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-driving laboratories: from human
in the loop interactive AI to gamification
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Rob G. Moore,d Olga S. Ovchinnikovabe and Mahshid Ahmadi *b

Recent developments in artificial intelligence (AI) and machine learning (ML), implemented through self-

driving laboratories (SDLs), are rapidly creating unprecedented opportunities for the accelerated

discovery and optimization of materials. This paper provides a joint analysis of SDLs from both academic

and industry perspectives, highlighting the importance of integrating human intelligence in these

systems. It discusses the necessity of careful planning in SDL design across physical, data, and workflow

dimensions, including instrumental setup, experimental workflow, data management, and human–SDL

interaction. The significance of integrating human input within SDLs, especially as the focus shifts from

individual tools and tasks to the creation and management of complex workflows, is emphasized. The

paper stresses on the crucial role of reward function design in developing forward-looking workflows

and examines the interplay between hardware evolution, ML application across chemical processes, and

the influence of reward systems in research. Ultimately, the article advocates for a future where SDLs

blend human intuition in hypothesis formulation with AI's precision, speed, and data-handling capabilities.
I. Materials matter

Materials discovery has been driving technological evolution
since the dawn of time, long predating the formal establish-
ment of materials science in the 1960s.1 Understanding mate-
rial properties lies at the cross-section of scientic elds
including biology, chemistry, physics, and engineering.2 Mate-
rials discovery and optimization comprises the synergy of
synthesis and fabrication with property measurements, whether
mechanical, chemical, or electrical.1,2 Traditionally, all stages of
this process were ideated and implemented by human scien-
tists, with automated approaches used only for well-dened and
simple operations.

The introduction of machine learning (ML) sparked a wave
of curiosity among scientists with a new perspective on the
scientic method – both in the theory and computation
domains, and in real-world applications. The race to create the
next best technological breakthrough became not a matter of
human tenacity only, but also of utilization of articial intelli-
gence (AI).3,4 For many decades, computational approaches
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including molecular dynamics simulations or density func-
tional theory (DFT) unlocked molecular structures, elastic
constants, electron densities, and vibrational properties.5

Combining theoretical computations with ML speeds up
discovery due to the use of known material properties and
computed possibilities to construct virtually indenite lists of
new materials.6,7 Although this feat has been driving much of
the excitement over the past two decades, it has a considerable
limitation. Namely, the key for practical applications is
synthesizing materials in a traditional laboratory setting, and
scaling from the lab to the prototypes and industrial settings.
Until very recently, it was the role of the human scientist to
bridge the worlds of theoretical and experimental science. The
process of creating hypotheses, training computational models,
setting realistic parameters, hypothesizing new discoveries, and
conceptualizing and operationalizing future innovations can be
enhanced by machine learning (ML) and used in laboratory
synthesis, but it still requires human involvement.

As demonstrated in Fig. 1, the materials discovery process
typically starts with a conceptual idea that is rened into
a hypothesis. This hypothesis explores potential experimental
routes to achieve specic material properties, functionalities, or
physical mechanisms. The experiment process is a harmonious
combination of two critical steps – the synthesis of the material
and its characterization. This synergy not only offers feedback
to theoretical models but also paves the way for unexpected
discoveries. A broad gamut of methods, ranging from solution
and solid-state synthesis to physical and chemical lm depo-
sition, have been developed to design complex materials in
Digital Discovery, 2024, 3, 621–636 | 621
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Fig. 1 A schematic that represents the scientific reward system
through utilizing prior knowledge, hypothesis formulation, experi-
ments, results and analysis, with serendipitous discoveries. Each
component uncovers multiple pathways towards scientific discovery
and can be used infinite times within the cycle.
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laboratories.8–10 Apart from these, tools such as nitrogen or
argon gloveboxes, wet-lab benches, mass balances, pipettes, etc.
are essential components in this process. Once the material
recipes are rened through trial and error, various character-
ization instruments are used to measure and quantify the
material properties.

Material characterization is a pivotal component of this
process, involving a myriad of methods to either conrm or
disprove the initial hypothesis. Some examples of character-
ization techniques are X-ray diffraction (XRD), atomic force
microscopy (AFM), photoluminescence (PL), and X-ray photo-
electron spectroscopy (XPS) which are used to assess structural
properties, surface properties, electronic structure and proper-
ties, and surface chemistry of materials.11–13 Furthermore, there
are techniques to assess mechanical, thermal, magnetic, and
optical properties and the study of all these various properties is
essential in understanding how materials will perform in real-
world applications.

This comprehensive characterization process is augmented
by a sophisticated soware tool to enhance the analysis of data
generated. While traditional soware such as Origin by Ori-
ginLab Corporation and Microso Excel have been funda-
mental for basic data organization and analysis since the late
1980s, the integration of advanced cross-platform soware like
MATLAB and Python has transformed the landscape of mate-
rials data analysis.14,15 These modern tools are instrumental in
materials science research, particularly through their integra-
tion of machine learning and advanced optimization algo-
rithms. They enable efficient data analysis, handling large
datasets, and offer advanced tools for pattern recognition,
property prediction, and optimization of compositions and
process conditions. Additionally, both platforms provide
powerful visualization features for data interpretation and offer
exibility for research customization. Moreover, their capacity
for simulation and predictive modeling aids in predicting
material behavior, enhancing research efficiency and innova-
tion in materials science.

