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ntum chemical descriptor
datasets for on-the-fly generation of informative
reaction representations: application to hydrogen
atom transfer reactions†

Javier E. Alfonso-Ramos, a Rebecca M. Neeser bc and Thijs Stuyver *a

In this work, we explore how existing datasets of quantum chemical properties can be repurposed to build

data-efficient downstream machine learning models, with a particular focus on predicting the activation

energy of hydrogen atom transfer (HAT) reactions. Starting from a valence bond (VB) analysis of

a generic HAT process, a set of informative descriptors is identified. Next, a surrogate neural network

model is constructed to predict an informative representation, based on the identified VB descriptors,

with the help of a publicly available dataset of (pre-computed) quantum chemical properties of organic

radicals. We demonstrate that coupling the resulting on-the-fly informative representation to

a secondary machine-learning model for activation energy prediction outperforms various predictive

model architectures starting from conventional machine-learning inputs by a wide margin, at no

additional computational cost. By basing their final predictions on physically meaningful descriptors, our

models enable the extraction of chemical insights, providing an additional benefit. Finally, because of the

extreme data efficiency of our descriptor-augmented models, we are able to fine-tune and apply them

to small datasets across various reaction conditions, settings and application domains, ranging from

regular (liquid phase) synthesis, over metabolism and drug design, to atmospheric chemistry.
1 Introduction

In recent years, the interest in predictive (machine learning)
models for chemical reactivity has soared. For tasks for which
hundreds of thousands to millions of data points are available,
e.g., forward and retrosynthesis prediction, signicant strides
towards accurate machine learning (ML) models have been
made.1–7 In the absence of data scarcity, neural network archi-
tectures that learn from simple structural descriptions of
molecules can be adapted to these respective tasks with great
success. For example, both graph neural networks (GNNs)
operating on 2D molecular graphs and Transformer models
operating on Simplied Molecular Input Line Entry Specica-
tion (SMILES)8 strings can be trained to predict the main
product of chemical reactions with roughly 90% accuracy on the
popular USPTO benchmark dataset.1–3
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For more specialized reactivity tasks (the prediction of activa-
tion energies/reaction rates, yields, enantiomeric excess etc.),
however, data tend to be scarce, and oen number in the
hundreds rather than in the hundreds of thousands. A straight-
forward application of the same type of data-hungry model
architectures is generally not feasible in these cases, as training
these models from scratch means that they must learn how to
properly interpret amolecular structure. One potential approach to
improve the data efficiency of machine learning models is intro-
ducing domain knowledge about the underlying physics/quantum
chemistry into the model. Models starting from physically mean-
ingful input representations, i.e., representations based on
quantum mechanical (QM) reactivity descriptors, have been
demonstrated to reach reasonable accuracy for datasets consisting
of only a couple hundred or a few thousand data points,9–18 and
they have been reported to be signicantly more generalizable, i.e.,
they are signicantly more accurate in out-of-sample predictions,
than conventional, structure/graph-based, analogs.11,12,19

Unfortunately, QM descriptors tend to be computationally
expensive – since they typically involve an elaborate workow
consisting of conformer generation, geometry optimization and
nally a single-point density functional theory (DFT) calculation
for each unique molecule – limiting their applicability in broad
virtual screening campaigns. A promising strategy to circum-
vent this limitation is to use separate machine learning models
Digital Discovery, 2024, 3, 919–931 | 919
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to predict these QM reactivity descriptors on-the-y, starting from
a simple 2D (graph) or geometry-based representation. Some
prominent examples of such descriptor prediction models are
Chemprop, DeepMoleNet, SchNet and AIMNet.20–23 In 2020, Guan
et al. proposed to directly integrate such a descriptor prediction
model into a reactivity prediction model as a surrogate.24 In their
approach, a directed message-passing neural network (D-MPNN)
model20 was trained to predict various atom- and bond-level QM
descriptors from input molecular structures. These QM descrip-
tors were subsequently used to augment the hidden representa-
tions of a Weisfeiler–Lehman (WL) based GNN25 to predict
regiochemical preferences for (aromatic) substitution reactions.
For training sets as small as 200 data points, the resulting “QM-
augmented” models reached accuracies of 85% and more on
a random data split, outperforming regular GNN analogs by more
than 10%. Furthermore, the developed models were extremely
fast; individual predictions required 100 ms or less, implying that
they could be readily employed in high-throughput screening
campaigns. In a follow-up study, Stuyver et al. adapted this model
to predict activation energies for competing (gas-phase) E2 and
SN2 reactions26,27 and observed a remarkable improvement in
accuracy for their GNN model upon QM-augmentation as well,
particularly in the data-limited regime.28 It should be noted that
the inclusion of a surrogatemodel for QM-derived descriptors has
also recently been tried – with success – for the prediction of
ADME properties for candidate drug molecules.29

Even when a surrogate model strategy is viable, initial training
data for the model still needs to be generated, and in some
situations, this may actually be more expensive than the explicit
calculation of QM descriptors at inference time. For example, in
their proof of principle study, Guan et al.24 generated a dataset of
selected QM properties for 130k organic molecules, extracted
from the ChEMBL30 and Pistachio31 databases.

A potential strategy to circumvent the expensive QM
descriptors calculations altogether would be to use pre-existing
datasets. In recent years, various general-purpose public data-
sets of computed QM properties of molecules have been
released.32–38 While these datasets have found dual use as
benchmarking targets,39–41 as well as training data for generative
models,42–44 their repurposing for (indirectly related) down-
stream predictive tasks, e.g., the prediction of chemical reac-
tivity, has remained largely unexplored up to this point.

