sodium
citrate) and the silver concentration mediator (KBr). We selected
a representative set of conditions from this five-dimensional
continuous parameter space through Latin hypercube
sampling. Using Chemspyd, we were able to quickly write the
execution code, simply looping over all hypercube samples, and
the required liquid transfer and stirring operations were per-
formed automatically. Optical absorption measurements were

a) Web Interface for Natural Language Translation

View Article Online

Digital Discovery

carried out on our spectroscopic characterization platform.” The
resulting dataset of spectroscopic properties of the obtained
nanoprisms is shown in Fig. 3a.

Our second use case targeted the screening of experimental
conditions for the Buchwald-Hartwig coupling reaction, one of
the most prominent reaction classes in organic and medicinal
chemistry.*® Specifically, we created a combinatorial dataset by
varying three categorical parameters, namely the palladium
precursor, ligand, and base.?® Exploiting our platform's capacity
to perform reactions under an inert gas atmosphere, all
synthesis (inertization, reagent addition, temperature control,
vortex stirring), workup (filtration) and analysis (injection to an
HPLC) were encoded in Chemspyd, and run without manual
intervention. Notably, the modular design of Chemspyd was
crucial for the software-level integration with our group's HPLC-
MS instrument and its Python control code. Relative yields (with
respect to an internal standard) for each reaction are visualized
in the heatmap in Fig. 3b.

The dynamic nature of the communication between Chem-
spyd and the instrument is emphasized in a third experiment, in
which we perform a two-step amide coupling with continuous
reaction monitoring.*” Here, a Python script dynamically
orchestrates the execution of the individual reaction steps, the
timed preparation and derivatization of aliquots, and their
injection to our HPLC system. At the same time, the script
interacts with the HPLC instrument to ensure synchronization of
both instrument operations. The kinetic traces of both reagents,
the proposed intermediate, and the reaction product are shown

CLAIRify Chemspeed Natural Language Instruction
“[..] Transfer 1.4 mL of catalyst solution from catalyst_solution to
~ rxn_well with needle 1. Reflux rxn_well at 100 rpm, 100 °C for 1 h,
condenser temperature at 20 °C, cool down for 1 h. [...]*
L Chemspyd Code
e ’ chmspd. transfer_liquid(source=catalyst_solution,
destination=rxn_well, volume=1.4, needle=1)
I5: routines.heat_under_reflux(chmspd=chmspd, wells=rxn_well
stir_rate=100, temperature=100, heating_hours=1,
“ cooli ng hours=1, condenser_temperature=20)
b) Workflow of Generating Chemspyd Code from Natural Language
User GPT-4 Search Chemspyd
Natural Language Instruction - — » Documentation
- =il
.9 D ———— [
% iy i =
- R Retreive @
T Generated Chemspyd Code |

Fig. 4 Natural language interface for generating Chemspyd code. (a) Web interface for interactively translating natural language input to usable

Chemspyd code. (b) Schematic overview of the software architecture.

© 2024 The Author(s). Published by the Royal Society of Chemistry

Digital Discovery, 2024, 3,1319-1326 | 1323

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00046c

Open Access Article. Published on 22 May 2024. Downloaded on 1/10/2026 9:49:34 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Digital Discovery

in Fig. 3c, and are in good agreement with the traces obtained by
Liu et al. in their dedicated reaction monitoring platform.*

Simplified adoption through a natural
language interface

To further facilitate the adoption of Chemspyd and its rapid
implementation into new laboratory routines, we provide
a natural language interface for generating Chemspyd code
based on iterative prompting of GPT-4. Analogous methods
have recently proven to be powerful enabling technologies for
automated or self-driving laboratories.*®** For instance,
ChemcCrow, reported by Schwaller, White and co-workers,*® uses
iterative large language model (LLM) prompting and tool inte-
gration to propose synthetic routes for organic molecules.
Coscientist, recently described by Boiko et al.,** uses a related
approach and adds the ability to generate instrument operation
code for automated systems. Notably, Chemspyd could readily
be integrated into these types of systems. However, our natural
language interface targets a slightly different use case: namely,
facilitating adoption of automation tools by users who are not
familiar with programming in Python, which is characteristic of
a significant portion of the chemistry and materials science
communities at the moment.