Overall, all of this has notably inuenced the synthesis,
characterization, and analysis landscape of complex materials.
With over two centuries of relentless synthetic research, the
622 | Digital Discovery, 2024, 3, 621–636
pursuit for groundbreaking chemical transformations and
novel reactivity has grown progressively challenging and
crucial. Recent advancements in various areas such as two-
dimensional (2D) materials,16 perovskites,17 quantum dots,18

transition metal catalysts,19 metal–organic frameworks
(MOFs),20 and so on, coupled with rapid technological progress,
have unveiled unprecedented possibilities. There is a growing
demand for the discovery of new materials rapidly and effi-
ciently with multifunctionality, capable of seamlessly inte-
grating various functionalities to meet specic application
requirements. To address this challenge, high-throughput
experiments (HTE), like what is featured in SDLs, have been
implemented in the past two decades which has helped
signicantly in increasing the productivity and speed of
research and development (R&D) of new materials.21–32

The recent advancements in AI33–35 and the rened efficiency
of ML algorithms36 have signicantly transformed the land-
scape of materials science research, especially with the emer-
gence of SDLs. These SDLs utilize machine learning to
autonomously conduct complex experiments, enhancing
precision and consistency while reducing human error.37–40 The
integration of AI and ML algorithms enables these labs to
rapidly process and interpret large datasets, uncovering
patterns and insights that might elude human analysis. This
synergy of automated experimentation and analysis facilitates
a dynamic, iterative research process. AI-driven systems can
adjust experimental parameters in real time, allowing for
a more targeted exploration of new materials. This approach
accelerates the discovery process, particularly in high-
throughput experimentation, and is invaluable in elds like
energy storage41,42 and nanotechnology,43,44 where nding the
right material is crucial.

However, despite the exponential growth over the last several
years, limitations such as high initial investment, difficulty in
automating human tasks, and rigid manufacturing of instru-
ments pose signicant obstacles towards using SDLs.45,46 A
pivotal challenge in constructing SDLs lies in creating a plat-
form that can independently conduct all experiments, spanning
from synthesis to characterization. Automated synthesis plat-
forms (ASPs) play a vital role in enabling the capabilities of
SDLs.47–49 Larger institutions have constructed SDLs promising
future success, but many are skeptical about whether the overall
benets outweigh the drawbacks for their research applica-
tions.50 Overall, the motivation to integrate SDLs into materials
research is the opportunities for high-throughput data collec-
tion, enhanced data reproducibility, reduction of time-intensive
tasks, faster sample to answer and increased safety.51

Thus, it is essential to clearly dene the role of scientists in
the operation of SDLs. This will be crucial in guiding the
continuous advancement and adaptability of SDLs, ensuring
that they are optimally leveraged for future scientic applica-
tions. We consider what makes SDLs an asset for materials
discovery and explore the opportunity to allow for both auto-
mation and human intervention to co-exist. As scientists
incorporate more articial intelligence into their laboratories,
humans are the key in determining which revelations are worth
contributing to the research community. Therefore, we propose
© 2024 The Author(s). Published by the Royal Society of Chemistry
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that the human-in-the-loop automated experiments will pave
the future for materials discovery.
II. Workflow

In traditional human-dependent laboratories, particularly those
focused on materials synthesis, the role of scientists and engi-
neers is central and multifaceted, ranging from forming
hypothesis, ideation of complex workows, and their orches-
tration and execution. In emerging areas, the human scientist is
initially wholly responsible even for the design and construction
of the experimental apparatus. The design phase is critical, as it
lays the foundation for successful experimentation. Moreover,
this stage also serves as a signicant opportunity for knowledge
transfer, with experienced scientists guiding less experienced
team members, thereby fostering a collaborative and educa-
tional environment.

During the experimental phase, shown in Fig. 2, the reliance
on human expertise is even more pronounced. Scientists are
tasked with conducting experiments, a process that involves
more than just following protocols. It requires making
informed decisions based on their scientic judgment and
observations. This phase oen involves a lot of trial and error,
hypothesis testing, and problem-solving, all of which depends
heavily on the scientist's experience and intuition. Additionally,
peer interaction plays a crucial role in this phase. Scientists
oen collaborate, share insights and discuss results, which not
only aids in interpreting data but also in shaping future
research directions. The lack of advanced computational tools
means that these scientists have to rely on their collective
wisdom to analyze data and draw conclusions, making the
human element indispensable in the realm of materials science
research.

Despite their cost-effectiveness compared to robotic labs,
traditional human-dependent laboratories have several
Fig. 2 An example diagram demonstrating the workflow of hybrid perov
device performance evaluation.

© 2024 The Author(s). Published by the Royal Society of Chemistry
limitations. The reliance on manual labor makes processes
more time-consuming, oen resulting in slower research
progress. Human error, variability in experimental techniques,
and fatigue can also affect the accuracy and repeatability of
results. Additionally, these labs cannot simultaneously perform
multiple tasks or experiments, limiting their throughput and
efficiency. Finally, human-operated labs necessarily limit envi-
ronmental conditions to human-friendly and impose stringent
limitations on safety. The absence of advanced analytics and AI-
driven insights means that complex data analysis and pattern
recognition were more challenging and slower, potentially
overlooking critical insights that automated systems might
capture more readily. Consequently, while being cost-effective,
these labs face signicant constraints in terms of speed, effi-
ciency, and capacity for handling complex and large-scale data
analyses. The advances in the physical sciences, achieved
through the synergy of theory and physical experiments, have
paved the way for the integration of AI and ML methods to
accelerate materials discovery.

