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works for identifying protein-
reactive compounds†

Victor Hugo Cano Gil and Christopher N. Rowley *

The identification of protein-reactive electrophilic compounds is critical to the design of new covalent

modifier drugs, screening for toxic compounds, and the exclusion of reactive compounds from high

throughput screening. In this work, we employ traditional and graph machine learning (ML) algorithms to

classify molecules being reactive towards proteins or nonreactive. For training data, we built a new

dataset, ProteinReactiveDB, composed primarily of covalent and noncovalent inhibitors from the

DrugBank, BindingDB, and CovalentInDB databases. To assess the transferability of the trained models,

we created a custom set of covalent and noncovalent inhibitors, which was constructed from the recent

literature. Baseline models were developed using Morgan fingerprints as training inputs, but they

performed poorly when applied to compounds outside the training set. We then trained various Graph

Neural Networks (GNNs), with the best GNN model achieving an Area Under the Receiver Operator

Characteristic (AUROC) curve of 0.80, precision of 0.89, and recall of 0.72. We also explore the

interpretability of these GNNs using Gradient Activation Mapping (GradCAM), which shows regions of the

molecules GNNs deem most relevant when making a prediction. These maps indicated that our trained

models can identify electrophilic functional groups in a molecule and classify molecules as protein-

reactive based on their presence. We demonstrate the use of these models by comparing their

performance against common chemical filters, identifying covalent modifiers in the ChEMBL database

and generating a putative covalent inhibitor based on an established noncovalent inhibitor.
1 Introduction

Proteins can undergo a range of chemical reactions with
endogenous and exogenous molecules.1–3 The amino acids
cysteine, serine, lysine, threonine, and tyrosine can act as
nucleophiles in reactions with electrophilic compounds. The
covalent linkage formed through these reactions provides
a more durable connection to the ligand than intermolecular
interactions alone, so these reactions are oen used to inhibit
or label proteins.4,5 These reactions typically occur between the
amino acid side chain and a reactive moiety of the molecule,
referred to as the covalent “warhead.” Michael acceptors like
acrylamides and a-haloacetamides commonly modify cysteine
residues, while epoxides and lactones oen target serine resi-
dues. In recent years, many warheads have been identied,
including alkynes, cyclopropanes, chloropyridines, and benz-
aldehydes. The reactive warhead of a variety of covalent
ty, 1125 Colonel By Dr, Ottawa, ON K1S
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inhibitors is highlighted in Fig. 1. The number of types of
covalent warheads is large and growing; a database of covalent
inhibitors (CovalentInDB) is organized into 63 different
warhead categories.6 Additional protein-reactive electrophilic
functional groups are still being identied.7

Some covalent inhibitors are highly promiscuous and will
inactivate a broad number of enzymes; however, Backus et al.
showed that there was a surprising degree of specicity for
a covalent inhibitor to specic proteins in whole cells and
lysates.8 This is consistent with the theory that the covalent
modication of a protein oen requires that the inhibitor has
favorable non-covalent interactions with its target but can also
form a covalent linkage with a complementary reactive amino
acid in the target protein. This dual covalent-noncovalent
binding is the basis for the development of Targeted Covalent
Inhibitors (TCI).9

While covalent inhibitors have signicant therapeutic uses,
there are other instances where it is important to detect protein
reactivity because it is a liability in a specic application.
Protein-reactive compounds can have off-target activity due to
promiscuous reactions with other cellular components10 and
can be metabolized at faster rates due to higher electrophi-
licity.11 Likewise, the development of noncovalent inhibitors
now routinely uses high-throughput screening of the
compounds in large chemical datasets to a protein target.12,13
© 2024 The Author(s). Published by the Royal Society of Chemistry

http://crossmark.crossref.org/dialog/?doi=10.1039/d4dd00038b&domain=pdf&date_stamp=2024-09-06
http://orcid.org/0000-0001-9703-8221
http://orcid.org/0000-0002-0205-952X
https://doi.org/10.1039/d4dd00038b
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00038b
https://pubs.rsc.org/en/journals/journal/DD
https://pubs.rsc.org/en/journals/journal/DD?issueid=DD003009


Fig. 1 Examples of protein-reactive inhibitors. The substructure that reacts with the protein side chain (a.k.a., the warhead) is indicated in red.
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Alternatively, generative AI methods are now being used to
design new compounds optimized to bind to a target.14,15 In
both of these cases, protein-reactive compounds should
generally be excluded from the searches for non-covalent
© 2024 The Author(s). Published by the Royal Society of Chemistry
inhibitors. Conversely, AI development of covalent inhibitors
will require models trained to select for protein reactivity. These
applications would benet from an efficient, automatic
approach for identifying protein-reactive compounds.
Digital Discovery, 2024, 3, 1776–1792 | 1777
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There have been several efforts to predict the reactivity of
compounds towards proteins using quantum chemistry.16,17

Some model the reaction of a specic covalent inhibitor with its
target,18,19 while others attempt to predict the intrinsic reactivity
of a warhead to model thiols.20–23 These limitations require 3D
structures of the warheads to be constructed and for quantum
chemical calculations to be performed. Thio-Michael additions
are a uniquely challenging chemical reaction for conventional
DFT models,24,25 and these methods have been limited to
narrow classes of warheads and are not amenable to automated
high-throughput screening. For example, the BIreactive method
can predict the DFT activation energy for the reaction of
glutathione with a warhead using DFT-calculated descriptors,
which were correlated to the halives of glutathione addition to
an electrophile using multiple linear regression.26 The reaction
halife between a test set of acrylamides was predicted with an
R2 value of 0.69, although this declined an R2 for the 2-chlor-
oacetamide test set.

One approach to identifying protein-reactive compounds
would be to search for warhead substructures in a molecule.
The Pan-Assay INterference compoundS (PAINS) criteria include
some electrophilic motifs because compounds that promiscu-
ously modify proteins can be false positives in high-throughput
screening campaigns. Methods have been developed to auto-
matically check if a compound matches the criteria set for
PAINS compounds, such as the PAINSlter27 set of SMARTS
search strings. Pearce et al. have also published a deck of
substructure lters to identify promiscuous inhibitors,
including those that act through covalent modication of
a protein.28 Lastly, the Eli Lilly medicinal chemistry29 rules are
another automated method for screening viable drug candi-
dates and include query patterns for many protein-reactive
substructures.