Here, we will demonstrate that such a data repurposing
strategy can be readily applied to efficiently learn activation
energies for hydrogen atom transfer (HAT) reactions. Starting
from a generic description of HAT reactivity within the valence
bond perspective, we determine a set of qualitative characteristics
that can be expected to capture the main trends for this type of
reactivity. Based on this analysis, we identify the recently released
dataset of QM properties for 40 000 closed-shell organic mole-
cules and 200 000 radical analogs by Paton and co-workers, BDE-
db,36 as a useful source of informative descriptors and build
a surrogate model able to infer these descriptors on the y across
a broad chemical reaction space based on a simple SMILES string
input.36 The QM representation emerging from this surrogate
model is subsequently demonstrated to outperform traditional
structure-based representations for various machine learning
920 | Digital Discovery, 2024, 3, 919–931
model architectures on a challenging, in-house generated dataset
of diverse hydrogen abstraction reactions by a large margin. Most
importantly, models based on the developed surrogate QM
representation are extremely data efficient, approaching conver-
gence for training dataset sizes of only a couple hundred points.

Finally, we demonstrate the practical usefulness of the
developed representation by considering various real-world
applications. HAT reactivity plays a central role in various sub-
elds of chemistry. For example, HAT reactions constitute the
starting point of many oxidation pathways in polymer, atmo-
spheric and combustion chemistry.45–50 Additionally, they are
key transformations giving rise to the breakdown of active
pharmaceutical ingredients, so their kinetic and thermody-
namic properties facilitate the prediction of the stability of
these compounds,51,52 as well as the formation of potentially
hazardous metabolites.53 Finally, HAT reactions also play
a central role in various common synthesis strategies, e.g. in
several avors of C–H functionalization and photocatalysis, and
a lot of effort has been devoted to gaining insights into the
factors that affect their rates and yields.54–58 As a result, several
small datasets have been produced for this reaction class in
recent years, each with distinct reaction scopes and conditions,
depending on the specic application for which they were
designed.45,53,57,59–65 Because of their heterogeneity, these data-
sets cannot be combined easily. As will be demonstrated below,
with our extremely data-efficient model architectures, we are
able to meaningfully learn from these small datasets, and
generate accurate predictions across the chemical spaces asso-
ciated with the respective application domains, at both an
unprecedented speed and an extremely low computational cost.

In essence, the proposed strategy rests on making the overall
machine learning model architecture modular, with a core
informative representation prediction part, followed by a fairly
linear and extremely data-efficient downstream reactivity model
part, that can be easily retrained on/netuned to the specic
application or dataset at hand. It should be noted that the
presented strategy can also be regarded as an alternative to the
more conventional approach of ne-tuning pre-trained models
by modifying the prediction head.66 Overall, we believe that the
presented work provides a blueprint for how – starting from
physics/chemistry-inspired mechanistic insights – useful
(existing) datasets of QM properties can be identied and
leveraged for downstream predictive tasks. Furthermore, it
underscores the importance of community efforts to generate
and curate QM property datasets – and to include as many
informative descriptors as possible in them. At the end of this
contribution, we briey reect on the transferability of the
approach to other reaction types.
2 The valence bond reactivity model
as a source of inspiration for descriptor
selection

As indicated in the introduction, to gain qualitative insights
into the main factors driving HAT reactivity, we took inspiration
from qualitative Valence Bond (VB) theory.67,68 In a VB reactivity
© 2024 The Author(s). Published by the Royal Society of Chemistry
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analysis, reactivity diagrams, reecting the shape of the poten-
tial energy surface (PES) associated with a given chemical
system along a chosen reaction coordinate, are constructed.
Usually, one starts by examining the evolution of the so-called
“diabatic curves”, which represent the wave function associ-
ated with a limited number of VB structures; i.e., they corre-
spond to a localized VB conguration (e.g., a specic Lewis
structure of the reactants or products). These individual dia-
batic curves interact along the reaction coordinate, and collec-
tively they give rise to the “adiabatic” curve, i.e., the full ground-
state PES associated with the chemical system under consider-
ation. The transition state then corresponds to the top of the hill
of the adiabatic state, which usually lies in the same region as
the crossing point between the reactant and product diabatic
states. An in-depth discussion of the theory behind the
construction VB reactivity diagrams is provided in ref. 68. In
Fig. 1, a simplied sketch of such a diagram is presented for the
model reaction between H2 and Hc.

From a generic valence bond diagram, the following
universally valid – yet approximate – expression for the barrier
height can be derived:68

DE ¼ f � �
Gr þ Gp

�þ 1

2
DErp þ B (1)

where Gr is the promotion energy on the reactant side, i.e., the
energy difference between the reactant and product diabatic
states in the reactant geometry, Gp is the corresponding
promotion energy on the product side, f depends on the
curvature of the diabatic states and is a fraction, i.e., a number
Fig. 1 An example VB reactivity diagram for a model HAT reaction
between H2 and Hc. Along the reaction coordinate, the reactant dia-
batic state (blue) rises in energy (since the hydrogen atoms contrib-
uting electrons to the formal covalent bond on the left become
increasingly separated as the reaction proceeds), the product state
(red) drops in energy, since the product covalent bond becomes
increasingly stabilized as the associated hydrogens approach. The
adiabatic state (black) is the full ground- (or adiabatic) state resulting
from the mixing of the localized diabatic states.

© 2024 The Author(s). Published by the Royal Society of Chemistry
between 0 and 1, and DErp corresponds to the thermodynamic
driving force, i.e., the energy difference between reactants and
products. These rst two terms in the expression collectively
indicate the height of the crossing point between the reactant
and product diabatic states. The third and nal term, B, is
a correction term corresponding to the interaction between the
diabatic states in the transition state geometry, i.e., it corre-
sponds to the energy lowering from the crossing point of the
reactant and product diabatic states and the top of the hill on
the adiabatic state.