Platforms for accelerating materials discovery aim to go
beyond traditional human-led science but face several chal-
lenges. The rst is to create automated hardware platforms
capable of executing experiments.52–54 The second is to build
data ow and management systems that will optimize the
sharing of data across platforms and AI/ML models.55–58 The
third is to design and operationalize the workows running the
hardware that will not only incorporate data with theory based
on known physical laws, but also allow for learning from human
intuition and experience in the decision-making process.53,54,59

The key aspect of the workow design is the need to dene the
target, whether it is materials optimization or physics discovery.
The lesson of the past decade is that scaling experiments or
computations individually by orders of magnitude or acceler-
ating data acquisition is insufficient to expedite materials
discovery and operationalization.
skite formulation from synthesis to characterization, leading to overall

Digital Discovery, 2024, 3, 621–636 | 623
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III. Automated labs on the physical
plane

HTE in materials science, also known as high-throughput
materials discovery or combinatorial materials science, started
gaining traction in the late 1990s and early 2000s. This
approach was adopted due to the success of high-throughput
screening in the pharmaceutical and biotechnology indus-
tries, where it was used to speed up drug discovery by allowing
for the rapid screening of thousands of compounds to identify
potential drug candidates.60–63 Automation, infused with
robotics, was introduced to enhance the screening process.
Custom-designed systems, compatible with multi-well plates,
were employed to facilitate the simultaneous handling and
assessment of numerous samples, thereby signicantly ramp-
ing up the throughput. By leveraging automation, high-
throughput screening could effectively process, for instance,
up to 10 000 fermentation broths per week, a dramatic increase
in capacity compared to 800 samples per week at the maximum
capacity of the preceding methodologies. Since then, auto-
mated high-throughput screening has signied a pivotal shi
towards accelerated, efficient, and large-scale screening
processes in drug discovery in the pharmaceutical industry,
overcoming the inadequacies of the previous labour-intensive
and time-consuming practices.60,61,64–66

Inspired by this, researchers in the realm of materials science
have adapted the high-throughput screening concepts in experi-
ments to accelerate the discovery and development of new
materials with desirable properties. High-throughput synthesis
(HTS) has enabled researchers to rapidly synthesize vast arrays of
materials and efficiently explore a broad landscape of materials.
At the core of HTS is the use of automated, parallel processing
techniques that allow for the simultaneous synthesis of a multi-
tude of different materials under various conditions. Some of the
notable HTS methods are combinatorial physical vapour depo-
sition (PVD),25,67,68 combinatorial chemical vapor deposition
(CVD),25,68 robot-assisted materials synthesis,23,42,68,69 inkjet
printing,70 additive manufacturing,30,71–73 high-throughput spark
plasma sintering,31 microuidic synthesis,67,68,74 combinatorial
ow synthesis,31,75 laser scanning ablation,76 combinatorial
hydrothermal synthesis,77 and rapid microwave-assisted
synthesis.78 Among these, few methods are in a true sense
combinatorial methods of synthesis, e.g., combinatorial PVD,
combinatorial CVD, microuidic synthesis, combinatorial ow
synthesis, and laser engineered net shaping. In the rest of the
methods, the compositions of the materials in the library are
either directly or indirectly dened by human beings.

Automated characterization techniques are pivotal in com-
plementing high-throughput synthesis by providing fast and
efficient analysis of large volumes of samples. These techniques
enable rapid assessment of the physical, chemical, and struc-
tural properties of materials, facilitating the identication of
materials with targeted properties/performance. Some of the
key automated characterization techniques include high-
throughput X-ray diffraction,79–81 automated spectroscopy
techniques,81 automated electron microscopy,82–85 automated
624 | Digital Discovery, 2024, 3, 621–636
scanning probe microscopy techniques,59,82,83,86 and high-
throughput optical, electrical, and magnetic properties
measurements.79,87–89 For example, Kalinin et al. mentions how
human-in-the-loop can be used to improve the traditional
microscopy workow. Automation of experiments for materials
discovery is benecial in terms of cost cutting per experiment,
eliminating human error and repetition of menial tasks, and
generating signicant amounts of data spread over a vast
composition and processing parameter space. It is recom-
mended to integrate this methodology for all lab components:
synthesis, characterization, and optimization with a human-in-
the-loop workow.

Featured in Fig. 3, the emerging paradigm in materials
discovery is to achieve a fully automated workow, or “closing
the loop”, by seamlessly integrating all stages from materials
synthesis and characterization to data analysis and decision-
making into a continuous, computer-controlled feedback loop
with advanced automation.54,90 Some proof-of-concept SDLs
demonstrated by different laboratories around the world are the
Hitosugi–Shimizu lab in Japan,91 Cronin92 and Cooper93,94 labs
in the United Kingdom, Swiss CAT+ in Switzerland,95 Ada96 in
Canada, and the Hippalgaonkar97 lab in Singapore, as well as
the A-Lab,98,102 Abolhasani,37 Ahmadi,100 Buonassisi,90 Fen-
ning,101 Amassian,98,99 Brown,73 and Coley75 labs in the United
States. These labs showcase the integration of robotics, AI, and
machine learning in materials science to automate and opti-
mize the process of materials synthesis, property evaluation,
and discovery. This illustrates a future where much of the labor-
intensive and repetitive tasks in scientic research are handled
by intelligent, autonomous systems and how these technologies
are transforming traditional research methodologies, enabling
rapid, high-throughput experimentation with minimal human
intervention.