Although approaches that search for substructures using
dened patterns are efficient, these lters are not entirely
effective for detecting protein reactive compounds; only 7% of
the CovalentInDB are identied as PAINS compounds and 41%
are rejected by the Eli Lilly rules, so many modes of protein
reactivity are missed by these searches. The diversity of
warheads means it is less practical to dene search patterns for
all variations individually. Further, the neighboring atoms in
a molecule can amplify or attenuate the reactivity of an elec-
trophile group; for example, certain acrylamides that are nor-
mally non-reactive become potent covalent inhibitors of S6
kinase RSK2 if they are b-substituted with cyano groups.30 This
effect is difficult to capture through pattern-based substructure
searches.

A machine learning classier could provide a more general
approach for predicting protein reactivity without requiring
a researcher to dene specic warhead substructures individ-
ually. These methods can leverage large quantities of data to
dene algorithms to classify molecules or predict their prop-
erties. This type of “data-driven” approach would allow protein-
reactive structures to be identied using only structures of
inhibitors that are known to be reactive or non-reactive.

These methods require a method to encode the molecular
structure into a representation that is amenable to machine
1778 | Digital Discovery, 2024, 3, 1776–1792
learning methods. Chemical ngerprints are a popular input to
ML algorithms.31–33 These ngerprints are vectors that contain
ordered elements encoding for physical, chemical, and struc-
tural properties. A widely used class of chemical ngerprints is
Extended Connectivity Fingerprints (ECFP),34 which is based on
the Morgan algorithm.35 This produces binary sequences of
xed length, where a positive bit at a given position indicates
the presence of a chemical substructure inside the molecule.
Morgan ngerprints have been successfully used as a molecular
representation in numerous chemical machine learning
applications.32,36–38

Graph representations of molecules are an alternative to
these ngerprint methods.39 In these models, atoms are repre-
sented as nodes of a graph and the bonds between them are
represented as edges. Atomic and bond properties can be added
as features to the graph nodes and edges, respectively. This
allows extensive chemical data to be encoded in the graph.
These graphs can be used as the inputs to Graph Neural
Networks,40 which can be trained for both classication and
regression tasks.39–41

GNNs have been used to predict some modes of protein–
molecule reactions. For example, Xenosite is a machine
learning method that can predict if a compound can undergo
a bioorganic transformation like epoxidation, glutathione
conjugation, or alkylation.42 A drawback of this model is that it
was trained using data from the Accelrys Metabolite Database,
which cannot be distributed openly, so neither the model nor
the training set are widely available. Generally, an open and
extensible model for protein reactivity will require the use of
publicly available datasets that can be extended as new
compounds are synthesized and their modes of inhibition are
reported. In this paper, we use machine learning techniques to
develop a classier to designate a molecule as being reactive
towards proteins or non-reactive. We impose three criteria in
our development so that the method is general and can be used
without restrictions:

(1) The method should use only existing, open soware
without modication.

(2) The training set should be sourced from public molecular
data sets.

(3) The method will not require any user-dened criteria or
substructure patterns for protein-reactivity.

As noted, covalent-modier inhibitors have both covalent
and non-covalent interactions with their targets. As a conse-
quence, searchers for reactive substructures in the inhibitor can
only provide limited information as to its ability to react with
a specic protein target. Instead, these models predict if
a molecule has the potential to react with a protein.

2 Methods

Fig. 2 illustrates the overall project workow. The methods
developed in this paper take the molecular structure of a mole-
cule as its input and output a classication of the molecule as
being protein-reactive (positive class) or non-protein-reactive
(negative class). These methods are trained using machine
learning methods from datasets of molecules that are labeled as
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Schematics for the workflow of the ML protein reactivity clas-
sifiers. Themodels are trained from ProteinReactiveDB, which includes
sets of inhibitors in public databases of covalent and noncovalent
inhibitors. This labeled data is used to train models to classify mole-
cules as being covalent or non-covalent using GNN and fingerprint-
based ML models.
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protein-reactive or non-reactive. A separate test set was curated
to assess the transferability of these models. The construction
of the training and test sets are described in the following
sections. The training data and source code for all our models
are deposited on GitHub.43

2.1 Data – training

For training, we have built a new dataset, ProteinReactiveDB.
This dataset was constructed from the data in three publicly
available datasets: DrugBank,44 BindingDB,45 and Cova-
lentInDB.6 The DrugBank is predominantly composed of drug
molecules. The BindingDB contains a broader set of molecules
reported in the medicinal chemistry literature. These two
datasets served as the bulk of the negative (non-protein-
reactive) set of molecules in the training set. The Cova-
lentInDB is a database of inhibitors that have been determined
to inhibit their targets by covalently modifying them. This
dataset includes 4511 covalent inhibitors with 280 different
protein targets, although in this approach compounds were
only classed as being protein-reactive or non-reactive, irre-
spective of their target or rate of inactivation. This dataset was
collected from the PubChem,46 ChEMBL,47 DrugBank,44 PDB,48

and UniProt49 database. The compounds were manually veried
to act through a covalent mechanism based on published
reports. This dataset served as the bulk of the positive (protein-
reactive) set of molecules in the training set.

The molecules from the datasets above were curated and
combined into a dataset appropriate for the available
© 2024 The Author(s). Published by the Royal Society of Chemistry
representations. If this library failed to generate a structure for
a compound, it was not included in the data set. All compounds
containing inorganic components were excluded (i.e., contain-
ing only the elements H, B, C, N, S, O, F, Cl, Br). Phosphorous-
containing compounds are not currently supported because the
positive component of the training set had a small number P-
containing compounds and many of the phosphorylated
compounds in the dataset are prodrugs. The RDKit (version
2023.03.2) toolkit50 was used to convert the database entry into
a molecular representation.