Similar to our recent work,* we provide a web interface that
uses a LLM to convert the natural language inputs into struc-
tured Chemspyd output.** In our implementation, all Chemspyd
functions, along with their natural language documentation
and all parameters, are organized in an associative array. We
use a similar approach as Boiko et al.,** demonstrating that it
generalizes well to a domain-specific language unknown to
GPT-4. Incoming natural language instructions are segmented
into structured commands, which are then matched to the
classes and functions in the associative array based on cosine
similarity. Subsequently, OpenAI's GPT-4 (ref. 42) is employed
to translate the instructions into the corresponding code.
Command-by-command, each section of the generated Chem-
spyd code is sent back to the user for feedback and validation.
This match-translate cycle is repeated iteratively until satisfac-
tory Chemspyd code is reached (Fig. 4b). We maintain user
feedback in the match-translate cycle because there are many
cases where semantic errors in the generated code cannot be
detected in simulation. As an example, if the natural language
input specifies “add ethanol” and the generated code incor-
rectly adds methanol, the generated code does not reflect the
intent of the user but the simulation may not yield errors. This
kind of semantic error detection requires a high-level natural
language understanding ability beyond simulation, and forms
part of our future work.

Eventually, the outcome is a responsive interface that effec-
tively bridges the gap between user intent and the correct
Chemspyd code, showcasing the power of NLP in user-system
interactions, and providing a useful tool for non-expert
programmers to generate experiments with Chemspyd.

1324 | Digital Discovery, 2024, 3, 1319-1326

View Article Online

Paper

Summary and outlook

We have introduced Chemspyd as a simple, lightweight and
easy-to-use Python API for Chemspeed platforms. In contrast to
the existing graphical user interface control software (Auto-
Suite), Chemspyd allows for fine-grained, dynamic instrument
control through Python, thereby facilitating integration of
Chemspeed instruments in custom workflows and SDLs. With
the rapid spread of Chemspeed platforms across academic and
industrial laboratories across the world, we envision wide-
spread adoption of this package, particularly in those scenarios
where dynamic control and flexible integration with third-party
software or hardware is required. Importantly, Chemspyd is an
open-source project. Therefore, we encourage feedback and
contributions from the community, and hope to inspire devel-
opment of further functionality based on the needs of users
outside our laboratory.

Beyond extending the package's functionality, the next crit-
ical steps will be to integrate Chemspyd with open-source stan-
dards for laboratory instrumentation, such as the XDL standard
for encoding synthesis procedures,** the SiLA2 standard for
inter-device communication,** and operating frameworks for
orchestrating self-driving laboratories.>” We are convinced that
such open, community-driven standards will be key for reus-
able, open-source software development.”® Eventually, we
believe that Chemspyd can serve as an inspiration and blueprint
for instrument manufacturers to provide the open APIs neces-
sary for operating experimental modules in self-driving labs.

Data availability

The code for the Chemspyd Python package can be found at
https://gitlab.com/aspuru-guzik-group/self-driving-lab/
instruments/chemspyd. = Code for the experimental
demonstrations can be found at https://gitlab.com/aspuru-
guzik-group/self-driving-lab/instruments/chemspyd/-/tree/
main/demos. Chemspyd version 1.0.0 was used for this study.