The evolution of automation platforms and the growing
accessibility of ML techniques have indeed been pivotal in the
emergence and advancement of SDLs and near-complete auto-
mation in scientic research. This trend is reected in the
research works of MacLeod,96,103 Seifrid,104 Steiner,92 and Chat-
terjee,105 wherein they demonstrate the impressive capabilities
of automated systems in optimizing material properties,
synthesizing complex compounds, and enabling multistep
chemical processes with minimal manual intervention.
MacLeod's work in autonomously optimizing the optical and
electronic properties of thin-lm materials, through adjusting
lm composition and processing conditions, exemplies the
effectiveness of SDLs in material property renement for
specic applications.96 This kind of optimization, driven by
machine learning and automated processes, represents
a signicant leap in the eld of materials science, especially for
clean energy technologies. Seifrid's research, focusing on the
balance between manual and automated synthesis, highlights
the necessity of human oversight as automation evolves in
materials science.104 This balance is crucial, especially in over-
coming the limitations of fully automated systems. However,
there is difficulty in automating a streamline of instrumental
analysis due to the specic operational requirements of each
instrument.45 Integration of ML needed in SDLs is crucial for
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 The diagram on top represents classical research. The diagram at the bottom shows the interconnecting relationship between different
instruments and computers for data acquisition (cloudification) and researchers for experiment workflows. Instrumentation and data shown:
OT2 liquid handling robot, X-ray diffractometer, scanning electron microscope, atomic force microscope, time-of-flight secondary ionization
mass spectrometer.
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interpreting data trends across multiple platforms, enhancing
the analytical capabilities of these systems.

The expanded vision of materials science research involves
not just automating individual laboratories but also linking
them in a networked manner to share data, resources, and
insights. This could potentially elevate the efficiency and
effectiveness of research by leveraging shared technical
resources (both experimental and computational) and datasets,
thus accelerating the discovery and development of new mate-
rials. Such interconnected labs, as envisioned in the HELAO-
async framework implemented via the Python asyncio
package,106 PyLabRobot open-source framework,107,108 and
ORCESTRA based on Pachyderm for data orchestration,109

would not only handle labor-intensive and repetitive tasks but
also foster a more collaborative and integrated approach to
scientic research. The HALEO-async framework is designed to
facilitate coordination among multiple research workows,
particularly in materials science and chemistry experiments. It
utilizes asynchronous programming to manage and orchestrate
laboratory automation, enabling adaptive experiments that are
more efficient and exible. PyLabRobot is an open-source
framework, based on Python, designed to provide a hardware-
agnostic interface for programming a diverse range of liquid-
handling robots. It enables seamless and exible control over
robotic laboratory equipment, facilitating automation in
various scientic experiments and research settings. ORCES-
TRA is a cloud-based platform that facilitates the automated
and reproducible processing of biomedical data, providing
© 2024 The Author(s). Published by the Royal Society of Chemistry
tools for integrating and analyzing diverse molecular and clin-
ical datasets. It leverages Pachyderm orchestration tools to
manage data workows, ensuring transparent and traceable
data processing and analysis.

These research works represent the cutting-edge efforts in
orchestrating complex research operations across multiple
laboratories, highlighting the potential for increased efficiency,
collaboration, and innovation in materials science research.
Through the integration of automation, advanced computing
resources, AI, and data management tools, these frameworks
aim to facilitate more seamless, collaborative, and efficient
research processes, paving the way for a new era of inter-
connected scientic exploration for new materials.
IV. Automated labs of the data plane

While the independent SDLs outlined above demonstrate
potential scientic impact for autonomous workows, there is
a forward-looking vision for coupling labs and resources across
labs and institutions. This approach allows for collaborative
efforts with more sophisticated toolsets to interrogate materials
and enables more theory guided approaches. However, the
desire to unify SDLs into scientic ecosystems poses new sets of
challenges.

For SDLs, researchers grapple with diverse formats and
metadata associated with various theoretical and experimental
generators. The challenge lies in envisioning multi-modal
workows that seamlessly integrate data from diverse sources.
Digital Discovery, 2024, 3, 621–636 | 625
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These challenges are compounded by the fact that state-of-the-
art data sources were developed in isolation and many tool
vendors do not provide adequate application access for auton-
omous control and data extraction. This necessitates the
development of instrument wrappers and containerized data
packages, sets of datasets from different generators, containing
comprehensive metadata for reproducibility. Such metadata
extends beyond provenance and must encompass data reduc-
tion and analysis methods encountered at different stages of the
workow. These data packages should be comprehensive as to
not rely on human intuition gained from years of experience to
ll gaps but accommodate independently developed early-stage
machine agents with complementary capabilities.

Managing the ow of data and command-and-control
messages poses a challenge in a landscape where unique
facilities operate independently. Developing microservices that
can interoperate with different institutional entities is essential
for ensuring standardized communication across varied hard-
ware and infrastructure. For example, there currently exists over
300 workow solutions, highlighting the need for a holistic
approach within a federated or hybrid onprem/cloud scientic
framework.110 These microservices must harmonize goals for
security and intellectual property while respecting individual
institutional policies and protocols.

A vision for a unied data ow revolves around a seamlessly
connected scientic data ecosystem, where scientic instru-
ments, robot-controlled laboratories, and computing resources
intertwine. This vision is being pursued at national laboratories
as exemplied by the Interconnected Science Ecosystem
(INTERSECT) at Oak Ridge National Laboratory,111 Superfacility
at Lawrence Berkeley National Laboratory112 and Globus at the
University of Chicago and Argonne National Laboratory,113 but
there is a need to extend this vision to connect with university
and industrial SDLs. This interconnected future envisions
autonomous experiments and self-driving laboratories guided
by AI algorithms, reducing human intervention through
machine-in-the-loop intelligence. To realize such a vision,
a comprehensive federated hardware/soware standard,
inspired by System of Systems (SoS) design patterns and
microservice architectures, is needed to orchestrate autono-
mous processes and foster standardized communication.114–116