An immediate challenge was that both the DrugBank and
BindingDB contain some compounds that are covalent modi-
ers. Any compound that was present in CovalentInDB was
removed from the negative class so that it only appeared in the
positive class. Further, an extensive manual effort was made to
identify these compounds and move them from the non-
protein-reactive class training set to the protein-reactive class.
This included 88 compounds in the DrugBank database that
were annotated as DNA alkylating agents, insecticides, or broad-
spectrum antibacterial compounds. Additional compounds that
were believed to be misannotated or were not suitable for the
representations used in these models (e.g., metal-containing
compounds, antibodies, medical adhesives, etc.) were
removed from the training set entirely (n = 291). Compounds
annotated as prodrugs were also excluded (n = 64).

Compounds were moved to the protein-reactive set if there
was experimental evidence in the literature that they act
through a covalent mechanism. All compounds that were
present in both the DrugBank and the CovalentInDB were
categorized as protein-reactive. We performed an additional
search of the compounds in our non-protein-reactive set that
our rst models classied as positive to determine if they act
through a covalent mechanism. For these compounds, we
searched the Protein-Databank for crystallographic structures
of protein–ligand complexes and searched the macromolecular
Crystallographic Information File (mmCIF) le for a covalent
linkage between the compounds and the proteins. Lastly,
a literature search was performed to identify any published
studies where the enzyme kinetics were analyzed to determine if
the mode of inhibition was reversible or irreversible. 162
compounds in the DrugBank and 285 compounds from the
BindingDB dataset were added to the covalent set through this
process.

In total, the training set used in this study was composed of
45 740 noncovalent inhibitors and 6487 covalent inhibitors. The
dataset and lists of compounds included from the source
databases are included in our GitHub repository.43
2.2 Data – testing

The models presented in this paper are evaluated using two test
sets. The rst test set is generated by extracting 5% of the
compounds in ProteinReactiveDB using stratied sampling. We
will refer to this set as the Internal Test Set. A second test set was
constructed to test the transferability of these models to the
types of compounds that might be evaluated in a modern
medicinal chemistry campaign. This set will be referred to as
Digital Discovery, 2024, 3, 1776–1792 | 1779
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the External Test Set, which is composed of covalent and non-
covalent inhibitors that were not present in the training set
(Table 1). These compounds were manually curated from the
recent chemical literature, and are split into three groups:
covalent inhibitors, rst disclosures, and nonreactive decoys.

2.2.1 Covalent inhibitors (positive class). This test is
composed of compounds reported to be covalent inhibitors,
mostly collected from the recent literature highlighted on the
weblog Covalent Modiers.51 This set is divided into subcate-
gories of covalent warheads of inhibitors with a variety of
covalent warheads, including aldehyde, alkene, alkyne, azir-
idine, boronic acid, exoxide, furan, haloacetamides, lactam,
lactone, nitrile, quinone, sulfonyl, thiocyanate, and thioketone.
Compounds that do not fall into any of those groups are
combined into a group called atypical covalent inhibitors.

2.2.2 First disclosures (negative class). The noncovalent
component of the test set was collected from experimental
drugs rst disclosed 2021–2023, sourced from journal articles
and https://drughunter.com/.52 These compounds were selected
because they were not present in the versions of the DrugBank
and BindingDB used in the training set but have the chemical
features of modern drug candidates. None of these
compounds were reported to act through a covalent
mechanism in their disclosures and were manually inspected
to ensure they did not contain a potential covalent warhead,
so the classier should assign these as being not protein-
reactive.

2.2.3 Nonreactive decoys (negative class). One challenge
for classiers of covalent inhibitors is that functional groups
that are protein-reactive in some molecules can be deactivated
by their chemical environment to the degree that they will not
be signicantly reactive toward protein nucleophiles. For
example, endocyclic cyclohexadienones like piperitone,53 a-
substituted acrylamides,54,55 deactivated sulfonyl uorides,56

and substituted aliphatic epoxides57,58 have been found to have
Table 1 The number of compounds in the external test divided by
class and type of compounds

Class Type Count

Noncovalent First disclosures 139
Nonreactive decoys 47

Covalent Aldehyde 10
Alkenes 217
Alkyne 13
Aziridine 6
Atypical 27
Boronic 7
Epoxides 21
Furan 4
Haloacetamides 14
Lactam 11
Lactone 18
Nitrile 9
Quinone 3
Sulfonyl 49
Thiocyanate 2
Thioketone 7

1780 | Digital Discovery, 2024, 3, 1776–1792
limited reactivity with protein nucleophiles. These present an
additional challenge for classication because simple recogni-
tion of motifs like an epoxide or Michael acceptor would
misclassify these compounds as reactive. To test if our ML
classiers can discern when an electrophile is deactivated, we
constructed another test set of compounds that contain an
electrophilic moiety (e.g., epoxide or a-b-unsaturated ketone),
but have been determined experimentally to have slow or
negligible rates of reaction with nucleophiles. This set of 47
compounds is evaluated separately from the external test set
because these compounds served as a distinct and more chal-
lenging test of the negative classication of these inhibitors.
Examples of compounds from this test set are presented in
Fig. 3.

2.2.4 Train/test set similarity and data preprocessing. To
measure the similarity between the training and the external
test set, for each structure in the external test set we found the
most similar structure in the training set using Tanimoto
coefficients between respective Morgan ngerprints (nBits =

2048, radius = 3). The mean of the resulting distribution is 0.40
and the standard deviation is 0.17. We have also performed
a similar procedure using pairwise distances, nding the least
similar structures. The mean pairwise distance distribution is
0.23 and its standard deviation is 0.13. The metrics above
indicate a modest to moderate degree of similarity between two
datasets. Histograms of both distributions are included in the
Fig. 3 Examples of compounds from the non-reactive “decoy” set
that contain a deactivated warhead (red). These compounds have
been determined experimentally to react with nucleophiles at a slow
rate.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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ESI.†. Each structure in each dataset was standardized using
RDKit to nd the lowest energy tautomer; each structure is
standardized into its neutral form, with implicit hydrogens
removed.

