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Kenneth López-Pérez, Taewon D. Kim and Ramón Alain Miranda-Quintana *

The quantification of molecular similarity has been present since the beginning of cheminformatics. Although

several similarity indices andmolecular representations have been reported, all of themultimately reduce to the

calculation ofmolecular similarities of only two objects at a time. Hence, to obtain the average similarity of a set

of molecules, all the pairwise comparisons need to be computed, which demands a quadratic scaling in the

number of computational resources. Here we propose an exact alternative to this problem: iSIM (instant

similarity). iSIM performs comparisons of multiple molecules at the same time and yields the same value as

the average pairwise comparisons of molecules represented by binary fingerprints and real-value

descriptors. In this work, we introduce the mathematical framework and several applications of iSIM in

chemical sampling, visualization, diversity selection, and clustering.
Introduction

Molecular ngerprints are one of the most common represen-
tations of compounds in cheminformatics. The simplest
version of ngerprints is binary vectors, where the presence of
a structural feature is represented by a 1 and its absence by a 0.1

Another popular representation is molecular descriptors, which
correspond to useful numbers that encode information about
a molecule; commonly they can be calculated from graph
theory, quantum chemistry, and topological or experimental
methods, to mention some sources.2 Despite their apparent
differences, both descriptors and ngerprints can be used to
calculate the similarity between two molecules. From a mathe-
matical point of view, a similarity index is a metric that
measures how “related” two points are in chemical space.3

Multiple similarity measurements have been reviewed and
analysed, with the well-known Tanimoto coefficient (T)4,5 being
the usual go-to in the cheminformatics community.6 The main
point of calculating similarity measurements lies in the
“molecular similarity principle”: similar molecules have similar
properties/activities.7 This powerful idea is at the core of virtual
screening,8–11 hit selection,12 QSAR/QSPR modeling,13,14 many
chemical space exploration methods,15,16 activity landscape
description,17,18 diversity selection,19 clustering,20,21 and many
more applications.

Given the fundamental role that molecular similarity plays in
drug design,22 activity studies23,24 and, more recently, in ML and
AI pipelines,25–27 it is not surprising that a lot of effort has been
devoted to increase the efficiency of these calculations. For
instance, KD-trees28,29 and Ball-trees30 can be used to speed up
Theory Project, University of Florida,
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similarity searches, while packages like FPSim2 (ref. 31) and
chemfp32 are superbly optimized. In most cases, the common
way of quantifying similarity is by comparing two molecules.
The typical way of calculating a library's similarity/diversity is
calculating the average similarity of all the possible compari-
sons in the library, which is a computationally costly O(N2) step.
At best, KD-trees can be used to estimate library diversity in an
algorithm with N logN complexity.33 This problem has received
attention from the cheminformatics community, perhaps more
notably in the work of Willet et al.34,35 For example, these
authors proposed an O(N) approximation to the cosine simi-
larity, but despite its appeal, it was not possible to generalize it
to other similarity indices.

Motivated by this problem, our group recently developed the
concept of extended similarity.36,37 Extended similarity performs
the comparison of all the molecules in a set at the same time
and yields a similarity metric for the whole set. Briey, for
a matrix of size N × M, where M is the size of the ngerprint or
number of molecular descriptors and N the number of mole-
cules in a set, the rst step is to sum the elements column-wise,
resulting in a vector, K = [k1, k2, ., kM]. Each column sum, kq,
can be used to classify the column when it is compared to
a threshold in the following way: (i) if 2kq − N > g it will be a 1-
similarity column, (ii) if N − 2kq > g it will be a 0-similarity
column, (iii) otherwise it will count as dissimilarity. Then, using
Dkq = j2kq − Nj as an independent variable a weighting function
should be used to consider partial similarity and dissimilarity,
and the function should be positive and increasing. Now the
variables of any similarity metric can be transformed using the
sum of the weighted or non-weighted counters. The major
advantage of extended similarity is that it calculates a similarity
metric for the whole set muchmore efficiently than by using the
traditional pairwise comparisons, with this calculation now
scaling as O(N).36,37
© 2024 The Author(s). Published by the Royal Society of Chemistry
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The notion of calculating average similarity values over a set of
molecules has proven to be particularly powerful over several
cheminformatics tasks. For example, extended similarity has
been applied to several problems like diversity selection,37,38

molecular dynamics simulations,39,40 library diversity studies,41–43

activity cliffs,44 descriptor selection for the QSAR/QSPR model,45

ngerprint evaluations,46 and chemical space visualization.47

However, despite these advantages, there are some drawbacks like
the need for a coincidence threshold analysis to determine the
best similarity/dissimilarity separation and a different numeric
value than the pairwise comparisons. These limitations inspired
this work where we show the mathematical framework, analysis,
and cheminformatics applications of iSIM, an “instantaneous”
similarity measurement for binary ngerprints and molecular
descriptors that yields virtually the same value as the average
pairwise similarity comparisons in a linear scaling with the
number of observations.
Theory
Binary representations