Such a SoS ecosystem must embody ve key characteristics:
operational independence of systems, managerial indepen-
dence of systems, geographical distribution, emergent
behavior, and evolutionary development.115

The deployment of AI/ML workows in experimental
campaigns will create a seismic shi in data collection. The
massive datasets required for training AI/ML agents result in
data that human agents may typically discard becoming valu-
able datapoints, which must be cataloged and maintained. As
data volumes surge, laboratories globally must explore innova-
tive approaches to scientic data management within the
broader context of scientic ecosystems. Such scientic data
ecosystems must adhere to FAIR (ndable, accessible, interop-
erable, and reusable) principles,117,118 ensuring the ndability,
accessibility, interoperability, and reusability of data, fostering
scientic reproducibility and simplifying experiment
626 | Digital Discovery, 2024, 3, 621–636
replication.119 The FAIR-principled scientic data ecosystem
introduces a paradigm shi from system-centric to data-centric
perspectives. Automating this approach streamlines data
management tasks, allowing scientists to concentrate on anal-
ysis and discovery within an open scientic ecosystem. The
broad vision of a scientic data ecosystemmakes it an attractive
solution compatible across various facilities and domains. Its
adherence to FAIR principles ensures the development of
uniform APIs for cross-facility implementation and autono-
mous workow use cases spanning edge to exascale computing
platforms.

A federated hardware/soware framework and the scientic
data ecosystem represent signicant strides toward the labora-
tories of the future. The former, propelled by intelligent systems
and autonomous experiments, aims to redene scientic explo-
ration, while the latter, through FAIR data principles, seeks to
transform how data is managed and shared. Together, they
propel scientic discovery and innovation, ushering in a new era
of collaborative and intelligent scientic ecosystems. The
convergence of intelligent systems paints a promising picture of
a future where scientic exploration is not only advanced but also
accessible and reproducible across diverse domains.

V. ML for automated labs

The utilization of ML in automated laboratories is revolution-
izing the approach to materials discovery, yet this integration is
not without its challenges. Traditionally, molecular and mate-
rials discovery follows a linear process – beginning with theo-
retical screening, followed by synthesis and characterization,
oen without a feedback mechanism.120,121 This method,
however, is evolving with the integration of ML techniques in
automated labs, facilitating a more dynamic and responsive
approach. The primary challenge in this domain is navigating
the high-dimensional and oen intractable search spaces cor-
responding to compositions, processing parameters and histo-
ries, or molecular structures. These spaces are dened by their
dimensionality, the properties of the parameter space, and the
characteristics of the functions targeted for discovery. The
dimensionality, completeness, and differentiability of these
spaces offer a systematic guide to discerning problems that are
suitable for classical ML methods and those that require more
innovative strategies. Furthermore, the practical aspect of
accessing specic points in the search space is critical in the
context of chemical optimization.

The rst key parameter is the dimensionality, or the number
of independent degrees of freedom, of the search space. For
example, a ternary phase diagram represents a two-dimensional
search space, while a synthesis process that varies temperature
over time would possess an innite-dimensional parameter
space. Another essential element is the completeness of the
parameter space, referring to whether all combinations of
parameters represent physically realizable scenarios. In natural
search spaces like concentrations and temperatures, parameter
spaces are typically complete. However, in contexts like phase
compositions, the space can be incomplete, as not all compo-
sitions are physically possible. This aspect is particularly critical
© 2024 The Author(s). Published by the Royal Society of Chemistry
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when applying machine learning to large dimensional spaces,
necessitating dimensionality compression techniques such as
variational autoencoders (VAEs).122,123 The use of molecular
encodings like SMILES and SELFIES exemplies this, with
SMILES providing an incomplete representation where not all
strings correspond to real molecules, while SELFIES offers
a complete mapping.124

Similarly, the differentiability of the function to be opti-
mized is a crucial consideration. Physical properties like phase
transition temperatures or band gaps might be differentiable
over certain compositional spaces but become discontinuous
across phase boundaries.125 Even in simple systems, the
numerous phases and boundaries present signicant chal-
lenges for optimizing material properties.

Additionally, practical factors such as experimental budget
and synthesizability must be considered. It's oen infeasible to
experimentally realize a physically possible point in the search
space, due to constraints in synthesis steps or costs. Moreover,
the interplay of theory and experiment in materials and
molecular discovery is pivotal. Computational methods, while
leveraging prior knowledge to predict specic material proper-
ties, must integrate past experimental and theoretical insights.
This iterative balance between theory and experiment inu-
ences the predictability of models and guides new compound
discovery. From a machine learning standpoint, fully realizing
this co-navigation of theory and experiment is an aspirational
goal, given the immense dimensionality and the non-
differentiable nature of the chemical space, which compli-
cates the application of traditional optimization strategies.