2.3 Metrics

To measure the performance of our models, we employ
common classication metrics such as precision, recall, and
area under receiver operating characteristic (AUROC). For the
external test set, we also review the accuracy of each prediction
for each group. The classication metrics are dened as:

Precision ¼ TP

TPþ FP
(1)

Recall ¼ TP

TPþ FN
(2)

TP, FP, FN, TN are the numbers of true positive, false positive,
false negative, and true negative classications, respectively. A
model that classies all molecules in the test set correctly will
have both a precision and recall of 1. A lower precision indicates
that the model tends to falsely classify molecules as being
protein-reactive when they are not, while a lower recall indicates
that the model tends to classify molecules as being non-protein-
reactive when they are. Precision and recall can be also
combined into one metric known as F1 score, dened as:

F1 ¼ 2� precision� recall

recallþ precision
(3)

The ROC curve is the plot of recall against false positive rate
(FPR), dened as:

FPR ¼ FP

FPþ TN
(4)

The integral of this curve provides the AUROC.59 This metric
indicates how condent a given model is when making a clas-
sication. An AUROC of 1 indicates that the model is capable of
perfectly distinguishing between different classes. A binary
classier with an AUROC of 0.5 indicates that the model is no
better than a random chance, i.e. is very uncertain when
assigning a predicted class.

2.4 Models and features

2.4.1 Morgan ngerprint models. To establish a baseline of
how effective conventional cheminformatic methods are for this
classication task, we have trained models using Morgan
ngerprints. These ngerprints will have bits that indicate the
absence or presence of a chemical fragment within a molecule.
As a result, they should in principle be capable of representing
the presence of an electrophilic group in a compound. We also
trained models using molecular access system (MACCS)
augmented ngerprints.60 In these models, the MACCS nger-
print is concatenated to the original ngerprint, which has been
to improve molecular predictions in some instances.61 We per-
formed a grid hyperparameter search of logistic regression (LR),
© 2024 The Author(s). Published by the Royal Society of Chemistry
support vector classier (SVC),62 random forest (RF) classier,
histogram gradient boosting (HGB),63 and multilayer perceptron
(MLP)64 models in the scikit-learn package (version 1.3).65 The
input features of the molecules in this model were the Morgan
ngerprint generated using RDKit. Models were evaluated with
various bit lengths and radii. A balanced loss function was used
to train the LR, SVC, RF, and HGB classiers. The full details of
the hyperparameter search are included in the ESI.†

2.4.2 Graph neural networks. The second type of classier
we investigated was Graph Neural Networks (GNNs), where each
molecule is represented as a graph where the nodes correspond
to atoms and the edges correspond to bonds connecting the
atoms. In particular, graph convolutional layers were employed.
Following the denition of Kipf and Welling,66 a vanilla graph
convolutional layer can be dened as:

FlðX ;AÞ ¼ s

0
@ ~D

�1
2 ~A ~D

�1
2F ðl�1ÞðX ;AÞWl

1
A (5)

where A is the adjacency matrix, X is the node attributes of
a graph with N nodes and adjacency matrix A. The degree of
matrix A is Dii ¼

P
j
Aij, F

l is the convolutional activations at the

layer l, F0 = X,Ã = A + IN is the adjacency matrix with added self-
connections where IN is the identity matrix, Wl are the trainable
convolutional weights, ~Dii ¼

P
j

~Aij , and s is the nonlinear acti-

vation function.
In this work, the GNNs were implemented using the Mol-

graph library67 (version 0.5.8), which also provides a wrapper to
RDKit descriptors that were used to generate atomic and bond
features. The atomic and bond features include common
chemical descriptors such as chemical symbol, total number of
hydrogens, being a part of aromatic system, etc. A full list of the
atomic and bond features is presented in the ESI.† Additionally,
Conceptual Density Functional Theory (CDFT) derived Fukui
functions and electrophilicity indices were calculated and used
as part of the atomic features in some models. Molecules were
converted into 3D structures using RDKit and then the Fukui
functions were calculated using AIMNET.68

2.4.3 Gradient activation mapping (GradCAM). A drawback
of neural networks is that it can be difficult to interpret how
a classication decision is reached. This can make it difficult to
determine if the model is making a classication based on
relevant, generalizable properties of the input molecules or on
a spurious correlation. As such, there has been an effort to
understand their predictions better.69,70 In particular, the eld
of computer vision has seen several developments to better
understand neural network predictions, with one of the more
prominent techniques being gradient activation mapping. Pope
et al., have shown that GradCAM can be adapted to the graph
neural networks;71 rst, we can calculate the class-specic
weights for class c at layer l and for feature k using the
following expression:

ak
l;c ¼ 1

N

XN
n¼1

vyc

vFk;n
l

(6)
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Then, using eqn (5), we can dene LGradCAM
c as the heatmap

from layer l:

LGradCAM
c½l; n� ¼ ReLU

 X
k

ak
l;cFk;n

lðX ;AÞ
!

(7)

These values can be presented visually as a heatmap where
the nodes are colored according to the magnitude of L for
a node. In this work, the heatmaps were produced using
LGradCAM

c[l,n] Avg, dened by

LGradCAM
cAvg½n� ¼ 1

L

XL
l¼1

LGradCAM
c½l; n� (8)
3 Results and discussion
3.1 Morgan ngerprint models

The performance of the models trained using the Morgan
ngerprints of the inhibitors as features is summarized in Table
2. For each model, optimal hyperparameters were determined
using a random search with 10-fold cross validation. The
optimal models for all ve classiers performed reasonably well
on the internal test set, with AUCROCs ranging from 0.74 to
0.95; however, the transferability of these models to the external
test set was modest, with the AUCROCs between 0.58 and 0.74.
These models have very high precisions on the external test set,
ranging from 0.89 to 1, but have recalls that range from 0.16 to
0.54. This indicates that these models are skewed such that they
are prone to classifying a candidate molecule as negative. We
also explored models using MACCS-augmented ngerprints.
The performance of the model on the internal test set is better,
but the performance on the external test set was only incre-
mentally improved and the best-performing model (HGB) was
not improved (Table 3).