Comparisons of molecular ngerprints are based on three key
indicators: the number of times there is a coincidence of two
“on” bits between the ngerprints (denoted by a), the number of
times there is a coincidence of two “off” bits between the
ngerprints (denoted by d), and the mismatches between the
ngerprints, when one bit is “on” and the other is “off” (deno-
ted by b + c). With these ingredients one can propose a plethora
of similarity indices, which could be interpreted as such as long
as they are monotonically increasing functions of a and d, and
monotonically decreasing functions of b + c. Here, we will be
concerned mainly with the Russel–Rao (RR),48 Tanimoto (T),4,5

and Sokal–Michener (SM)49 indices:

RR ¼ a

aþ d þ bþ c
(1)

T ¼ a

aþ bþ c
(2)

SM ¼ aþ d

aþ d þ bþ c
(3)

(Notice that, trivially, RR # T # SM.)
The very denition of, say, a seems to imply that when we

have N molecules, we need to consider the

 
N
2

!
¼ NðN � 1Þ

2

distinct pairs to check the coincidence or not of on bits.
However, it is possible to access the same information in far
fewer operations. The rst step is to arrange all the ngerprints
in a matrix, with each ngerprint corresponding to a row. Then,
we just need to nd the sum of each column, which generates
the same vector described before. However, the key insight now
is to note that the k's are all that we need to calculate the
number of times we will have coincidence or not of any type of

bit. For instance, there will be

 
kq
2

!
instances in which two on
© 2024 The Author(s). Published by the Royal Society of Chemistry
bits will coincide in column q. Likewise, there will be

 
N � kq
2

!

coincidences of off bits. Finally, the number of mismatches is
kq(N− kq). It is natural then to make the following identication
(with the sums running over all bit positions):

a/
XM
q¼1

kq
�
kq � 1

�
2

(4)

d/
XM
q¼1

�
N � kq

��
N � kq � 1

�
2

(5)

bþ c/
XM
q¼1

kq
�
N � kq

�
(6)

With this, we have everything in place to dene the instan-
taneous similarity (iSIM) versions of the previously discussed
indices, iRR, iT, and iSM, as:

iRR ¼

PM
q¼1

kq
�
kq � 1

�
2

PM
q¼1

�
kq
�
kq � 1

�
2

þ
�
N � kq

��
N � kq � 1

�
2

þ kq
�
N � kq

��

¼

PM
q¼1

kq
�
kq � 1

�
MNðN � 1Þ

(7)

iT ¼

PM
q¼1

kq
�
kq � 1

�
2

PM
q¼1

�
kq
�
kq � 1

�
2

þ kq
�
N � kq

�� (8)

iSM ¼

PM
q¼1

�
kq
�
kq � 1

�
2

þ
�
N � kq

��
N � kq � 1

�
2

�
PM
q¼1

�
kq
�
kq � 1

�
2

þ
�
N � kq

��
N � kq � 1

�
2

þ kq
�
N � kq

��

¼

PM
q¼1

�
kq
�
kq � 1

�þ �N � kq
��
N � kq � 1

��
MNðN � 1Þ

(9)

The case of iRR and iSM is special, because a + b + c + d = M,
the denominators in eqn (1) and (3), are always constant, equal to
the number of bits in the ngerprints (a fact that we explicitly use
in the 2nd, simpler, form of the iRR and iSM indices shown
above). Then, we can interpret eqn (7) and (9) as effectively
combining the RR and SM similarities over independent bit
positions. Given the constant-denominator characteristic, it is
then easy to see that the iSIM version of these indices will provide
the exact average of all the pairwise RR and SM values over the
given set, but at only O(N) cost. iT, on the other hand, will not in
general give exactly the same value as the average of the pairwise
Digital Discovery, 2024, 3, 1160–1171 | 1161
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Tanimoto calculations. Once again, the key is that the T denom-
inator is not the same for arbitrary pairs of ngerprints. In this
case, we can interpret iT as an O(N) mediant approximation50,51 to
the O(N2) average. Despite this simplication, as shown below, iT
still provides superb estimates for the pairwise average over
a varied set of conditions.
Real-value representations