Eqn (1) is an essentially linear – and inherently interpretable
– one, and has been applied successfully to various areas of
chemical reaction space, leading to robust and fairly accurate
barrier estimates.69–76 Unfortunately, obtaining reliable values
for each of the featured parameters is ambiguous and compu-
tationally expensive for some reaction types. For HAT reactions,
however, most of the terms in the expression can straightfor-
wardly be connected to unambiguous QM descriptors, which
can be readily computed with high accuracy, hence our decision
to focus on this type of reactivity in this proof of concept study.

More specically, in HAT reactions, the promotion energies,
Gr and Gp, are proportional to the vertical/frozen bond disso-
ciation energy (BDE) – or, more accurately, the bond dissocia-
tion free energy (BDFE) – of the covalent bond being broken in
the reactant and product geometries respectively.68 The ther-
modynamic driving force, DErp, in its turn corresponds to the
(relaxed) BD(F)E by denition. f and B have been demonstrated
to be fairly constant within narrow reaction families, e.g., when
considering a carbon-based radical abstracting H atoms from
a C sp3 bond.68 Since our ambition here is to generalize across
the full space of (neutral) C, H, N, O containing organic radical
reactions, this assumption can be expected not to hold
perfectly. It has been demonstrated however that both of these
parameters are connected to a variety of descriptors that can in
fact be quantied straightforwardly.

First and foremost, f depends on the electrostatic interac-
tions along the abstraction site–hydrogen–radical site point-
charge array in the transition state (TS) geometry, which can
be probed indirectly by considering atomic charges (in the
reactant and product geometries).77 Additionally, f also depends
on the sterics around the radical and abstraction sites – steric
bulk around those sites can be expected to strain the transition
state geometry and hence should result in a higher crossing-
point between the reactant and product diabatic curves.
Commonly, buried volume (Vbur) is used as a descriptor to
quantify steric bulk around reactive sites.78 Finally, f has also
been suggested to depend on the extent of delocalization in
reactant and product, which can be probed through consider-
ation of the spin density (r).68 However, an alternative viewpoint
is that losses and/or gains in delocalization energy may already
be fully reected in the thermodynamic driving force term
(DErp), so that the impact of delocalization on f may actually be
negligible.73 As indicated above, B depends on the interaction
between the various diabatic states, and has been connected
primarily to the (local) ionization potentials and electron
affinities – and/or electron negativities – at the radical/
abstraction sites.68
Digital Discovery, 2024, 3, 919–931 | 921
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The discussion in the previous paragraphs provides us with
an ideal QM descriptor representation that should render the
mapping function from reaction to HAT barriers as linear as
possible. As already indicated in the introduction, computing
this complete input representation would be complex and
expensive – many different DFT calculations would be needed
(for both charged and uncharged species) for every data point.
At the same time, the literature suggests that even a subset of
the descriptors mentioned above could be sufficient to build an
informative representation: for small subsets of the chemical
space we are interested in, various groups have previously
constructed effective multivariate linear models, as well as
some more advanced architectures (random forests, neural
networks, etc.) with a subset of the descriptors listed
above.53,59,60,79

As already indicated above, encouraged by these ndings, we
selected the BDE-db dataset as a suitable source of descriptors.
This dataset contains (relaxed) BDFEs – at room temperature in
the gasphase – and BDEs, (Mulliken) atomic charges, and
(Mulliken) spin densities for over 200 000 organic radical
compounds.36 Additionally, since accurate geometries are
included in this dataset, we were able to expand this descriptor
list with buried volume values at amarginal computational cost.
Finally, we also used these geometries to rapidly compute
vertical, i.e., frozen or unrelaxed, BDE values at extended tight-
binding (xTB) level of theory (these nal low-level descriptors
were found to be remarkably predictive – even at this low theory
level – for activation energies of HAT reactions between P450
enzymes and organic compounds in a recent study by Gingrich
et al.53 – see the Methodology section for more details).

With this dataset-derived representation selected, we set out
to train a surrogate descriptor model, in combination with
a top-level reactivity model, to probe HAT reactivity on the y.

3 Methodology
3.1 Extracting and curating the descriptor data from the
BDE-db dataset

As indicated in the introduction, the training data for the
surrogate neural network (vide infra) was extracted from
a dataset recently released by Paton and co-workers,36 consisting
of QM properties for radicals and associated closed shell
molecules of less than ten heavy atoms, without formal charges
on any of the atoms, and containing exclusively C, H, N, and O
atoms. We complemented the registered descriptors, i.e.,
BDFEs, spin densities, and partial charges, with Vbur values
around the radical site and frozen BDE values computed at
GFN2-xTB level of theory. Vbur values were computed with the
help of the Morfeus package80 with a radius of 3.5 Å.81 Frozen
BDEs were computed by re-optimizing the extracted geometries
at GFN2-xTB level of theory and then performing single-point
calculations on the bond fragments, i.e., the organic radical
and a hydrogen radical respectively. In total, the complete set of
descriptors could be obtained for 186 240 dissociation reactions
in this manner.

The entire dataset in its curated form can be accessed and
downloaded from https://gshare.com/articles/dataset/
922 | Digital Discovery, 2024, 3, 919–931
dataset_surrogate_model_cs/24754341. It should be noted
that during the preparation of this manuscript, an expanded
version of the dataset, covering the elements S, Cl, F, P, Br
and I as well was released.82 As such, the approach described
here could be expanded straightforwardly to a much broader
scope of HAT reactions in the near future.
3.2 Generation of the HAT dataset

To enable comparisons between various types of machine
learning model architectures, a dataset of HAT reaction proles
was generated by combining multiple bond dissociation reac-
tions included in the BDE-db dataset.