VI. Human in the loop

In the evolving landscape of self-driving labs, especially in
materials synthesis, the collaboration between human
researchers and robotic systems is vital. Human researchers
contribute their skilled expertise and nuanced understanding
to laboratory, excelling in tasks that require meticulous atten-
tion and precision, such as solving unexpected reactions,
separation of materials, precise layering of materials to create
advanced nanocomposites, and so on. Their role is particularly
crucial in processes that demand a depth of knowledge, intui-
tion, and adaptability.52

On the other hand, robots are increasingly playing a crucial
role in performing repetitive and data-intensive tasks. Their
involvement is particularly noteworthy in elementary steps
where performance can be signicantly enhanced through
automation. For instance, operations such as pipetting42 and
material depositions91 are areas where robots now demonstrate
superior performance due to their precision and consistency.
These tasks, oen repetitive and requiring exactness, benet
from the robotic systems' ability to execute with minimal error
over extended periods. However, this robotic automation is not
yet universal across all laboratory processes. Many complex
tasks still heavily rely on the expertise and adaptability of
human researchers which includes processes that need
nuanced decision-making, real-time adjustments based on
sensory feedback, and intricate handling of materials.
© 2024 The Author(s). Published by the Royal Society of Chemistry
Moreover, humans excel in innovative problem-solving,
especially in areas like materials synthesis, which presents its
own set of unique challenges. Where a machine might be
stumped by an unexpected issue, a researcher can think later-
ally, drawing from diverse experiences to explore new method-
ologies or cra custom solutions allowing them venture into
uncharted territories of material development and unlock
potential breakthroughs. In essence, while machines and
systems might be limited to the data and algorithms they've
been provided, human ingenuity can introduce fresh perspec-
tives, ensuring continual advancement in materials develop-
ment. A human researcher, with their adaptive problem-solving
skills, can quickly identify anomalies, adjust the synthesis
parameters, or modify the process to mitigate these issues.
Additionally, if an instrument malfunctions during an experi-
ment, a human can oen troubleshoot and x the issue on the
spot or nd alternative ways to continue the work.

This adaptability extends to the data analysis post-
experimentation. Human researchers can provide a depth of
judgment and perspective to enable AI to adeptly interpret
complex data, identifying subtle patterns or anomalies, and
making strategic decisions along with human intervention that
align the scientic process with broader research goals and real-
world applications. Translational AI aims to blend the strengths
of human scientists with ML solutions to enhance the entire
experimental cycle, from synthesis to imaging.126 This approach
involves not just leveraging AI for data processing but also for
strategic planning and decision-making, guided by human
insights. By capitalizing on recent investments in educational
systems and infrastructure, such as collaborations with national
labs and industrial partnerships, the aim is to forge a new para-
digm in AI-driven experimental science that will propel elds like
materials science into a new era of innovation and discovery.

Machine learning, particularly reinforcement learning (RL),
has shown signicant promise in controlled simulations but
oen encounters challenges in real-world scenarios, where
reward functions are complex and not easily dened.127,128 This
is particularly evident in elds where experiments are guided by
long-term objectives, such as combating climate change or
developing new energy technologies, rather than immediate
outcomes. In these contexts, human expertise becomes crucial
for designing reward functions that align with such nuanced
real-world goals, such as combating climate change or devel-
oping new energy technologies, where the true impact of
research may only be discernible over extended periods.129

In Fig. 4, the dynamic interaction between scientists and the
experimental process is key to rening ML applications, espe-
cially when leveraging the adaptability of large language models
(LLMs) like ChatGPT,130 Copilot,131 Tabnine,132 and Gemini,133 to
enhance these workows. These LLMs can assist in optimizing
experiment designs by suggesting viable parameters and
material compositions, thus navigating vast databases to
pinpoint promising research avenues.134 Additionally, they are
instrumental in analyzing complex data, identifying patterns
and providing key insights, thereby focusing researchers'
attention on the most pertinent ndings.135 Moreover, the iter-
ative learning process inherent in scientic research is
Digital Discovery, 2024, 3, 621–636 | 627
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Fig. 4 A diagram highlighting the process of human-in-the-loop
discovery with the reward system interacting on materials synthesis
and characterization methods. Characterization methods listed: mass
spectrometry, X-ray diffraction, and atomic force microscopy. Each
aspect plays a role in the myopic workflow with synthesis that finally
leads to a reward.

Digital Discovery Perspective

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

4 
M

ar
ch

 2
02

4.
 D

ow
nl

oa
de

d 
on

 2
/7

/2
02

6 
4:

40
:3

2 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
enhanced by LLMs, which adapt and rene their outputs based
on the feedback from experimental results. This continuous
interaction facilitates the improvement of experimental designs
and theoretical models, making them more aligned with the
intricacies of material behaviors and properties.

Ultimately, the integration of human intelligence with
domain-specic MLmodels is proposed as a pathway to develop
robust workows that can navigate the complexities of real-
world scientic challenges. This approach not only harnesses
the computational power of ML but also incorporates the crit-
ical, nuanced understanding and creativity of human expertise,
essential for tackling long-term, complex scientic objectives.

Hypothesis generation

Large Language Models (LLMs) like GPT-4, while not fully repli-
cating the enigmatic nature of human creativity, have emerged as
powerful tools in guiding and augmenting human creative
processes, particularly in hypothesis generation. The exact nature
of human creativity remains a complex and largely uncharted
territory; however, LLMs, with their vast repository of knowledge
and advanced pattern recognition capabilities, can signicantly
aid in navigating this realm.136 They excel in quickly assimilating
and synthesizing information from a multitude of sources,
enabling them to suggest diverse and innovative hypotheses.137

This is particularly useful in rapidly evolving or interdisciplinary
elds, where new insights are constantly emerging. By analyzing
existing data and trends, LLMs can identify potential areas of
exploration that might not be immediately apparent to human
researchers. Their ability to process and integrate cross-
disciplinary knowledge allows them to propose hypotheses that
bridge different areas of study, thereby fostering novel perspec-
tives and approaches. While they do not replace the intrinsic
creativity of the human mind, LLMs serve as a complementary
tool, expanding the horizons of human thought and enabling
a more rapid exploration of new elds and ideas. Their role in
hypothesis generation is thus not just as an automated generator
628 | Digital Discovery, 2024, 3, 621–636
of ideas, but also as a catalyst that enhances and directs human
creativity towards unexplored possibilities.
Reward engineering