Author contributions

Conceptualization: M. S., F. S.-K., A. A.-G. Data curation: M. S.,
F. S.-K., L. B. Formal analysis: M. S., F. S.-K. Funding acquisi-
tion: A. A.-G. Investigation: M. S., F. S.-K.,, M. H,, T. C. W., E.
A., L. B., R. K. Methodology: M. S., F. S.-K., M. H., T. C. W., L.
B, N. Y., M. Sk,, R. K. Project administration: M. S., F. S.-K.
Resources: A. A.-G. Software: M. S., F. S.-K., M. H., T. C. W., E.
A, S. A-R,, N. Y., M. Sk. Supervision: M. S., F. S.-K., A. A.-G.
Validation: M. S., F. S.-K., M. H., L. B, R. K. Visualization: F.
S.-K., M. H. Writing (original draft): M. S., F. S.-K., M. H,, N. Y.
Writing (review and editing): M. S., F. S.-K., M. H., N. Y., M. Sk.,
A. A.-G.

Conflicts of interest

A. A.-G. is chief visionary officer and board member of Kebotix
Inc., a company that carries out closed-loop molecular materials
discovery.

© 2024 The Author(s). Published by the Royal Society of Chemistry

https://gitlab.com/aspuru-guzik-group/self-driving-lab/instruments/chemspyd
https://gitlab.com/aspuru-guzik-group/self-driving-lab/instruments/chemspyd
https://gitlab.com/aspuru-guzik-group/self-driving-lab/instruments/chemspyd/-/tree/main/demos
https://gitlab.com/aspuru-guzik-group/self-driving-lab/instruments/chemspyd/-/tree/main/demos
https://gitlab.com/aspuru-guzik-group/self-driving-lab/instruments/chemspyd/-/tree/main/demos
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00046c

Open Access Article. Published on 22 May 2024. Downloaded on 1/10/2026 9:49:34 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

Acknowledgements

The authors acknowledge the Defense Advanced Research
Projects Agency (DARPA) under the Accelerated Molecular
Discovery Program under Cooperative Agreement No.
HR00111920027 dated August 1, 2019. The content of the
information presented in this work does not necessarily reflect
the position or the policy of the Government. F. S.-K. is a post-
doctoral fellow in the Eric and Wendy Schmidt AI in Science
Postdoctoral Fellowship Program, a program by Schmidt
Futures. A. A.-G. thanks Anders G. Frgseth for his generous
support. A. A.-G. also acknowledges funding by Natural
Resources Canada and the Canada 150 Research Chairs
program.

References

1 R.]. Spinrad, Science, 1967, 158, 55-60.

2 J. Boyd, Science, 2002, 295, 517-518.

3 R. D. King, J. Rowland, S. G. Oliver, M. Young, W. Aubrey,
E. Byrne, M. Liakata, M. Markham, P. Pir, L. N. Soldatova,
A. Sparkes, K. E. Whelan and A. Clare, Science, 2009, 324,
85-89.

4 M. Christensen, L. P. E. Yunker, P. Shiri, T. Zepel, P. L. Prieto,
S. Grunert, F. Bork and]J. E. Hein, Chem. Sci., 2021, 12,
15473-15490.

5 J. Bai, L. Cao, S. Mosbach, J. Akroyd, A. A. Lapkin and
M. Kraft, JACS Au, 2022, 2, 292-309.

6 R. L. Greenaway, K. E. Jelfs, A. C. Spivey and S. N. Yaliraki,
Nat. Rev. Chem., 2023, 7, 527-528.

7 B. P. MacLeod, F. G. L. Parlane, T. D. Morrissey, F. Hise,
L. M. Roch, K. E. Dettelbach, R. Moreira, L. P. E. Yunker,
M. B. Rooney, J. R. Deeth, V. Lai, G. J. Ng, H. Situ,
R. H. Zhang, M. S. Elliott, T. H. Haley, D.]. Dvorak,
A. Aspuru-Guzik, J. E. Hein and C. P. Berlinguette, Sci.
Adv., 2020, 6, eaaz8867.

8 V. Fasano, R. C. Mykura, J. M. Fordham, J. J. Rogers,
B. Banecki, A. Noble and V. K. Aggarwal, Nat. Synth., 2022,
1, 902-907.