A fully automated reaction prole computation workow
based on autodE83 and Gaussian16 (ref. 84) was set up to
generate this dataset, starting from an input list of reaction
SMILES. This workow is analogous to the workow recently
developed for cycloaddition reactions by Stuyver et al.;85 an in-
depth discussion can be found in Section S1 of the ESI.†

It should be noted that around 40 billion HAT reaction
SMILES can in principle be constructed by making combina-
tions between bond dissociation reactions in the BDE-db
dataset. Most of these reactions are very similar, involving
HAT among two carbon atoms. We aimed to select a tiny sample
(2000 reactions) from this huge search space, covering maximal
structural diversity, to compute explicitly. To this end, we iter-
atively sampled enumerated reactions in such a way that the
differential reaction ngerprint (radius = 3; nbits = 2048)86

distances with all previously sampled reactions exceeded 0.85
(see Section S1† for more details).87

As the level of theory for the DFT calculations, we selected
M06-2X/def2-SVP88,89 for optimizations and frequency calcula-
tions, i.e., thermal corrections. Single-point energy renements
were performed at M06-2X/def2-TZVP88,90 level of theory. The
choice for the functional and basis set was inspired by the
benchmarking results from Paton et al.91

One technical aspect where we decided to deviate in our
workow from the previous work on cycloaddition reactions is
the conformer selection.85 Previously, the default number of
conformers in autodE (300) would be generated for every
species along the prole, a root mean squared deviation (RMSD)
threshold of 0.3 Å would then be applied to remove very similar
conformer geometries, aer which the lowest energy
conformer, computed at GFN2-xTB level of theory, would be
selected. Remarkably, for HAT reactions, this methodology
leads to poor reproducibility of the activation energies (mean
absolute errors between successive runs on 30 randomly
sampled reactions amounting to more than 2.1 kcal mol−1 for
the activation energy, and ∼0.5 kcal mol−1 for the reaction
energy; cf. Section S1†). Aer some benchmarking, we adapted
these conformer selection settings, selecting 1000 conformers
for every species, using an RMSD cut-off of 0.1 Å, and ranking
conformers based on single-point M06-2X/def2-SVP88,89 ener-
gies. In this manner, two successive runs of the workow on the
same set of reaction SMILES result in an acceptable mean
absolute error (MAE) of ∼1 kcal mol−1 for the activation ener-
gies and ∼0.6 kcal mol−1 for the reaction energies.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Tunneling corrections were computed based on the semi-
classical approximation.92 In this approximation, the potential
energy barrier is approximated by an Eckart potential, for which
the tunneling probability is computed analytically and the
tunneling transmission coefficient is integrated numerically.
More details can be found in Section S1† and ref. 92.

In total, 1511 reaction proles were successfully computed in
this manner (75.6% success rate).

3.3 Surrogate neural network model for QM descriptor
prediction

A graph neural network (GNN), consisting of a directed message-
passing neural network (D-MPNN) encoder and a feed-forward
neural network (FFNN), was selected for the fast prediction of
the QM descriptors.20,24 The model architecture is an adaptation
of the Chemprop model.20 Inference for an individual molecule
starts by parsing its SMILES string, aer which a graph-based
input representation is constructed, with atoms as nodes and
bonds as edges. The D-MPNN module subsequently encodes this
molecular graph, resulting in learned atom and bond features.
Finally, the learned representation of the molecule is used as
input to themultitask FFNN, which yields the nal predictions (cf.
Fig. 2). A more detailed description of the model architecture can
be found in Section S2 of the ESI.†

The surrogate model is trained to predict two atom-level
descriptors (atomic Mulliken charges and spin densities), as
well as three molecule-level descriptors (relaxed BDFEs, frozen
BDEs, and Vbur of the radical sites). Based on a hyperparameter
grid search, the depth was set to 5 for the D-MPNN and 4 for the
FFNN. For the hidden size, 1200 neurons were selected for the
D-MPNN and 900 for the FFNN (cf. Section S2.1 in the ESI†).

Once a reasonable set of hyperparameters was selected, the
model was trained on a new data split, where all the radical
species and molecules present in the constructed HAT reactivity
dataset (vide supra) constitute the test set, and the remaining
points are split between training (80%) and validation (20%) set.

3.4 Model architecture for the reactivity prediction

Various established model architectures for reactivity predic-
tion have been considered, ranging from linear multivariate
regression, k-nearest neighbors (KNN), random forests (RF),
graph neural networks (GNN), XGBoost and FFNN, to geometry-
based kernel ridge regression (KRR) An in-depth discussion of
Fig. 2 Schematic representation of the surrogate model used for the Q

© 2024 The Author(s). Published by the Royal Society of Chemistry
the characteristics of each model considered can be found in
Sections S3.1 and S3.2 of the ESI.†

Additionally, a couple of models inspired by “delta machine
learning” (D-ML),93–95 were also designed. In this model archi-
tecture, the BDFE values, inferred by the surrogate model, are
rst used to generate an estimated thermodynamic driving
force, and this driving force is correlated with the activation
energy across the training set. Subsequently, an ML model is
trained to predict the deviation of the activation energy, i.e., the
target considered in this study, from the established
thermodynamic-kinetic correlation trend line. For a more in-
depth discussion of this model architecture, we refer to
Section S3.3 of the ESI.†
3.5 Datasets

In total, 3 application domains have been considered to show-
case the ability of our model architectures to efficiently learn
barrier heights in various settings.