The previous results are promising, so it is certainly desirable to
extend them to more general types of molecular representations.
Here, we show how this can be done for vectors of real (in prin-
ciple, continuous) values. The key insight is to use inner products
between the molecular “vectors” instead of the more limited a, d,
and b + c indicators used in the binary case. To do this we will focus
on the case where the ith molecule, X(i), is represented by a vector
of descriptors jX(i)i = [x1

(i), x2
(i), ., xM

(i)]. Without losing any
generality, these vectors are considered to be normalized: ci, q:
0# xq

(i)# 1. Themainmotivation behind the focus on normalized
descriptors is that we can then easily dene the “ipped” repre-
sentation of a molecule, j~X (i), as the real-value equivalent of ip-
ping the bits of a binary representation, that is: j~X (i)i = [1 − x1

(i), 1
− x2

(i), ., 1 − xM
(i)]. In terms of inner products, the previously

analyzed indices can be written as:

RR ¼
�
X ðiÞ		X ðjÞ


M
(10)

T ¼
�
X ðiÞ		X ðjÞ
�

X ðiÞ
		X ðiÞ
þ �X ðjÞ

		X ðjÞ
� �X ðiÞ
		X ðjÞ
 (11)

SM ¼
�
X ðiÞ		X ðjÞ
þ D ~X

ðiÞ			 ~X ðjÞE
M

(12)

Notice that, for simplicity, we have directly used the fact that
the denominators of the RR and SM indices are constant and
equal to the total length of the molecular vectors, M.

Once again, the way of writing eqn (10)–(12) seems to suggest
that calculating the average of all the RR, T, or SM comparisons
demands O(N2). However, we can actually calculate the sum of
all the involved inner products in O(N) (albeit with a larger
overhead compared to the binary case).

First, for the inner products between the molecular repre-
sentations, we have:

�
X ðiÞ		X ð jÞ
 ¼Xm

q¼1

xq
ðiÞxq

ð jÞ (13)

Then, for the relevant inner products appearing in eqn
(10)–(12):

X
i\j

�
X ðiÞ		X ð jÞ
 ¼X

i\j

XM
q¼1

xq
ðiÞxq

ð jÞ

¼ 1

2

XM
q¼1

8<
:
 X

i

xq
ðiÞ
!2

�
X
i

�
xq

ðiÞ�2
9=
;

(14)
1162 | Digital Discovery, 2024, 3, 1160–1171
X
i\j

D
~X
ðiÞ			 ~X ð jÞE ¼

X
i\j

XM
q¼1

�
1� xq

ðiÞ��1� xq
ð jÞ�

¼ 1

2

XM
q¼1

8<
:
 X

i

�
1� xq

ðiÞ�!2

�
X
i

�
1� xq

ðiÞ�2
9=
;

(15)

From these expressions, it is clear that we can follow
a similar route to the one taken for the binary input. First, we
need to arrange all the molecular vectors in a matrix X. Then, we
need to generate some related matrices: (a) the “ipped”matrix
~X = 1 − X, (b) the Hadamard (element-wise) squares of these
matrices, X2 and ~X2. That is, if the element in row i and column
q in X is given by xq

(i), then the corresponding elements of
matrices ~X , X2, and ~X2 will be 1 − xq

(i), (xq
(i))2, and [1 − xq

(i)]2,
respectively. It is important to remark that since we are only
taking element-wise products, generating these auxiliary
matrices will only demand O(N) operations. Then, the sum of
the columns of matrices X and ~X gives vectors with componentsP
i
xqðiÞ and

P
i
ð1� xqðiÞÞ, respectively. On the other hand, the

sum of the columns for the Hadamard squares gives the factorsP
i
ðxqðiÞÞ2 and

P
i
ð1� xqðiÞÞ2. These are all the ingredients

necessary to calculate the real-value iSIM similarity indices:

iRR ¼

PM
q¼1

(
P
i

xq
ðiÞ
�2

�P
i

�
xq

ðiÞ�2)

MNðN � 1Þ (16)

iT ¼

1

2

XM
q¼1

8<
:
 X

i

xq
ðiÞ
!2

�
X
i

�
xq

ðiÞ�2
9=
;

ðN � 1ÞPM
q¼1

P
i

�
xq

ðiÞ�2 � 1

2

XM
q¼1

8<
:
 X

i

xq
ðiÞ
!2

�
X
i

�
xq

ðiÞ�2
9=
;