All these models showed signicantly poorer performance
on the external test set than on the internal test set. In general,
these models show that the approach of using Morgan nger-
prints has limited transferability to compounds outside the
training set. A chemical substructure indicated by a specic
Morgan ngerprint bit can be connected to protein reactivity,
but these models fail to generalize in cases where the specic
substructure is lost but protein-reactive activity is still present.
The limited performance of these ngerprint based models led
us to explore more advanced methods using molecular graphs.
Table 2 Metrics for optimal ML models for predicting protein reactivity

Model
Internal test
AUROC

External test
AUROC

SVC 0.94 0.64
HGB 0.95 0.73
LR 0.97 0.74
RF 0.74 0.58
MLP 0.95 0.64

1782 | Digital Discovery, 2024, 3, 1776–1792
3.2 Graph neural network models

Several variants of GNN were evaluated as classiers. For each
model, optimal hyperparameters were found using a random
search with 10-fold cross-validation. The full details of the
hyperparameter search, best hyperparameters for each type of
model, and feature impact analysis are described in the ESI.†
The performance of GNN models is summarized in Table 4. All
these GNNs performed better than the ngerprint models on
classications of compounds in the external test set. Most
signicantly, these methods consistently had much higher
recall rates, which ranged from 0.70 to 0.76. These results
suggest that GNNs are signicantly better at classifying protein-
reactive compounds distinct from those in the training set.
These models all had signicant false positive rates on the
decoy set (false positive rates that ranged from 0.35 to 0.57).

All graph models have similar AUCROCs for the external test
set, although there were some differences in the external test set
recall rates, with values ranging from 0.7 to 0.76. Models with
higher recalls also had higher nonreactive decoy FPRs, indicating
these models are biased towards positive classication. For our
immediate use, false positives are a greater concern than false
negatives, so we have chosen the Graph Convolutional via Initial
residue and Identity mapping72 (GCNII) model based on its lower
FPR. The GCNII model was developed to address issues with
oversmoothing,72 which is an advantage in these systems where
a covalent substructure can span 3–4 bonds (edges) and deacti-
vation of these substructures involves even more distant atoms.
3.3 Comparison to existing lters

One application of this classier is to identify compounds that
may react promiscuously with proteins. Currently, the Eli Lilly
medicinal chemistry rules and PAINSlter criteria are
commonly used to identify protein-reactive compounds. These
lters include additional criteria to screen for non-drug-like and
assay-interference properties other than covalent reactivity,
such as solubility, metabolism, permeability, dyes, etc. Where
possible, these queries were removed from the lter so that it
would only return positives based on protein reactivity. The
queries removed from each lter are listed in ESI† and the
modied implementation of Eli Lilly rules is available in the
GitHub repository.43 We note that somemolecules of the test set
could not be processed by Eli Lilly lters, reducing the test size
from 610 to 596 samples.

The performance of GCNII models and the lters mentioned
above are shown in Table 5. The GCNII models with default
using Morgan fingerprint features for each classifier

External test
precision

External test
recall

Nonreactive
decoy FPR

0.89 0.42 0.20
0.95 0.53 0.17
0.95 0.54 0.11
1.0 0.16 0.00
0.94 0.33 0.10

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 3 Metrics for optimal ML models for predicting protein reactivity using MACCS-augmented Morgan fingerprint features for each classifier

Model
Internal test
AUROC

External test
AUROC

External test
precision

External test
recall

Nonreactive
decoy FPR

SVC 0.96 0.74 0.94 0.56 0.28
HGB 0.97 0.73 0.91 0.59 0.46
LR 0.97 0.74 0.93 0.58 0.23
RF 0.77 0.58 1.0 0.15 0.00
MLP 0.97 0.71 0.93 0.50 0.23
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cutoff performs worse than Eli Lilly lters (F1 scores of 0.78
versus 0.84 respectively), but signicantly better than PAINS-
Filter (F1 score of 0.07), which suffer from very low recall (0.02).
A signicant advantage of these ML classier methods over
conventional lters is that they allow the researcher to choose
the decision threshold at which a candidate molecule is clas-
sied as reactive or nonreactive. The original model used the
default threshold of 0.5, but adjusting the decision cutoff of the
GCNII to 0.17 increases the recall of the model to 0.84 with only
a small decrease in precision (0.89 to 0.87). This adjusted model
now outperforms the Eli Lilly lter (F1 scores of 0.85 versus 0.84)
while maintaining a better nonreactive decoy FPR (0.62 versus
0.74). It should also be noted that the Eli Lilly rules were
developed over an 18 years period within Lilly Research Labo-
ratories and patterns for any new warheads must be dened “by
hand” by researchers, while the GNN model was trained auto-
matically using only datasets of the molecular structures of
covalent and non-covalent inhibitors. We have also performed
GradCAM analysis of the external test set to determine whether
the heatmaps generated consistently indicated the atoms in
a molecule that were part of the warhead. To that end, we have
compared the atomic selections calculated using the set of
SMARTS patterns to that of atoms in positively-classied
molecules where the normalized GradCAM value was greater
than 0.3, which corresponds to strong importance attribution
by the model. Examples are presented in the ESI.† We found
that 179 of 217 compounds in the positive component of the
test set had the atoms of this warhead that were selected by one
of the lter SMARTS strings also had high values in the Grad-
CAM map (threshold > 0.3). This indicates that the positive
GradCAMmap generally indicates the atoms that are part of the
Table 4 Performance of various graph architectures, as measured by th
displayed is the FPR on the nonreactive decoy part of the external test set
full details of each model are described in the ESI

Graph architecture
Internal test
AUROC

External test
AUROC

GCN 0.98 0.84
GCNII 0.95 0.80
GraphSage 0.98 0.84
GAT 0.97 0.83
GatedGCN 0.96 0.82
GIN 0.97 0.84
GT 0.98 0.84
GMM 0.97 0.83
GATv2 0.96 0.84