In the rst application domain, we focused on HAT predic-
tions related to chemical synthesis. We started by analyzing
a dataset consisting of 238 computed reaction proles for alkoxy
radicals abstracting hydrogens from hydrocarbons and hetero-
substituted compounds in an acetonitrile solution.79 Geometry
optimizations and frequency calculations were performed at
uB97X-D/6-31G(d) level of theory,96–99 single-point energy
renements at UuB97X-D/6-311++G(d,p) level of theory, and
solvation was taken into account through the SMD model.100

Since two of the radicals involved in this dataset contain Cl and
F atoms – elements that are not present in the training data of
the surrogate model – we computed the descriptors for these
species explicitly.

Subsequently, we considered a small dataset of experimen-
tally reported selectivities for 6 hydrocarbons by CH3Oc deter-
mined by Zuo et al.57 More specically, we aimed to reproduce
the observed selectivities by inferring the relative barrier
heights associated with individual carbon attack positions (15
in total).

A second main dataset within this domain, consisting of
reactions associated with photoredox-mediated HAT catalysis,
was also considered. 564 reactions with various allylic, prop-
argylic, benzylic, aldehyde and alkyl substrates (resulting in
a collection of 182 distinctive C–H bonds positions) and O/N-
based radical species, were extracted from the recently
M descriptor predictions.
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published dataset by Yang et al.60 The original computations of
the activation energies were performed at B3LYP/6-31+G(d,p)//
M06-2X/TZVPP;88,89,101–103 solvation energy corrections were
included using the SMD model with M06-2X/6-31G(d) in
acetonitrile.100

Finally, we aimed to apply our models to an experimental
dataset of rate constants/activation energies for 45 HAT reac-
tions from C(sp3)–H bonds by cumyloxyl radical (CumOc),
compiled by Bietti et al.62

In a second application domain, we focused on the predic-
tion of metabolites of medicinally relevant compounds. As
such, we considered a second dataset consisting of 24 activation
energies for hydrogen atom transfer by the cytochrome P450
enzyme from organic compounds,53 computed at B3LYP/6-
311++G(2d,2p)//B3LYP/6-31G(d) (Fe=SVP) level of theory.101–103 5
of the HAT reactions involve compounds with elements outside
of the domain of the training data of our surrogate model and
hence were discarded in our analysis. The models trained on
the resulting extremely small dataset were subsequently applied
to predict activation energies for 6 additional computed HAT
reaction proles for unseen substrates.

As a third application, we focus on HAT reactions encoun-
tered in atmospheric chemistry. To this end, around 300 HAT
reactions were extracted from RMechDB. RMechDB is a data-
base consisting of elementary radical reactions recently
assembled by Tavakoli et al.45 In its current form, the dataset is
dominated by gas-phase reactions of isoprene and other organic
molecules. No labels, i.e., computed or predicted activation
energies, are available for the reactions in this database, and
hence we computed reaction proles ourselves with the same
Fig. 3 Correlation between the computed QM descriptors and those pr
proportional to the density of the points here, i.e., dark patches corresp

924 | Digital Discovery, 2024, 3, 919–931
high-throughput workow used to generate the previously dis-
cussed in-house HAT dataset.

A summary with the main information of every dataset can
be found in the Table 2.
4 Results and discussion
4.1 Performance of the surrogate model

In Fig. 3, the performance of the trained surrogate model on the
held-out test set, i.e., the radicals and closed-shell molecules
present in the BDE-db dataset, is presented. For (relaxed)
BDFEs, atomic charges, spin densities, and buried volumes,
excellent correlations between predicted and computed values
are obtained (R2 $ 0.97); for frozen BDEs, the correlation is
slightly worse (R2 = 0.89), but the quantitative trends are still
largely retained.
4.2 Predicting activation energies for our in-house generated
dataset

With a performant surrogate model at our disposal, we turned
to the in-house generated HAT dataset. In Fig. 4, the distribu-
tion of the computed activation and reaction energies, as well as
the correlation between both quantities, is presented.
Remarkably, activation and reaction energies only correlate
moderately (R2 = 0.71), indicating that the Bell–Evans–Polanyi
principle104,105 on its own is not sufficient to fully explain the
trends in the activation energies, and that building a predictive
model including multiple descriptors is warranted for this
dataset.
edicted by the surrogate model. Note that color brightness is inversely
ond to a high point density and vice versa.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 (a) Histogram presenting the distribution of the computed activation energies with tunneling corrections included (DG‡
corr). (b) Histogram

representing the distribution of the computed reaction energies (DGrxn). (c) Correlation plot between DG‡
corr and DGrxn.
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Various baseline models, not making use of the informative
representation predicted by our surrogate GNN, were consid-
ered as baselines. Due to the relatively small size and inherent
diversity present in the constructed HAT dataset, all of these
model architectures perform remarkably poorly. RF, KNN and
XGBoost models taking structural ngerprints, i.e., differential
reaction ngerprints (DRFP), as input, reach a mean absolute
error (MAE) of 5.2–5.3 kcal mol−1 (corresponding to R2 around
0) in 10-fold cross-validation. This is barely any better than the
standard deviation (7 kcal mol−1), i.e., the hypothetical accuracy
that would be obtained for a model that always predicts the
mean value for the dataset. The GNN architectures tested –

a Weisfeiler–Lehmann (WL) one and Chemprop – perform
somewhat better, but the MAE still amounts to ∼2.9–
3.5 kcal mol−1 (R2 ∼ 0.65). The geometry-based kernel ridge
regression model, based on the recently introduced bond-based
reaction representation (B2R2

l ) reaches a similar performance
(MAE = 3.55 kcal mol−1).106

The results quoted above are in great contrast to the results
obtained when the predicted informative representation is used
as the input for the reactivity model. Now, the MAEs amount to
1.9–2.3 kcal mol−1 (cf. Table 1) and the corresponding R2 scores
Table 1 A summary of the performance of some of the model
architectures tested on the prediction of DG‡ for the HAT dataset