Machine learningmethods are progressively considered as a part
of real-world technological solutions, including workows for
materials synthesis and optimization, computation, imaging,
and characterization. However, methods such as reinforcement
learning (RL) that had been shown to be highly effective in
simulated environments such as computer games or simulations
are oen inadequate for real-world applications. One of the key
elements of RL is a reward function that is made available for the
algorithm during the training.138–141 As demonstrated in Snapp
et al., methods like Bayesian optimization can be easily inte-
grated into SDL environments. However, for many real-world
problems the reward functions available at the end of the
experimental campaign (or aer several steps) are absent; rather
the experiments are motivated by the long-term objectives.
Designing a reward function that adequately represents real-
world objectives and does not lead to reward hacking is a chal-
lenge. Similarly, very oen experimental results can contribute
to multiple objectives, with fundamental scientic research
being the most notable example of such activity.

As an example of such a problem, consider climate change,
the problem motivating multi-billion-dollar investments over
the globe. Minimizing climate change is a very long-term
objective. The lower rank objectives are the development of
solar and wind energy and associated grid-level storage and
effective energy transport methods, along with the technologies
for direct carbon capture. The even lower rank objectives are the
development of cheap, environmentally friendly, and stable
chemistries for grid storage. None of these objectives can be
translated into a reward for an experimental campaign. Rather,
these objectives serve as a motivation for experiment planning –
and the reward is oen a short-term battery performance or
observation of a specic mechanism under a microscope138,139

that can suggest potential ways to improve the battery materials.
We believe that the discovery of short-term rewards can be

used for hypothesis making to guide experimental research.
Additionally, reward functions can guide and ascertain the
success of experimental campaigns as the missing link required
to connect ML to real-world applications. As potential pathways
to address this challenge, we can consider:

(1) Literature mining towards building directed acyclic
graphs (DAGs) connecting experimental outcomes (rewards)
and objectives (motivation).

(2) Technoeconomic analysis of past publication outcomes.
(3) Crowdsourcing to the community of experts (a.k.a. “what

would be the potential of high temperature superconductivity to
change the world” to “how does the phase separation in cup-
rates affect peak-effect and losses”).

With this, we aim to create the capability to separate the
specic objective into the probabilistic graph of short-term
reward functions that can guide experiment planning and
establish measures of success. Naturally, these reward func-
tions will be probabilistic, and the value of the real-world
© 2024 The Author(s). Published by the Royal Society of Chemistry
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experiment can affect (much) more than one objective. For
example, mechanisms of metal–air interactions can be used
both for corrosion mitigation and for design of metal–air
batteries. The important element of this approach is that
humans are part of the theory–experiment loop – and hence the
structure of the rewards can be amended via human feedback
on the observations (much like science works now).

Notably, the LLMs are oen capable of making the connec-
tion between high- and lower-level objectives (e.g. prompts
“what should I study with a microscope to understand plas-
ticity” gives very plausible answers). This action provides
a starting point for a school of thought that may not already be
obvious to the person posing the question or from conversa-
tions with their peers. LLMs can be utilized to create smaller
stepping stones towards larger, complex issues that may require
multi-year efforts to resolve. For example, prompting ChatGPT
with “I want to solve the climate crisis, what should I study” can
provide a pathway to discuss renewable energy sources such as
solar, and result in determining what kind of experiments
should be conducted for hybrid perovskites.142 Presumably,
complementing LLMs with models trained on domain-specic
literature can both allow systematic developments of such
workows and their integration across multiple domains
following common rewards.137
Fig. 5 An example of gamification used for designing scientific workflow

© 2024 The Author(s). Published by the Royal Society of Chemistry
Homo ludens

We believe that the future of materials synthesis lies in
a harmonious blend of human expertise and technological
advancement. While ML and automation are transforming this
eld, the indispensable role of human insight, creativity, and
strategic thinking cannot be replaced. The most effective and
innovative outcomes in materials synthesis will emerge from
workows that skillfully combine the strengths of both humans
and machines. This integration is imperative because the
reward functions, which drive workow development, must
originate from human objectives and goals. Additionally,
humans can collaborate with AI in rening hypotheses and
recognizing serendipitous experimental ndings, a partnership
that helps mitigate potential misalignments between ML-
generated workows and human intentions. This collabora-
tive dynamic raises a compelling question: what is the optimal
form of human-in-the-loop technology, tailored to human
preferences and capabilities?

The response to this question varies with the complexity of
the workow. In the case of automated microscopy, for
instance, it involves ne-tuning reward functions and exploration
policies.83 Given the limited range of operations in microscopy,
the resulting meta-controls are relatively straightforward, albeit
s based on role-playing games.

Digital Discovery, 2024, 3, 621–636 | 629
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unfamiliar to traditional microscopists, indicating a novice user
as the target audience. In contrast, materials discovery presents
a more formidable challenge due to the complexity, branching,
and interconnectivity of workows.

Looking ahead 10–20 years, as workows intertwine across
multiple elds, the situation grows even more complex. Human
actors will likely struggle to fully grasp these workows, which
span diverse domains and physical locations. Similarly, ML
alone may not suffice, as these workows amalgamate elements
of the physical world that are partially unknown, and sustain-
able systems will require not just prediction and experimenta-
tion, but also tool-making – with the tools themselves
possessing partially unknown properties.

As shown in Fig. 5, a paradoxical yet intriguing possibility is
conceptualizing human-in-the-loop R&D as a Massive Multi-
player Online Role-Playing Game (MMORPG). In this frame-
work, activities like magic, forging, and potion making
symbolize real-world processes in physics, engineering, and
chemistry, with AI acting as an advanced intermediary, con-
necting humans to remote-controlled and automated research
and manufacturing tools.