(17)

iSM ¼
XM
q¼1

8<
:
 X

i

xq
ðiÞ
!2

�
X
i

�
xq

ðiÞ�2
9=
;þ

PM
q¼1

(
P
i

�
1� xq

ðiÞ��2

�P
i

�
1� xq

ðiÞ�2)

MNðN � 1Þ

(18)

Once again, iRR and iSM provide the same exact results as
the average of all the pairwise comparisons, due to the conve-
nient constant denominators. For iT, this is just a median-like
approximation but, as will be illustrated below with different
numerical tests, eqn (17) provides an excellent approximation to
the O(N2) result.
Datasets

10 000 random datasets were generated, with the number of
ngerprints ranging from 100 to 1000 and the size of the
© 2024 The Author(s). Published by the Royal Society of Chemistry
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ngerprints ranging from 166 to 2048. For the binary case, to
ensure that the datasets covered the complete range of the
similarity index domains, each dataset was randomly biased to
have different proportions of ones and zeros. The code to
generate the random sets is shown in iSIM_simulated_f-
ps.ipynb. The generation of the sets employs functions from
numpy52 1.24.2 and random53 python packages.

For testing on real libraries, 30 ChEMBL29 curated datasets
by van Tilborg et al.54 were used (sets are available on https://
github.com/molML/MoleculeACE/tree/main/MoleculeACE/
Data/benchmark_data/old). The datasets had been curated by
the authors using the default RDKIT sanitation and outlier
exclusion based on bioactivity.54 Details of the set's size and
corresponding targets are shown in Table S1.† The sets
consisted of three binary ngerprint types, generated using
RDKit:55 RDKIT55 (M = 2048), MACCS56 (M = 167) and ECFP4
(ref. 57) (M = 1024). All the continuous and discrete
descriptors offered by the RDKit Descriptors55 module were
computed, descriptors with calculation errors or nan values
were dropped for a total of 208 descriptors (for the full list,
see the ESI†). Min max normalization was used prior to iSIM
calculations.
Fig. 1 iSIM vs. average pairwise similarity for 10 000 randomly generate

Fig. 2 iSIM vs. average pairwise similarity for 30 CHEMBL libraries. Mo
fingerprints.

© 2024 The Author(s). Published by the Royal Society of Chemistry
Results
Average similarity

Our rst tests were oriented towards checking the correspon-
dence between the iSIM results and the average of the pairwise
comparisons over a large number of libraries. For this, we used
the 10 000 randomly generated libraries described in the
previous section. As can be seen in Fig. 1, the iSIM results
perfectly reproduce the more computationally demanding
standard comparisons. In our previous contributions, we had
only focused on the relation between the previously extended
similarity results and the pairwise metrics as far as the ability of
the extended indices to preserve the ranking of the comparisons
(see, for example, Fig. 7 in ref. 23). The test presented in Fig. 1 is
much more demanding, because we are comparing the simi-
larity values obtained from both approaches. As noted in the
Theory section, we expected the iRR and iSM results to be
(analytically) identical to the pairwise averages. Even more
remarkable, we see that iT provides a superb estimate for the
O(N2) averages. This behavior is also observed over real datasets.
In Fig. 2 we show a similar comparison, but now over 30
CHEMBL libraries, each represented by three different types of
ngerprints. Fig. S1 and S2† include the same comparisons with
more similarity index formulas that iSIM can be applied to.
d libraries. Molecules are represented by binary fingerprints.

lecules are represented by binary MACCS, RDKit, and ECFP4 (binary)

Digital Discovery, 2024, 3, 1160–1171 | 1163
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Fig. 3 iSIM vs. average pairwise similarity for 10 000 randomly generated libraries. Molecules are represented by random generated fingerprints
with continuous normalized descriptors.
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Fig. 3 and 4 present the equivalent results, but for molecules
represented by (normalized) descriptors (e.g., continuous real
values). Once again, iRR and iSM show a perfect agreement both
for the randomly generated and for the real data. The median
approximation in iT is also remarkably robust over continuous
data, essentially operating at as close a level as for the binary
ngerprints.
Local analysis of molecular libraries

Complementary similarity. Complementary similarity
calculations can also be applied with iSIM, as they were previ-
ously applied using extended similarity. One molecule is taken
out of the set, and iSIM is calculated on the remaining
compounds. In this way, low values will correspond to mole-
cules that inhabit high density regions in chemical space.
Conversely, high complementary similarity corresponds to
molecules from low density regions, and thus, overall, least
similar to the rest of the set. This tool enables a ranking of
molecules on how similar they are to the rest of the set; the most
similar molecule, the medoid, has the lowest complementary
similarity and at the end of the ranking we will have the
outlier.39 As an example in Fig. 5, medoid and outlier molecules
Fig. 4 iSIM vs. average pairwise similarity for 30 CHEMBL libraries. Molec
normalized descriptors.