© 2024 The Author(s). Published by the Royal Society of Chemistry
protein-reactive region, although there is not a strict
correspondence.
3.4 Conceptual density functional theory features

Conceptual Density Functional Theory (CDFT) is oen used to
rationalize chemical reactivity.80–82 The Fukui function is one of
the most signicant CDFT concepts. The electrophilic Fukui
function (f+) describes the rate at which the electron density at
a point in space will change when an electron is added to the
molecule. Electrophiles transfer electron density to the mole-
cule, so the points where this function has a high magnitude
have a high propensity for an electrophilic attack. The nucleo-
philic Fukui function (f−) is dened as the rate that electron
density at a point in space changes as an electron is removed
from the molecule. Nucleophiles transfer electron density from
the molecule, so the points where this function has a high
magnitude have a high propensity for nucleophilic attack.
These functions can be condensed onto individual atoms to
dene atomic Fukui functions by calculating the partial atomic
charges of the neutral, anionic, and cation states of a molecule
and estimating the Fukui functions by nite difference. These
condensed Fukui functions can be multiplied by the CDFT
molecular electrophilicity to provide the positive (u+) and
negative (u−) electrophilicity indices, which have been noted as
useful descriptors for the prediction of warhead reactivity.83,84

CDFT features like the Fukui functions could be useful as
atomic node features in GNNs for predicting chemical reac-
tivity, but traditionally, calculating these terms would require
a quantum chemical calculation. Isayev and coworkers have
implemented CDFT predictions into AIMNET, a message-
e internal and external AUROC, and external precision and recall. Also
. The GCNII model discussed in the rest of the paper is highlighted. The

External test
precision

External test
recall

Nonreactive
decoy FPR Ref.

0.90 0.70 0.51 66
0.89 0.72 0.35 72
0.89 0.73 0.57 73
0.89 0.76 0.49 74
0.90 0.71 0.53 75
0.90 0.70 0.51 76
0.90 0.74 0.49 77
0.90 0.72 0.55 78
0.89 0.74 0.49 79

Digital Discovery, 2024, 3, 1776–1792 | 1783
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Table 5 Performance of the GCNII classifier with two different deci-
sion thresholds (DT) compared to the PAINS and Eli Lilly filters for the
external test set

Precision Recall
Nonreactive
decoy FPR F1 score

GCNII (DT = 0.5) 0.89 0.70 0.42 0.78
GCNII (DT = 0.17) 0.87 0.84 0.62 0.85
Eli Lilly 0.81 0.87 0.74 0.84
Pearce 0.99 0.34 0.37 0.51
PAINSlter 0.83 0.04 0.02 0.07

Digital Discovery Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

5 
Ju

ly
 2

02
4.

 D
ow

nl
oa

de
d 

on
 1

0/
26

/2
02

5 
12

:2
3:

15
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
passing neural network approach that approximates uB97x/
def2-TZVPP minimal basis iterative stockholder charge anal-
ysis, without a quantum chemical calculation.68 Using AIMNET,
the nucleophilic and electrophilic Fukui functions can be
calculated from these data with a very small computational cost,
making it practical to include these charges as features in high-
throughput GNN models.

To test whether GNNs with CDFT features perform better for
predicting protein-reactivity, we trained a second GNN classier
with AIMNET-calculated atomic charges, positive Fukui func-
tion and negative condensed Fukui functions, and positive and
negative condensed electrophilicity indices functions included
as atomic features. Calculation of the AIMNET CDFT features
requires the generation of a 3D structure, search for an optimal
conformation, optimization of the structure, and calculation of
CDFT properties using a message passing NN. The AIMNET NN
currently only allows CDFT properties to be calculated for
neutral molecules and other failures in this workow reduced
the training set to 5875 covalent inhibitors and 43 373 non-
covalent inhibitors. For comparison, a second GNN classier
was trained using this dataset but without the CDFT features.
The metrics for both models are presented in Table 6. Both
GNNs used the same architecture as the GCNII from Table 4.

The CDFT model performed similarly to the non-CDFT
model across classication metrics; however, it performed
signicantly worse on the decoy set (false positive rate of 0.78
compared to 0.49). This is surprising because CDFT properties
like the Fukui function are standard quantum chemical
methods for quantifying the electrophilicity of an atom in
a molecule. Hughes et al. also investigated the utility of CDFT
features in their Xenosite GNN classier for mechanisms of
biomolecular reaction and metabolism and found that they did
not result in a large improvement.85 We suspect that the existing
atomic features dened based on the bonding connectivity are
sufficient for the GNN to make predictions of protein reactivity
that are already near the limit of these graph architectures given
Table 6 External test data performance of GCNII architecture with
and without CDFT features

Architecture
Internal test
AUROC

External test
AUROC

External test
F1 score

Nonreactive
decoy FPR

Without CDFT 0.95 0.85 0.80 0.49
With CDFT 0.96 0.84 0.81 0.78

1784 | Digital Discovery, 2024, 3, 1776–1792
the limited training data, so CDFT features do not provide data
that can improve upon this.

There are several drawbacks associated with including CDFT
features vs. our main GNN classier. Calculation of the AIMNET
CDFT features requires the generation of a 3D structure,
generation of an optimal conformation, optimization of the
structure, and calculation of CDFT properties. In contrast, all
the features in our previous model can be calculated from the
2D structure alone. Calculating a 3D structure is computation-
ally intensive and occasionally fails, so adding these features
signicantly complicates an automated workow.
3.5 Gradient activation maps

Like any neural network architecture, GNNs are not directly
interpretable. As we have constructed the positive and negative
classes of our datasets from different sources, there is some risk
that the trained network would make classications based on
characteristics that are not generalizable. When adapted to
graph inputs, GradCAM is capable of producing graph heat-
maps (see eqn (7)). To assess whether the models developed
here classify based on generalizable criteria, we calculated the
GradCAM heatmaps for a variety of molecules (Table 7), allow-
ing us to visualize which atoms in a molecule are contributing
most to its classication as a protein-reactive or non-protein-
reactive molecule.