9 N. L. Bell, F. Boser, A. Bubliauskas, D. R. Willcox, V. S. Luna
and L. Cronin, Nat. Chem. Eng., 2024, 1, 180-189.

10 A. M. Lunt, H. Fakhruldeen, G. Pizzuto, L. Longley, A. White,
N. Rankin, R. Clowes, B. Alston, L. Gigli, G. M. Day,
A. 1. Cooper and S. Y. Chong, Chem. Sci., 2024, 15, 2456—
2463.

11 N. J. Szymanski, B. Rendy, Y. Fei, R. E. Kumar, T. He,
D. Milsted, M. J. McDermott, M. Gallant, E. D. Cubuk,
A. Merchant, H. Kim, A. Jain, C. J. Bartel, K. Persson,
Y. Zeng and G. Ceder, Nature, 2023, 624, 86-91.

12 G. Tom, S. P. Schmid, S. G. Baird, Y. Cao, K. Darvish, H. Hao,
S. Lo, S. Pablo-Garcia, E. M. Rajaonson, M. Skreta,
N. Yoshikawa, S. Corapi, G. D. Akkoc, F. Strieth-Kalthoff,
M. Seifrid and A. Aspuru-Guzik, ChemRxiv, 2024, preprint,
DOI: 10.26434/chemrxiv-2024-1j946.

13 F. Rahmanian, M. Vogler, C. Wolke, P. Yan, S. Fuchs,
M. Winter, I. Cekic-Laskovic and H. S. Stein, Sci. Data,
2023, 10, 43.

© 2024 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Digital Discovery

14 B. Burger, P. M. Maffettone, V. V. Gusev, C. M. Aitchison,
Y. Bai, X. Wang, X. Li, B. M. Alston, B. Li, R. Clowes,
N. Rankin, B. Harris, R. S. Sprick and A. I. Cooper, Nature,
2020, 583, 237-241.

15 A. Ramirez, E. Lam, D. Pacheco, Y. Hou, H. Tribukait,
L. Roch, C. Copéret and P. Laveille, Chem Catal., 2024,
4(2), 100888.

16 P. Laveille, P. Miéville, S. Chatterjee, E. Clerc, J.-C. Cousty,
F. de Nanteuil, E. Lam, E. Mariano, A. Ramirez,
U. Randrianarisoa, K. Villat, C. Copéret and N. Cramer,
Chimia, 2023, 77, 154-158

17 T. C. Wu, A. Aguilar-Granda, K. Hotta, S. A. Yazdani,
R. Pollice, J. Vestfrid, H. Hao, C. Lavigne, M. Seifrid,
N. Angello, F. Bencheikh, J. E. Hein, M. Burke, C. Adachi
and A. Aspuru-Guzik, Adv. Mater., 2023, 35, 2207070.

18 F. Strieth-Kalthoff, H. Hao, V. Rathore, J. Derasp, T. Gaudin,
N. H. Angello, M. Seifrid, E. Trushina, M. Guy, J. Liu, X. Tang,
M. Mamada, W. Wang, T. Tsagaantsooj, C. Lavigne,
R. Pollice, T. C. Wu, K. Hotta, L. Bodo, S. Li,
M. Haddadnia, A. Wolos, R. Roszak, C.-T. Ser, C. Bozal-
Ginesta, R. J. Hickman, J. Vestfrid, A. Aguilar-Granda,
E. L. Klimareva, R. C. Sigerson, W. Hou, D. Gahler, S. Lach,
A. Warzybok, O. Borodin, S. Rohrbach, B. Sanchez-
Lengeling, C. Adachi, B. A. Grzybowski, L. Cronin,
J. E. Hein, M. D. Burke and A. Aspuru-Guzik, Science, 2024,
384, eadk9227.

19 C. Guerrero-Sanchez, R. Yafiez-Macias, M. Rosales-Guzman,
M. A. De Jesus-Tellez, C. Pifion-Balderrama, J. J. Haven,
G. Moad, T. Junkers and U. S. Schubert, in RAFT
Polymerization, John Wiley & Sons, Ltd, 2021, pp. 1051-1076.