1164 | Digital Discovery, 2024, 3, 1160–1171
from a dataset can be identied doing the complementary
similarity ranking. Since we have a ranking of the molecules,
the medoid and outlier cutoff can be exible depending on the
user needs; this gives an opportunity for visualization of rele-
vant structures for the set. The information contained in the
complementary similarity ranking has proven to be very valu-
able in stratifying the data as a pre-processing step in clus-
tering,39 as well as a way to quickly sample different regions of
chemical space.47

Diversity selection. To further expand on the applicability of
iSIM, we focused on the classical cheminformatics task of
sampling a given library in the most diverse way possible: the
diversity picking problem. Just like the extended indices before,
iSIM naturally leads to a diversity selection algorithm (iSIMDiv):

Pick a molecule and add it to the selected set. (This is usually
done at random, but in order to increase the reproducibility of
our results, in all cases we start from the medoid of the set.)

At every step, pick the molecule that will result in the lowest
iSIM for the selected set.

As shown in Fig. 6A, this simple recipe leads to more diverse
sub-sets than the popular MaxMin diversity selection algo-
rithm.58,59 There, we tested the performance of these algorithms
ules are represented by 208 RDKIT continuous and discrete numerical

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Structures of the CHEMBL214 database ranked by increasing complementary similarity using the RDKIT fingerprints and iRR similarity
index. Structures shown correspond to the top (medoids) and bottom (outliers) three molecules.

Fig. 6 MaxMin (bmax, yellow), iRR (iSIM, blue), and sqrt_iRR (sqrt_iSIM,
green) results for the diversity sampling of the CHEMBL214 dataset
represented by RDKIT fingerprints: (A) pairwise similarity of the
selected set, (B) minimum similarity between elements of the selected
set, (C) maximum similarity between elements of the selected set.
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over the CHEMBL214 library, corresponding to the 5-HT1a
receptor.54 We selected a library with 3317 molecules (repre-
sented using RDKIT ngerprints), and we monitored the
process of selecting up to the 10% most diverse compounds.
(The general trends observed for this library were corroborated
for other libraries, similarity indices, and ngerprint types; see
the ESI.†) If we quantify the chemical diversity of the selected
set as inversely related to the average of the pairwise similarities
of the molecules in the selected sub-set (the “y axis” in Fig. 5A),
we see that iSIM (with the iRR metric), at worst, nds sets that
are as diverse as those found by MaxMin with the standard
© 2024 The Author(s). Published by the Royal Society of Chemistry
pairwise RR. This happens at the very early stages, when we have
only picked a handful of molecules, but then quickly the iSIM
results become more diverse. This is no surprise since, by
denition, iSIM is constructed to reproduce the average of the
pairwise comparisons. Hence, the iSIMDiv algorithm is directly
maximizing this measure of chemical diversity.

If at the “global” or “coarse” level of the selected set it is clear
that iSIMDiv produces more diverse sets, it is also interesting to
study the “local” relations among the selected molecules. For
instance, as shown in Fig. 6B, iSIMDiv is the algorithm that rst
nds a pair of “orthogonal”molecules in the data, that is, a pair
of molecules with 0 similarity between them. On the other
hand, we also see in Fig. 6C that iSIMDiv tends to produce
selected sets where the closest pair of molecules is more similar
to each other than the closest pair of molecules selected by
MaxMin. This is in line with the properties of MaxMin, since
this method tries to maximize the minimum distance between
the new added molecule and those already selected. As a way to
bridge the local gap between MaxMin and iSIMDiv we propose
a version of iSIM that attempts to minimize not the sum of
similarities, but the sum of the square roots of the similarities.
This sqrt_iSIM can be easily calculated at the same cost as iSIM:
for any iSIM variant, aer calculating the sums of the columns
of the molecular representations and generating the analogues
of the a, d, and b + c indicators, we take their square roots and
we use those in the same expression for the similarity indices.
For example, in the case of iRR, we would be minimizing:

sqrt_iRR ¼
ffiffiffiffi
2

m

r
1

NðN � 1Þ
Xm
q¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kq
�
kq � 1

�q
(19)