G12Si-5 features a lactone warhead, which forms a covalent
bond with the mutant Serine-12 residue in KRAS G12S.92 The
GNN correctly classies it as being a covalent inhibitor with
a classier condence score of 99.9%. The heatmap highlights
the lactone warhead, indicating that classication is correctly
based on the presence of this electrophile in the molecule.
Likewise, the covalent inhibitors NVP-DPP-728, dimethyl
fumarate, futibatinib, and ganfeborole are all correctly classi-
ed as being protein-reactive. The heatmaps highlight their
nitrile, acrylate, acrylamide, and cyclic borate warheads,
respectively, indicating that their positive classication was
correctly based on the presence of these motifs.

Futibatinib is a notable example because it contains two
nominally electrophilic groups: an acrylamide and an alkyne.
The heatmap indicates that the acrylamide group was the most
signicant class for the positive classication. This is in keeping
with themode of action of this inhibitor, which inhibits FGFR1–
4 through the chemical modication of a P-loop cysteine and
the acrylamide, while the alkyne is unmodied.93 This demon-
strates that the GNNmodel can recognize that the acrylamide is
activated while the reactivity of the alkyne is muted by conju-
gation with two aromatic rings.

The trans-stilbene oxide is an instance of false positive
classication where the classier categorizes the compound as
protein reactive with high condence (85.2%). Although the
compound contains an epoxide, the mechanism of action is
believed to be through induction of metabolic enzyme Cyp2B94

and estrogenic activity of its hydroxylated metabolite rather
than the covalent modication of a protein.95 The failure of the
classier to classify this compound as non-reactive likely
reects the larger number of covalent modiers with epoxide
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 7 The class activation maps of selected positively-classified
compounds

Name Heatmap

G12Si-5 (ref. 86)

NVP-DPP-728 (ref. 87)

Futibatinib88

Dimethylfumarate89

Ganfeborole90

trans-Stilbene oxide91

Table 8 Performance of the graph neural network model (DT = 0.5)
on the external test set

Class Type Total samples
Predicted correctly
(%)

Noncovalent First disclosures 139 90
Nonreactive decoys 47 57

Covalent Aldehyde 10 80
Alkenes 217 76
Alkyne 13 69
Aziridine 6 33
Atypical 27 33
Boronic 7 100
Epoxides 21 67
Furan 4 50
Haloacetamides 14 93
Lactam 11 82
Lactone 18 56
Nitrile 9 11
Quinone 3 100
Sulfonyl 49 84
Thiocyanate 2 100
Thioketone 7 57
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warheads and an insufficient number of inert epoxides in the
training set. Additional training data or atomic features may
address this issue.
3.6 Limitations

Although the metrics of the GNN classier are good for
a chemical application of this type, there are some areas where
the performance is weaker. This is evident when the true and
false classications of the external test set are grouped by type
for the GCNII model (Table 8). The compounds in the rst
disclosure set are non-covalent inhibitors that have been re-
ported in the literature recently, so they are not present in the
training sets. The GCNII classier is generally effective in clas-
sifying them as non-covalent inhibitors, with 90% of structures
being classied correctly. The decoy compounds are a set of
molecules that contain electrophilic functional groups, but
their reactivity has been determined to be very slow or
© 2024 The Author(s). Published by the Royal Society of Chemistry
insignicant by experimental measurements. The classier
predicts correctly 57% of structures, indicating that it has
marginal ability to exclude non-reactive compounds and
frequently misclassies them.

The model shows good performance on compounds with
a warhead featuring an unsaturated bond, which can be
explained by them being well represented in training data –

CovalentInDB contains a large number of this type of Michael
acceptor warheads. It performed poorer on “atypical” warhead
portion of the test set, which includes novel functional groups
that have only recently been identied as protein reactive (e.g.,
isoxazoline-based electrophiles96); less than half were classied
correctly. This is likely due to very limited training data and
a lack of transferability. For several other groups, the model
underperforms either because those groups are not well repre-
sented in the training data. There are only 10 aziridines in the
positive training set, so the network is likely undertrained in
recognizing when these structures will be protein-reactive.
Further, both epoxides and aziridines have triangular
elements, which are not amenable to graph convolutional
methods.97 Hughes et al. introduced a special epoxide atomic
feature and additional training data to train their GCN Xenosite
model to predict the reactivity of epoxides correctly, which may
also be needed to improve the performance of this model on
epoxides.85

To investigate this further, we performed GradCAM analysis
on the nonreactive decoy and atypical sets (see ESI†). In some
cases, an atypical Michael acceptor warhead is successfully
identied by the GNN, such as the tyrosine-conjugating cyclic
imine Mannich electrophiles reported by Krusemark and
coworkers.98 In contrast, the novel ring-strain bicyclobutane
carboxylic amides warheads were not indicated by the GradCAM
map, so many of these compounds were incorrectly classied as
non-reactive. In the cases where these compounds were
Digital Discovery, 2024, 3, 1776–1792 | 1785
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positively classied, it appears to be a case of being “right for
the wrong” reason because the GradCAM heatmap highlighted
marginally electrophilic groups such as alkynes and alkenes
rather than the warhead substructure. Based on this, it is
unlikely that the current GNN models can reliably discover
novel warheads, although there are some suggestions that these
GNNs have some capability out of their domain and further
elaboration of these methods might be able to generate truly
original warheads.

The reaction between a protein side chain and a molecule is
oen mediated by the environment inside the protein, such as
neighboring charged residues and hydrogen bonding networks
inside the active site of an enzyme.99 While some covalent
inhibitors are promiscuous,100,101 Kuljanin et al., found that
there was a high level of selectivity for a particular covalent
inhibitor in whole-cell assays.102 Our categorization of inhibi-
tors as either covalent or noncovalent ignores these distinc-
tions, so this classier cannot predict if a compound will
covalently modify a specic protein, but rather it predicts
whether the molecule could covalently modify a protein
provided there is a protein with a binding site that can
accommodate the ligand in an orientation that will put its
warhead in contact with a reactive side chain.