In the interim, and on a more pragmatic note, gamifying
human-in-the-loop ML presents an engaging user experience
(UX) concept. Gather.Town has already experimented with this
idea for virtual meetings, but the potential for further devel-
opment is vast. Thus, the future might well embrace the concept
of Homo Ludens – humans engaged in playful yet productive
interaction with technology.

VII. Summary

In conclusion, advancing towards complete automation in SDLs
is a complex process that requires a collaborative approach by
combining the expertise of various professionals from diverse
elds such as materials science, instrumentation, mecha-
tronics, soware development, and data science.143 This inter-
disciplinary teamwork is critical to overcome the substantial
challenges with achieving seamless operational ows in auto-
mation, which are oen impeded due to procedural errors and
system stoppages.93,144 While SDLs offer remarkable efficiency
and data generation capabilities, the essential role of human
researchers remains irreplaceable, underscoring the need for
their continued involvement in guiding and overseeing these
automated systems. Collaboration between academia and
industry, combined with the integration of AI algorithms, holds
promise to overcome challenges in achieving seamless opera-
tional ow in automation. By leveraging diverse expertise and
advanced technologies, such a partnership could drive innova-
tion, streamline processes, and enhance the efficacy and reli-
ability of automated systems.

We believe that the future of materials synthesis lies in
a harmonious blend of human expertise and technological
advancement. While ML and automation are transforming the
eld, the value of human insight, creativity, and strategic
thinking remains irreplaceable. The most effective and inno-
vative outcomes in materials synthesis will emerge from work-
ows that skillfully combine the strengths of both humans and
630 | Digital Discovery, 2024, 3, 621–636
machines. This integration is imperative because the reward
functions, which drive workow development, must originate
from human objectives and goals. Additionally, humans can
collaborate with AI in rening hypotheses and recognizing
serendipitous experimental ndings, a partnership that helps
mitigate potential misalignments between ML-generated
workows and human intentions. This collaborative dynamic
raises a compelling question: what is the optimal form of
human-in-the-loop technology, tailored to human preferences
and capabilities.
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29 S. Langner, F. Häse, J. D. Perea, T. Stubhan, J. Hauch,
L. M. Roch, T. Heumueller, A. Aspuru-Guzik and
C. J. Brabec, Beyond Ternary OPV: High-Throughput
Experimentation and Self-Driving Laboratories Optimize
Multicomponent Systems, Adv. Mater., 2020, 32(14),
1907801, DOI: 10.1002/adma.201907801.

30 W. H. Teh, V. Chaudhary, S. Chen, S. H. Lim, F. Wei,
J. Y. Lee, P. Wang, S. P. Padhy, C. C. Tan and
R. V. Ramanujan, High throughput multi-property
evaluation of additively manufactured Co-Fe-Ni materials
Digital Discovery, 2024, 3, 621–636 | 631

https://doi.org/10.1016/j.matt.2021.06.036
https://doi.org/10.1038/s41467-023-42329-9
https://doi.org/10.1021/acsami.3c03520
https://doi.org/10.1021/acsami.3c03520
https://doi.org/10.1021/acsaem.3c00698
https://doi.org/10.1016/j.mtphys.2023.100992
https://doi.org/10.1021/acsnano.5b05556
https://doi.org/10.1039/C7TA00366H
https://doi.org/10.1002/adma.201808283
https://doi.org/10.1002/adfm.202004009
https://doi.org/10.1002/adfm.202004009
https://doi.org/10.1016/j.trac.2019.06.007
https://doi.org/10.1016/j.trac.2019.06.007
https://doi.org/10.1002/marc.200300166
https://doi.org/10.1002/cmtd.202100023
https://doi.org/10.1002/marc.200390013
https://doi.org/10.1002/marc.202100400
https://doi.org/10.1021/co200007w
https://doi.org/10.1021/co200007w
https://doi.org/10.1021/acscombsci.8b00189
https://doi.org/10.1021/acs.chemrev.1c00332
https://doi.org/10.1021/acs.chemrev.1c00332
https://doi.org/10.1002/adma.202002780
https://doi.org/10.1002/adma.202002780
https://doi.org/10.1002/adma.201907801
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00040d


Digital Discovery Perspective

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

4 
M

ar
ch

 2
02

4.
 D

ow
nl

oa
de

d 
on

 2
/7

/2
02

6 
4:

40
:3

2 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
libraries, Addit. Manuf., 2022, 58, 102983, DOI: 10.1016/
j.addma.2022.102983.

31 S. P. Padhy, L. P. Tan, V. B. Varma, V. Chaudhary,
Z. Tsakadze and R. V. Ramanujan, Accelerated multi-
property screening of Fe–Co–Ni alloy libraries by hyper-
heuristic combinatorial ow synthesis and high-
throughput spark plasma sintering, J. Mater. Res. Technol.,
2023, 27, 2976–2988, DOI: 10.1016/j.jmrt.2023.10.124.

32 S. P. Padhy, Z. Tsakadze, V. Chaudhary, G. J. Lim, X. Tan,
W. S. Lew and R. V. Ramanujan, Rapid multi-property
assessment of compositionally modulated Fe-Co-Ni thin
lm material libraries, Results Mater., 2022, 14, 100283,
DOI: 10.1016/j.rinma.2022.100283.

33 J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov,
O. Ronneberger, K. Tunyasuvunakool, R. Bates, A. Ž́ıdek
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