As can be seen in Fig. 6C, minimizing this new objective
function results in selected sets that are much locally closer to
MaxMin, in the sense of having almost maximally dissimilar
pairs of closest molecules. However, as reected in Fig. 6A, this
new sampling strategy also produces sub-sets that are more
globally diverse than MaxMin (albeit not as diverse as those
generated by iSIMDiv). In other words, by making changes to
the objective function calculated within the iSIM framework, we
can control the global and local properties of the sampled sets.
Plots showing the same trends in the chemical diversity selec-
tion method for more databases, ngerprint representations
and similarity indexes are included in the ESI.†

Another way of modifying the iSIM objective diversity metric
that allows a faster diversity selection is what we called iSIM-
RevDiv: iSIM reversed diversity selection. In this algorithm we
start with all the points, and we iterate to nd themolecule that,
Digital Discovery, 2024, 3, 1160–1171 | 1165
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Fig. 7 (A) iSIMDiv and iSIMRevDiv selections for different data
percentages (1–99%, in 1% steps) for the CHEMBL214 dataset repre-
sented by RDKIT fingerprints and selected by the iRR index. (B)
Computing time variation of the diversity selection methods with the
data percentage selected.

Fig. 8 Graphical explanation of the medoid, outlier, extreme, stratified
and quota sampling methods.
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if removed, would cause the remaining set to result in the lowest
similarity value. This process is then repeated until the number
of desired molecules is reached. iSIMRevDiv will be extremely
useful in cases where more than 50% of the set wants to be
picked. Fig. 7 show the iSIM and computing time comparison
between the iSIMDiv and iSIMRev methods for the CHEMBL214
database represented by RDKIT ngerprints and using the iRR
metric. Fig. 7A shows how when the diversity selection is started
from the outlier, both forward and reversed iSIM diversity
selection methods will yield the same average pairwise simi-
larity results, which enables the user to use any of the two
methods depending on the data percentage that wants to be
picked. Fig. 7B shows computing times, and further supports
the idea that for selections over 50% of the data the iSIMDivRev
will be less computationally costly with the same high-quality
results.

To further analyse the comparison of the iSIM diversity
selection for both forward and reversed methods, random
ngerprint datasets were generated, and the results were
consistent with the ones previously observed (see Fig. S6†). The
fact that diversity selection can be done in a reversed way makes
iSIM diversity selection more attractive than typical algorithms
like MaxMin where the computation of a pairwise similarity is
required.

Up to this point, we have discussed algorithms that maxi-
mize the diversity (minimize the similarity) of the selected
1166 | Digital Discovery, 2024, 3, 1160–1171
molecules. However, if the goal is to pick a diverse set and to
also cover the underlying chemical space, these presented
methods are not the best approach. Algorithms like MaxMin
and the iSIM diversity selection maximize the diversity by
picking the periphery of the chemical space (molecules that are
the least similar to the rest), at the expense of completely
overlooking other sections of chemical space, resulting in a low
coverage.60

Using the complementary similarity, we can explore the
chemical space with various approaches. Here, we propose ve
such methods. Fig. 8 shows graphically the explanation of each
method. The rst step for all the methods is to rank the mole-
cules by increasing complementary similarity (as done in Fig. 5).
Aer that, P molecules are selected based on the sector of the
chemical space that wants to be sampled.

- Medoid sampling: the P with the lowest complementary
similarity.

- Outlier sampling: the P with the highest complementary
similarity.

- Extremes sampling: the P/2 with the lowest complementary
similarity and the P/2 with the highest complementary
similarity.

- Stratied sampling: molecules are separated into b strata of
the same size, then molecules with the lowest complementary
in each stratum are picked until P is chosen. The default
number of strata is the same as the number of molecules to
pick, hence one molecule per stratum is picked. If an equal
number of molecules per stratum are needed, the priority will
be the strata with lower complementary similarity.