Model architecture
MAE
(kcal mol−1)

RMSE
(kcal mol−1)

RF (ngerprint input) 5.25 6.96
XGBoost (ngerprint input) 5.32 7.03
Chemprop (CGR representation) 2.94 4.15
KRR (B2R2l representation) 3.55 4.71
Linear model (descriptor input) 2.28 3.14
RF (descriptor input) 2.10 3.01
XGBoost (descriptor input) 2.24 3.13
FFNN (descriptor input) 1.98 2.78
D-ML (descriptor input) 1.97 2.76

© 2024 The Author(s). Published by the Royal Society of Chemistry
amount to 0.80–0.85. There is still some non-linearity present in
the relationship between the representation used and the acti-
vation energies but only to a limited extent: our best non-linear
model architecture, the FFNN model, outperforms a multivar-
iate linear regression model by only 0.30 and 0.36 kcal mol−1, in
terms of MAE and RMSE, respectively (ensembling 4 FFNNs, the
error can be reduced further by 0.02 and 0.03 kcal mol−1

respectively). In line with this observation, we also observe that
fairly few data points are needed to reach this accuracy; already
with 800 training points, the nal accuracy is approached
within 0.1 kcal mol−1 for most of the machine learning model
architectures (Fig. 5). Reducing the training set size, the
multivariate linear model takes over as the most accurate model
when fewer than 400 training points are considered.

As discussed in Section S3.3 of the ESI,† D-ML models
perfectly adhere to the trends established above. Because of the
introduced thermodynamic-kinetic coupling, these models
exhibit a better baseline, but we observe again that the accuracy
improves signicantly when switching from a ngerprint-based
input to our surrogate-based informative representation (the
MAE reduces from 2.84 to 1.97 kcal mol−1). Since the best D-ML
does not outperform our regular FFNN, we decided to focus on
the non-delta learning models in the remainder of this work.

In Fig. 6a, a schematic overview of the impact of the indi-
vidual descriptors of the (predicted) informative representation
on the accuracy of the multivariate linear model is provided.
Our analysis indicates that each descriptor has at least some
predictive power, i.e., they all correlate to some extent with the
activation energies, so that the prediction accuracy for the cor-
responding univariate linear regression models exceeds the
standard deviation across the dataset by a non-negligible
margin. As could have been expected from the Bell–Evans–
Polanyi analysis in Fig. 4, the (relaxed) BDFE values correlate
extremely well; a linear regression model based exclusively on
this (predicted) descriptor reaches an MAE of 2.84 kcal mol−1,
which is not dramatically worse than the multivariate model
based on all (predicted) descriptors. The descriptor that is most
Digital Discovery, 2024, 3, 919–931 | 925
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Fig. 5 Learning curves for the DG‡
corr for several models based in (a) an intermediate VB learned representation and (b) the differential reaction

fingerprints (error bars were determined from the results for the individual folds in the cross-validation). (c) Correlation plot between the
computed and predicted activation energies with tunneling corrections DG‡

corr for the (in-sample) test sets considered during 10-fold cross-
validation for the FFNN model with 4 ensembles. Note that color brightness is inversely proportional to the density of the points here, i.e., dark
patches correspond to a high point density and vice versa.

Fig. 6 Performance on DG‡, in terms of mean absolute error (MAE), for multivariate linear models based on a subset of the descriptors. (a)
Trained on our in-house HAT dataset. (b) Trained on the 238 reactions involving alkoxy radicals abstracting hydrogens.

Digital Discovery Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

2 
A

pr
il 

20
24

. D
ow

nl
oa

de
d 

on
 1

0/
23

/2
02

5 
12

:3
1:

21
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
complementary to the BDFE, i.e., the descriptor whose inclu-
sion in the linear model reduces the prediction errors the most,
is the atomic charge (q), closely followed by the frozen bond
dissociation energy (BDEfr). On their own, the spin density (r)
values on the radical centers of reactants and products, also
have signicant predictive power, but they do not improve the
model accuracy when the BDFE is already considered as an
input descriptor. Note that this is in line with the point of view
discussed above that changes in delocalization are fully enco-
ded in the thermodynamic driving force: the information
encoded in the spin densities overlaps with the information
gained from consideration of the BDFE values.73 Remarkably,
and in contrast to the results obtained for the smaller subsets of
chemical space considered as part of the applications (vide
infra), the inclusion of Vbur does not improve the prediction
accuracy on this dataset.
926 | Digital Discovery, 2024, 3, 919–931
4.3 Applications

In this nal section, we will showcase the usefulness of our
approach by considering a set of applications. Particularly, we
will exploit the data efficiency of models based on our VB-
inspired representation to learn activation energies across
some extremely small HAT datasets found in the literature (vide
supra).

As indicated above, the rst application area focuses on HAT
predictions related to chemical synthesis. More specically, we
started by considering a HAT dataset involving alkoxy radicals
and hydrocarbons/heterosubstituted compounds (cf. “alkoxy
dataset” entry in Table 2).79 In previous work, an empirical
model based on ve computed parameters, respectively
describing the electronegativities and delocalization of the
reactants and products, as well as the thermodynamic driving
force, was proposed.59 Applying this empirical model to the full
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 2 A summary of the different applications and datasets (m =
mean and s= standard deviation). The tabulatedMAE and RMSE values
correspond to the best models developed for each dataset
respectively

Dataset Samples
m (s)
(kcal mol−1)

MAE (RMSE)
(kcal mol−1)

In-house dataset 1511 21.14 (7.11) 1.95 (2.75)
Alkoxy dataset79 238 12.49 (2.78) 1.11 (1.32)
Exp. alkoxy57 15 14.53 (2.16) 0.97 (1.27)
Photoredox HAT60 564 16.39 (4.87) 0.94 (1.42)
Exp. cumyloxyl62 45 12.82 (1.49) 1.04 (1.26)
Cytochrome P450 (ref. 53) 19 12.91 (1.65) 0.94 (1.01)
Atmospheric HAT45 73 9.10 (5.29) 1.20 (1.57)
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dataset, an MAE 0.85 kcal mol−1 (R2 = 0.84) is obtained on the
training set, and 1.24 kcal mol−1 (R2 = 0.72) on the test set.