20 T. Schuett, J. Kimmig, S. Zechel and U. S. Schubert, Polymers,
2022, 14, 292.

21 A. Vriza, H. Chan and J. Xu, Chem. Mater., 2023, 35, 3046-
3056.

22 F. Hidse, L. M. Roch and A. Aspuru-Guzik, Trends Chem.,
2019, 1, 282-291.

23 B. P. MacLeod, F. G. L. Parlane, A. K. Brown, J. E. Hein and
C. P. Berlinguette, Nat. Mater., 2022, 21, 722-726.

24 R. El-khawaldeh and J. E. Hein, Trends Chem., 2024, 6, 1-4.

25 H.Wang, T. Fu, Y. Du, W. Gao, K. Huang, Z. Liu, P. Chandak,
S. Liu, P. Van Katwyk, A. Deac, A. Anandkumar, K. Bergen,
C. P. Gomes, S. Ho, P. Kohli, J. Lasenby, J. Leskovec,
T.-Y. Liu, A. Manrai, D. Marks, B. Ramsundar, L. Song,
J. Sun, J. Tang, P. Velickovic, M. Welling, L. Zhang,
C. W. Coley, Y. Bengio and M. Zitnik, Nature, 2023, 620,
47-60.

26 L. M. Roch, F. Hise, C. Kreisbeck, T. Tamayo-Mendoza,
L. P. E. Yunker, J. E. Hein and A. Aspuru-Guzik, PLOS One,
2020, 15, €0229862.

27 M. Sim, M. G. Vakili, F. Strieth-Kalthoff, H. Hao,
R. Hickman, S. Miret, S. Pablo-Garcia and A. Aspuru-Guzik,
Matter, 2024, DOI: 10.1016/j.matt.2024.04.022.

28 S. Lehtola, J. Chem. Phys., 2023, 159, 180901.

29 Chemspyd Package Documentation, https://aspuru-guzik-
group.gitlab.io/self-driving-lab/instruments/chemspyd/.

30 Chemspyd (on the Python Package Index), https://pypi.org/
project/chemspyd/.

Digital Discovery, 2024, 3,1319-1326 | 1325

https://doi.org/10.26434/chemrxiv-2024-rj946
https://doi.org/10.1016/j.matt.2024.04.022
https://aspuru-guzik-group.gitlab.io/self-driving-lab/instruments/chemspyd/
https://aspuru-guzik-group.gitlab.io/self-driving-lab/instruments/chemspyd/
https://pypi.org/project/chemspyd/
https://pypi.org/project/chemspyd/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00046c

Open Access Article. Published on 22 May 2024. Downloaded on 1/10/2026 9:49:34 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Digital Discovery

31 Chemspyd: An Open-Source Python Interface for
Chemspeed Robotic Platforms, https://gitlab.com/aspuru-
guzik-group/self-driving-lab/instruments/chemspyd.

32 G. S. Métraux and C. A. Mirkin, Adv. Mater., 2005, 17, 412—
415.

33 J. E. Millstone, S. J. Hurst, G. S. Métraux, J. I. Cutler and
C. A. Mirkin, Small, 2009, 5, 646-664.

34 A. J. Frank, N. Cathcart, K. E. Maly and V. Kitaev, J. Chem.
Educ., 2010, 87, 1098-1101.

35 D. G. Brown and J. Bostrém, J. Med. Chem., 2016, 59, 4443-
4458.

36 D. T. Ahneman, J. G. Estrada, S. Lin, S. D. Dreher and
A. G. Doyle, Science, 2018, 360, 186-190.

37 J. Liu, Y. Sato, F. Yang, A. J. Kukor and J. E. Hein, Chem.:
Methods, 2022, 2, €202200009.

38 A. M. Bran, S. Cox, O. Schilter, C. Baldassari, A. D. White and
P. Schwaller, Nat. Mach. Intell., 2024, DOI: 10.1038/s42256-
024-00832-8.