- Quota sampling: the range of complementary similarity
(max–min) is separated into b strata of equal range. Molecules
are assigned to a stratum based on their complementary simi-
larity; each stratum will have the same complementary simi-
larity range but not necessarily the same number of molecules.
The default number of strata is ten. Molecules are picked from
each stratum until P is reached; priority to molecules and strata
with lower complementary similarity is given.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 9 PCA scoring plots of the CHEMBL214 dataset represented by RDKIT binary fingerprints. Blue points represent the 10% selectedmolecules
by each selection algorithm, while grey points represent non-selected molecules. iSIM related methods use iT.
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With the aim of comparing visually the selection methods
proposed in this work, Principal Component Analysis (PCA)61,62

and t-Distributed Stochastic Neighbour Embedding (t-SNE)63

plots were generated and 10% of the ChEMBL214 selected by
each method is identied. The iSIM Tanimoto complementary
similarity was used to perform the initial sorting step. In Fig. 9 it
can be seen how themedoid and outlier sampling methods pick
the extremes of the set's chemical space. Intuitively, medoids
have high values for the PC1 scores, and the outliers lower
values. As expected, the extremes sampling is a mix between the
medoids' and outliers' areas. It is relevant to point out that the
Fig. 10 t-SNE plots for the CHEMBL214 dataset represented by RDKIT b
each selection algorithm, while grey points represent non-selected mol

© 2024 The Author(s). Published by the Royal Society of Chemistry
iSIM diversity and MaxMin samplings pick molecules mostly
from the same areas as the outlier sampling, proving the point
that those algorithms maximize diversity but are not represen-
tative of the chemical space.

The selection methods that cover more of the chemical space
are the stratied and quota samplings, with points spread
through the two-dimensional space representation. Thus, if
representativity is an important matter, we recommend these
methods. Certain differences can be noticed between the two of
them, the main one is that quota sampling includes more of the
medoid and outlier regions than the stratied approach. The
inary fingerprints. Blue points represent the 10% selected molecules by
ecules. iSIM related methods use the iT similarity index as a metric.

Digital Discovery, 2024, 3, 1160–1171 | 1167
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Table 1 iT values for 10% selected molecules by each sampling
method for the CHEMBL214 dataset

Sampling method iT

Medoid 0.52405
Outlier 0.21217
Extreme 0.33403
Stratied 0.33066
Quota 0.32896
iSIM diversity 0.20132
MaxMin 0.20132
Complete dataset 0.33036
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same trend in observations for the PCA was observed in the
tSNE plots in Fig. 10.

Table 1 includes the iSIM (iT) values of the selected mole-
cules by each method. Notice how the average similarities for
the diversity and MaxMin methods are the lowest, which is the
purpose of their algorithms. The outlier method has a closer
similarity value to the MaxMin and diversity sampling, sug-
gesting that they sample around the same area of the chemical
Fig. 11 Dendrograms from hierarchical clustering of molecules in the
MACCS fingerprints. The number of elements in each cluster is indicated
red line represents the cut-off for the optimal number of clusters (25 fo

1168 | Digital Discovery, 2024, 3, 1160–1171
space. The medoid sampling has the highest average similarity
value, meaning that the molecules that are in the medoid area
are highly similar. This could be an important tool to identify
the “core” of a dataset. The values for extreme, stratied and
quota are close to 0.33 which is the value for the whole set. For
the quota and stratied methods this means that the selected
molecules represent well the set, leading to an average simi-
larity close to the complete set, supporting the visualization
from previous gures. On the other hand, in the case of the
extreme sampling this value is just a combination of two
factors: low similarity values given by sampling from the
extrema of the set compensated for by high similarity values
whenever one is sampling within the outlier or the medoid
region, resulting in a deceptively “average” iSIM value.
Clustering

As a nal proof-of-principle demonstration of the versatility of
the iSIM framework, we look at the clustering of molecular
libraries. While there are many ways in which the notion of
comparing multiple elements at the same time could be applied
CHEMBL214 (top) and CHEMBL2835 (bottom) libraries using iSM on
in brackets. Coloring corresponds to the final 10 clusters. The dashed
r CHEMBL214, 41 for CHEMBL2835).

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 12 Medoids of each of the 10 colored clusters in the CHEMBL214 (top) and CHEMBL2835 (bottom) libraries using iSM on MACCS
fingerprints.
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to clustering problems, perhaps the most natural one is in the
context of hierarchical agglomerative (HA) algorithms. Note
that iSIM can be used as a linkage criterion in the sense that at
any given point we can choose to combine the two sets that
produce the largest iSIM value for their union. In more math-
ematical terms, given sets c1, c2, ., cK, we combine clusters i, j
such that: i, j = argmaxp,qiSIM(cpWcq). This is the criterion that
we used in Fig. 11 to cluster the CHEMBL214 (N = 3317) and
CHEMBL2835 (N = 615) libraries (using iSM and MACCS
ngerprints). We can also use the computed iSIM values to
determine the optimum number of clusters in the data. If we
follow the evolution of iSIMk (the iSIM of the cluster formed in
the kth step) we see that this quantity will tend to decrease with
increasing k, but it will tend to reach some “stability” when an
optimum separation of the data is achieved. In other words, we
look for the largest value of k for which the quantity jiSIMk+1 −
iSIMkj is as close to 0 as possible.