With the help of our on-the-y predicted VB-inspired repre-
sentation, MAEs of 1.02 kcal mol−1 (R2 = 0.76) and
1.25 kcal mol−1 (R2 = 0.66) are reached, respectively on the
training and test set, with a simple multivariate linear model.
Even though our linear regression model does not outperform
the tailored, empirical expression by Liu et al.59 here, it is
important to note that our predictions can be performed on
a millisecond scale, whereas the computed descriptor inputs
needed in the empirical model require geometry generation and
a succession of tedious DFT calculations.

We also considered the performance of non-linear model
architectures on this small dataset. Training a FFNN from
scratch results in anMAE on the test set of 1.66 kcal mol−1 (R2=
0.45). Taking a transfer learning approach, i.e., using the
parameters from the FFNNmodel trained on the more extensive
and diverse in-house HAT dataset to initialize the network, an
MAE of 1.22 kcal mol−1 (R2 = 0.68) is reached on the test set;
already marginally better than the linear model. Remarkably, an
RF model based on the predicted representation now actually
outperforms all other model architectures, with an MAE of
1.11 kcal mol−1 (R2 = 0.78).

Another remarkable observation is that the predictive power
of the respective descriptors in our VB-inspired representation
has changed signicantly upon switching from the in-house
HAT dataset, discussed in the previous section, to the current
one (Fig. 6; cf. Section S5.2 in the ESI†). As mentioned before, in
the diverse dataset constructed as part of this study, the inclu-
sion of the predicted BDFEs reduced the MAE of the linear
model the most, and the inclusion of Vbur had no observable
effect on themodel accuracy. In the small alkoxy radical dataset,
however, BDFE values are not nearly as predictive. Atomic
charges improve the model accuracy the most now, and the
inclusion of Vbur leads to signicant further improvements.
These differences can be connected to the more pronounced
polar effects in alkoxy radicals, due to the involvement of a more
electronegative radical center.65,107–109 In more general terms,
these ndings about descriptor importance underscore that
local correlations in small subsections of chemical space are not
necessarily transferable and that caution is needed when
© 2024 The Author(s). Published by the Royal Society of Chemistry
aiming to draw universal conclusions about reactivity trends
based purely on empirical trends.

Next, we attempted to predict the experimentally reported
HAT selectivities reported by Zuo et al.,57 which were subse-
quently computationally recovered through DFT calculations by
Ma and co-workers (cf. “Exp. alkoxy” entry in Table 2).79 In Fig. 7,
the performances of the various model architectures are pre-
sented. For all models, the predictions are in qualitative
agreement with the experimentally observed regioselectivity the
majority of the time, with the RF and FFNN models each
reaching 5 out of 6 correct predictions. Also quantitatively, our
models reach good accuracy as compared to the computed DFT
barriers in this application. The most accurate model is the
FFNN (MAE = 0.97 kcal mol−1, RMSE = 1.27 kcal mol−1, R2 =

0.63).
Subsequently, we focus on the dataset of photoredox C–H

bond functionalization reactions generated by Yang et al. (cf.
“photoredox HAT” entry in 2).60 On the full dataset of 500+
reactions, our approach results in excellent accuracy, regardless
of the secondary reactivity model architecture (for the FFNN, an
MAE of 1.06 kcal mol−1 and R2 of 0.90 is reached in 5-fold cross-
validation, and for the RF, an MAE of 0.94 kcal mol−1 and R2 of
0.91 is obtained). It should be noted that with a heavily ne-
tuned input representation of over 50 explicitly computed QM
descriptors in combination with AdaBoost, Yang et al.60 ach-
ieved an even higher accuracy in the original work on this
dataset (MAE = 0.64 kcal mol−1 and R2 = 0.96 in 5-fold cross-
validation). Reducing the training set size to 25–50 data
points causes this advantage compared to our models to vanish
(see Section S6 in the ESI†), underscoring the merit of our
approach in the extremely low data regime.

To end this rst application area, we considered the experi-
mental dataset of 45 HAT activation energies, assembled by
Bietti and co-workers62 (cf. “Exp. cumyloxyl” entry in Table 2).
Our models, trained on the photoredox dataset specied above,
predict the (rescaled) activation energies in this experimental
set with good accuracy (∼1 kcal mol; cf. Section S5.3 of the ESI†),
correctly identifying all of the reaction barriers to be low.
However, the coefficients of determination, i.e., the extent to
which ne-grained trends across these 45 reactions are recov-
ered, are essentially zero. The main reason for this failure to
recover the reactivity trends is the distinct data distribution, i.e.,
the activation energies in this specic experimental dataset are
“outliers” with respect to the reactions present in Ma et al.‘s79

dataset, and – to a lesser extent – the fairly low spread in the
targets (the standard deviation amounts to only 1.5 kcal mol−1).
This conjecture can be conrmed by retraining our models on
the 45 data points by Bietti et al.: in 10-fold cross-validation (i.e.,
when only 36 in-distribution training points are considered),
a signicantly better R2 = 0.44 is now reached for our best
model, the ensembled FFNN with transfer learning.