39 D. A. Boiko, R. MacKnight, B. Kline and G. Gomes, Nature,
2023, 624, 570-578.

40 N. Yoshikawa, M. Skreta, K. Darvish, S. Arellano-Rubach,
Z. Ji, L. Bjern Kristensen, A. Z. Li, Y. Zhao, H. Xu,
A. Kuramshin, A. Aspuru-Guzik, F. Shkurti and A. Garg,
Auton. Robots, 2023, 47, 1057-1086.

41 CLAIRIFY-Chemspeed: A natural language interface for
Chemspyd code generation, https://github.com/ac-rad/
clairify-chemspeed,/.

42 J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya,
F. L. Aleman, D. Almeida, J. Altenschmidt, S. Altman,
S. Anadkat, R. Avila, I. Babuschkin, S. Balaji, V. Balcom,
P. Baltescu, H. Bao, M. Bavarian, J. Belgum, I. Bello,
J. Berdine, G. Bernadett-Shapiro, C. Berner, L. Bogdonoff,
O. Boiko, M. Boyd, A.-L. Brakman, G. Brockman, T. Brooks,
M. Brundage, K. Button, T. Cai, R. Campbell, A. Cann,

. Carey, C. Carlson, R. Carmichael, B. Chan, C. Chang,

. Chantzis, D. Chen, S. Chen, R. Chen, J. Chen, M. Chen,

. Chess, C. Cho, C. Chu, H. W. Chung, D. Cummings,

Currier, Y. Dai, C. Decareaux, T. Degry, N. Deutsch,

. Deville, A. Dhar, D. Dohan, S. Dowling, S. Dunning,

. Ecoffet, A. Eleti, T. Eloundou, D. Farhi, L. Fedus,

Felix, S. P. Fishman,]J. Forte, I. Fulford, L. Gao,

. Georges, C. Gibson, V. Goel, T. Gogineni, G. Goh,

Gontijo-Lopes, J. Gordon, M. Grafstein, S. Gray,

. Greene, J. Gross, S. S. Gu, Y. Guo, C. Hallacy, J. Han,

Harris, Y. He, M. Heaton,]J. Heidecke, C. Hesse,

SR AEZPUOTERWE

1326 | Digital Discovery, 2024, 3, 1319-1326

43

44

View Article Online

Paper

A. Hickey, W. Hickey, P. Hoeschele, B. Houghton, K. Hsu,
S. Hu, X. Hu, J. Huizinga, S. Jain, S. Jain, J. Jang, A. Jiang,
R. Jiang, H. Jin, D. Jin, S. Jomoto, B. Jonn, H. Jun,
T. Kaftan, L. Kaiser, A. Kamali, I. Kanitscheider,
N. S. Keskar, T. Khan, L. Kilpatrick, J. W. Kim, C. Kim,
Y. Kim, H. Kirchner, J. Kiros, M. Knight, D. Kokotajlo,
L. Kondraciuk, A. Kondrich, A. Konstantinidis, K. Kosic,
G. Krueger, V. Kuo, M. Lampe, I. Lan, T. Lee, J. Leike,
J. Leung, D. Levy, C. M. Li, R. Lim, M. Lin, S. Lin,
M. Litwin, T. Lopez, R. Lowe, P. Lue, A. Makanju,
K. Malfacini, S. Manning, T. Markov, Y. Markovski,
B. Martin, K. Mayer, A. Mayne, B. McGrew,
S. M. McKinney, C. McLeavey, P. McMillan, J. McNeil,
D. Medina, A. Mehta, J. Menick, L. Metz, A. Mishchenko,
P. Mishkin, V. Monaco, E. Morikawa, D. Mossing, T. Mu,
M. Murati, O. Murk, D. Mély, A. Nair, R. Nakano, R. Nayak,
A. Neelakantan, R. Ngo, H. Noh, L. Ouyang, C. O'Keefe,
J. Pachocki, A. Paino,]J. Palermo, A. Pantuliano,
G. Parascandolo, J. Parish, E. Parparita, A. Passos,
M. Pavlov, A. Peng, A. Perelman, F. d A. B. Peres,
M. Petrov, H. P. d O. Pinto, M. Pokorny, M. Pokrass,
V. Pong, T. Powell, A. Power, B. Power, E. Proehl, R. Puri,
A. Radford, J. Rae, A. Ramesh, C. Raymond, F. Real,
K. Rimbach, C. Ross, B. Rotsted, H. Roussez, N. Ryder,
M. Saltarelli, T. Sanders, S. Santurkar, G. Sastry,
H. Schmidt, D. Schnurr, J. Schulman, D. Selsam,
K. Sheppard, T. Sherbakov, J. Shieh, S. Shoker, P. Shyam,
S. Sidor, E. Sigler, M. Simens, J. Sitkin, K. Slama, I. Sohl,
B. Sokolowsky, Y. Song, N. Staudacher, F. P. Such,