Finally, clustering can be used to navigate through the
molecular library, identifying representative structures associ-
ated with different basins in chemical space. For example, in
Fig. 12 we show the medoids of the CHEMBL214 and
CHEMBL2835 libraries in the case in which one selects 10
clusters in each of them. Note how our clustering is able to
identify well-dened regions of chemical space that correspond
to distinct scaffolds and functional groups. These structures,
however, should not bemistaken for themost diverse structures
© 2024 The Author(s). Published by the Royal Society of Chemistry
in the original library. (A common practice in some elds tends
to identify the cluster centroids with a diverse representation of
the set.) For instance, if we calculate the iSIM for the set of
medoids when one has a number of clusters equal to 10% of the
total number of points, we get 0.766 and 0.810 for CHEMBL214
and CHEMBL2835, respectively, which is far from a maximally
diverse set. That is, if the iSIMDiv and MaxMin tend to sample
the data by increasing chemical diversity, the sampling through
the medoids of the clusters offers a more “uniform” picture of
the original set.
Conclusions

iSIM has the ability to perform the comparisons of multiple
objects at the same time, irrespective of whether they are rep-
resented by binary ngerprints or real-value descriptors. The
analytical mathematical operations behind iSIM and the
evidence from randomly generated data and real molecule
libraries show that the same exact value of average pairwise
comparisons can be achieved for similarity indexes with the
denominator equal to the length of the ngerprint, like RR and
SM. In cases where the denominator is not equal to the length of
the ngerprint, like T, iSIM still provides an exceptional
approximation to the pairwise comparison average, high-
lighting the robustness of the mediant approximation theorem.
This brings the two key advantages of iSIM: the much more
Digital Discovery, 2024, 3, 1160–1171 | 1169
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attractive linear scaling O(N) compared to the traditional pair-
wise indices, and the greater simplicity (no need to dene
coincidence thresholds and weight functions) compared to our
previous extended similarity indices.

We showed that iSIM can be used to calculate the comple-
mentary similarity of each of the molecules in the library and
a ranking can be done to identify and visualize molecules as
part of high-density or low-density regions. Different diversity
selection methods using the proposed framework can be
applied depending on the necessity. iSIMDiv and iSIMRevDiv
methods were developed to have two alternatives that output
the same diversity results but differ in computing times
depending on the percentage of data to select, adapting to the
user's necessities. The iSIM metric can also be modied
depending on whether the diversity selection is wanted to be
globally or locally coerced, which can be done taking the square
root of the iSIM counters to select data that will have a lower
maximum pairwise similarity. Remarkably, all the proposed
diversity selection methods have the same or better quality than
the commonly usedMaxMin. Another application of our work is
hierarchical clustering, as we can use iSIM as a clustering
objective function to be maximized when combining two
molecules/clusters. The change in iSIM for the new cluster per
clustering step can also be used as a metric to determine the
optimal number of clusters. Overall, iSIM provides a exible
and easy-to-use framework to analyse molecular libraries, but
that could be easily adapted to any problems that use compar-
isons between objects (metabolomics, MD simulations, etc.).

Finally, we want to discuss the computational gains offered
by iSIM. That is, having shown the excellent agreement between
the iSIM and the pairwise comparisons, the remaining question
is: how much does the new O(N) algorithm help speed-up the
comparison of large sets of molecules? For instance, the
ChEMBL team reported that FPSim2 took ∼12 hours to
compare the 1 941 405 compounds in ChEMBL 27 using a single
core in an i9 laptop (https://chembl.github.io/FPSim2/source/
user_guide/sim_matrix.html). On the other hand, Eloy Félix
made public an independent test on the 2 372 674 molecules
in ChEMBL 33 set using iSIM, which took less than 4 seconds
to complete the same task (https://github.com/eloyfelix/iSIM/
blob/main/isim_avg_set_sim.ipynb). That is, even the (poorly
optimized) code accompanying this manuscript is capable of
vastly outperforming (highly optimized) implementations
based on pairwise comparisons when it comes to quantifying
the chemical diversity of large datasets.

Data availability
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Quintana and K. Héberger, J. Comput.-Aided Mol. Des.,
2022, 36, 157–173.
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