The second application area focuses on P450 metabolism of
medicinally relevant compounds (cf. “Cytochrome P450” entry
in Table 2). As discussed in the Methodology section, predictive
models were trained on a tiny dataset of 19 HAT activation
energies, and subsequently, these models were applied to
predict 6 barriers for unseen substrates, in line with the work by
Digital Discovery, 2024, 3, 919–931 | 927
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Fig. 7 Prediction of selectivity and DG‡ for the compounds experimentally considered by Zuo et al.57 for the various model architectures trained
on the alkoxy radical dataset. Bold values represent the major regioisomer.
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Gingrich et al.53 We again started with a multivariate linear
regression model, but we considered only (a subset of) the
descriptors of the hydrocarbons to reduce collinearity and avoid
overtting (Section S6†). With the trained model, based only on
the predicted spin density and buried volume, an MAE of
1.12 kcal mol−1 is obtained for the unseen substrates, in line
with the accuracy reached by the predictive model proposed by
Gingrich et al. (1.15 kcal mol−1).53 Adding more descriptors, the
MAE of the model increases (Section S7†).

Subsequently, we also considered our FFNN architecture.
Trained from scratch on the same subset of descriptors with two
neurons, the model reaches an MAE of 1.04 kcal mol−1. With 4
ensembles, the model reaches an MAE of 0.94 kcal mol−1.

For the nal application, we considered the HAT reactions
found in RMechDB (Section S8 of the ESI†). In total, we were
able to extract 268 reactions, falling within the scope of our
surrogate model, from this database; primarily HAT reactions
between organic compounds and HOc and HOOc radicals, i.e.,
the onset of atmospheric oxidation. With our autodE-based
workow for reaction prole computation, we only managed
to successfully compute proles for 73 of these reactions (failure
928 | Digital Discovery, 2024, 3, 919–931
sources are detailed in Section S8;† see also “atmospheric HAT”
entry in Table 2).

At rst, we tried to directly reproduce the computed activa-
tion energies with the predictive models trained on our in-
house assembled HAT dataset, but even our best model
(ensembled FFNN) reached an inadequate MAE of
4.58 kcal mol−1 (RMSE = 5.11 kcal mol−1, R2 = 0.05). A
reasonable explanation for this poor performance is (once
again) the distribution of the data: our in-house generated
dataset contained no examples involving HOc or HOOc radicals,
and the activation energies for the reactions extracted from
RMechDB (mean DG‡

corr = 9.10 kcal mol−1) tend to be at the
lower edge of the activation energy distribution of our training
data (cf. Fig. 4). Once more, upon re-training on the 73
computed RMechDB reaction proles, an outstanding accuracy
is recovered; in 10-fold cross-validation, our ensembled FFNN
with transfer learning now reaches R2 = 0.88 (MAE =

1.29 kcal mol−1, RMSE = 1.51 kcal mol−1); our multivariate
linear model reaches R2 = 0.88 as well (MAE = 1.20 kcal mol−1,
RMSE= 1.57 kcal mol−1). With both of these ne-tunedmodels,
we made predictions for the remaining reactions extracted from
© 2024 The Author(s). Published by the Royal Society of Chemistry
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the database (cf. https://github.com/chimie-paristech-CTM/
energy_predictor_HAT/tree/master/reactivity_model/
RMechDB_pred).

The observations for this last application are yet another
illustration that setting up a machine learning model for
chemical reactivity, able to generalize across application
domains, is hard and data-intensive, but that introducing QM-
based descriptors in the model architecture – particularly in
combination with transfer learning – can remedy this situation
to a large extent.

5 Conclusions

The poor data-efficiency of generic machine learning models
poses a major challenge to their application in chemical reac-
tivity studies, since for most specialized predictive tasks in this
domain, only limited training data is available. In this work, we
have explored a strategy to make machine learning workows
for reactivity prediction signicantly less data-hungry, by
making use of an intermediate informative reaction represen-
tation. This informative representation was constructed based
on a VB analysis for generic HAT reactions. A surrogate model,
able to predict (most of) the identied quantum chemical
informative descriptors was subsequently built based on
a repurposed, publicly available dataset of descriptors and
geometries of organic radicals. Combining the surrogate model
with a secondary reactivity model, we achieved unequivocally
superior performance on a medium-sized, in-house generated,
dataset of DFT computed reaction proles of diverse HAT
reactions, compared to any other machine learning approach
we tried. Because of the extreme data efficiency of our
descriptor-augmented models, we were able to demonstrate
that they can be ne-tuned and applied to small datasets across
various reaction conditions, settings, and application domains,
ranging from regular (liquid phase) synthesis, over metabolism
and drug design, to atmospheric chemistry.

The presented modular approach towards reactivity predic-
tion has the potential to signicantly expand the scope of
machine learning workows for focused reactivity predictions,
as long as the reactivity type is qualitatively understood and can
be modeled accurately, and high-quality descriptor datasets are
available for surrogate model training. In this context, it is
crucial to emphasize the necessity for careful curation of these
property datasets, ensuring that the chosen descriptors are
pertinent, i.e., relevant, to a diverse array of reaction types.

Data availability

The code used to generate/curate the different datasets as well
as to generate the baseline modes can be found at https://
github.com/chimie-paristech-CTM/bde_hat. The code
associated with the nal reactivity model, i.e., the surrogate
model in combination with an FFNN, can be found at https://
github.com/chimie-paristech-CTM/energy_predictor_HAT,
a script to generate the main results reported in this paper can
also be found there. The (generated/curated) datasets can be
downloaded at https://gshare.com/projects/
© 2024 The Author(s). Published by the Royal Society of Chemistry
Hydrogen_atom_transfer_reactions/188007 and https://
gshare.com/articles/dataset/dataset_surrogate_model_cs/
24754341 respectively.
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