N. Summers, I. Sutskever, J. Tang, N. Tezak, M. Thompson,
P. Tillet, A. Tootoonchian, E. Tseng, P. Tuggle, N. Turley,
J. Tworek, J. F. C. Uribe, A. Vallone, A. Vijayvergiya,
C. Voss, C. Wainwright, J. J. Wang, A. Wang, B. Wang,
J. Ward, J. Wei, C. J. Weinmann, A. Welihinda,
P. Welinder, J. Weng, L. Weng, M. Wiethoff, D. Willner,
C. Winter, S. Wolrich, H. Wong, L. Workman, S. Wu,
J. Wu, M. Wu, K. Xiao, T. Xu, S. Yoo, K. Yu, Q. Yuan,
W. Zaremba, R. Zellers, C. Zhang, M. Zhang, S. Zhao,
T. Zheng, J. Zhuang, W. Zhuk and B. Zoph, arXiv, 2023,
perprint, DOI: 10.48550/arXiv.2303.08774.

S. H. M. Mehr, M. Craven, A. I. Leonov, G. Keenan and
L. Cronin, Science, 2020, 370, 101-108.

L. Bromig, D. Leiter, A.-V. Mardale, N. von den Eichen,
E. Bieringer and D. Weuster-Botz, SoftwareX, 2022, DOL:
10.1016/j.s0ftx.2022.100991.

© 2024 The Author(s). Published by the Royal Society of Chemistry

https://gitlab.com/aspuru-guzik-group/self-driving-lab/instruments/chemspyd
https://gitlab.com/aspuru-guzik-group/self-driving-lab/instruments/chemspyd
https://doi.org/10.1038/s42256-024-00832-8
https://doi.org/10.1038/s42256-024-00832-8
https://github.com/ac-rad/clairify-chemspeed/
https://github.com/ac-rad/clairify-chemspeed/
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.1016/j.softx.2022.100991
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00046c

	Chemspyd: an open-source python interface for Chemspeed robotic chemistry and materials platformsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00046c
	Chemspyd: an open-source python interface for Chemspeed robotic chemistry and materials platformsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00046c
	Chemspyd: an open-source python interface for Chemspeed robotic chemistry and materials platformsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00046c
	Chemspyd: an open-source python interface for Chemspeed robotic chemistry and materials platformsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00046c
	Chemspyd: an open-source python interface for Chemspeed robotic chemistry and materials platformsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00046c
	Chemspyd: an open-source python interface for Chemspeed robotic chemistry and materials platformsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00046c
	Chemspyd: an open-source python interface for Chemspeed robotic chemistry and materials platformsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00046c
	Chemspyd: an open-source python interface for Chemspeed robotic chemistry and materials platformsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00046c
	Chemspyd: an open-source python interface for Chemspeed robotic chemistry and materials platformsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00046c
	Chemspyd: an open-source python interface for Chemspeed robotic chemistry and materials platformsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00046c
	Chemspyd: an open-source python interface for Chemspeed robotic chemistry and materials platformsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00046c