The false positive rate of the GCN models is one of the more
signicant limitations. This is apparent in both the modest
recall rate on the external test set and false positive rate on the
decoy set (0.72 and 0.35, respectively for the GCNII model). This
indicates that the GCN models as implemented here struggle to
distinguish between molecules that possess various modestly
reactive groups but are not sufficiently reactive to covalently-
modify a protein. Simple approaches, such as adjusting the
network architecture and adding QM features had limited
success in improving these metrics. It is evident that these
models perform better on regions of the chemical space where
there is extensive training data (e.g., acrylamides) but have
limited transferability to more exotic areas of chemical space
(e.g., compounds in the atypical set). The inherently small size
of the training data limits the performance of direct, data-based
approaches like those used here, so more advanced chemically-
aware AI methods may be needed to improve these models
further.

Generally, the composition of our training set imposes
signicant limitations on our methods. All three source data-
sets are based on compounds where inhibition experiments
have been performed. Many highly electrophilic compounds
would not be present in the training set because they are too
unstable to perform inhibition studies of. Further, novel cova-
lent warheads that employ unprecedented chemical motifs are
still being identied. These structures are inherently absent
from the training sets and these models have only limited
abilities to predict reactivity in compounds dissimilar to those
in their training set. More generally, the labeling of the data is
“noisy” because currently covalent inhibitors must be manually
separated from the non-covalent training sets and is not always
apparent when an inhibitor acts through a covalent
mechanism103–105 The expansion of the training set and devel-
opments to make these models more transferable to new
1786 | Digital Discovery, 2024, 3, 1776–1792
chemical substrates may help address this issue. As part of an
effort to help the end user assess whether our models can be
applied to a particular structure and/or dataset, we have
included a script that calculates the average Tanimoto similarity
and average pairwise distance for a given structure or set of
structures.

3.7 Protein-reactive molecules in the ChEMBL database

Libraries of chemical structures are oen used in high-
throughput screening campaigns. Generally, these screenings
are intended to identify non-covalent inhibitors, so molecules
likely to react with proteins would create risks of off-target
inhibition or toxicity. Generally, protein-reactive molecules
should be excluded from these searches. The ChEMBL database
is a widely used library of drug-like compounds collected from
medicinal chemistry journals and patents,47,106,107 but it is not
currently separated into covalent and non-covalent inhibitors.

This led us to apply the GNN classier developed in this work
to the ChEMBL database to identify how many potentially
protein-reactive molecules are in this set. The GNN classier
developed in the previous section was used with a threshold of
0.9 to minimize false positives. 5.1% of the ChEMBL database
was agged as potentially being protein-reactive by these
criteria. Eight examples are presented in Table 9. These
compounds were conrmed to be covalent-modier inhibitors
through a literature search. Researchers using the ChEMBL
database to search for non-covalent inhibitors may consider
testing if the compounds are protein-reactive using this classi-
er to exclude these molecules from the search because there is
a risk that they will react with a protein other than the target.
The full distribution of prediction condences of the GCNII can
be found in the ESI.† The classication of each molecule in the
CheEMBL dataset using the GCNII classier is available for
download from ref. 115.

The Eli Lilly lters and the GNN classier scores do not
consistently identify the same compounds as being reactive or
non-reactive when applied to the CheEMBL dataset (see Fig. S3
in ESI†). This indicates the GNN classier developed here
makes distinct predictions to the Eli Lilly lters when applied to
diverse datasets. The GNN classier is specically trained to
identify features molecules in datasets of inhibitors that do or
do not impart protein reactivity, while the lters are searching
for substructures that are undesirable within medicinal chem-
istry campaigns for a broader set of criteria. As such, if the
models developed here are used to screen databases, they
should be used in conjunction with existing lter-based
methods rather than in place of them.

3.8 Generative models

Another potential application of these methods is in the AI
generation of covalent inhibitors. As a proof of concept, we have
explored using the GNN classier developed here in conjunc-
tion with generative models. Commonly, a non-covalent
inhibitor of a target is known and the molecular scaffold of
this molecule is modied to introduce a covalent warhead. For
example, getinib is a non-covalent inhibitor of the Epidermal
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 9 Examples of compounds in the ChEMBL database that were
correctly identified as being protein-reactive. The warhead is high-
lighted in red. Compounds were selected using a classifier score
threshold of 0.9. For each compound, a reference to an experimental
report that the inhibitor acts through a covalent mechanism is
provided

ChEMBL ID Chemical structure

ChEMBL8796 (ref. 108)

ChEMBL17428 (ref. 109)

ChEMBL4751575 (ref. 110)

ChEMBL2086469 (ref. 111)

ChEMBL4116142 (ref. 112)

ChEMBL4435627 (ref. 113)

ChEMBL4303189 (ref. 114)

Fig. 4 Top: Crystallographic structures of gefitinib (green, PDB ID:
4WKQ) and afatinib (blue, PDB ID: 4G5J) bound to EGFR alongwith the
modelled covalent-adduct pose of the generated compound (red).
The generated compound and afatinib form a covalent adduct with
Cys797 (yellow). Bottom: The chemical structures of the three
compounds. The conserved (phenylamino)quinazoline core is shown
in grey. The b-carbon site of the covalent warheads of the generated
compound and afatinib is indicated with an asterisk.
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Growth Factor Receptor (EGFR), which contains a phenyl(-
amino)quinazoline group that binds to the ATP-binding pocket
of the kinase domain.116 The covalent inhibitor afatinib was
© 2024 The Author(s). Published by the Royal Society of Chemistry
developed by introducing an acrylamide group in one of the
pendant substituents, while preserving the phenyl(amino)qui-
nazoline core.117 Prospectively, this process could be automated
by generative AI models, where covalent variants are generated
from a non-covalent scaffold.

To explore whether the GNN classier developed here could
be used to automatically generate covalent inhibitors, we used
the STONED algorithm118 to generate 200 000 variations of
getinib that preserve the phenyl(amino)quinazoline core.
These compounds were ltered to select neutral, organic
inhibitors and ranked according to their difficulty-of-synthesis
using the SYBA classier.119 The GNN covalent classier was
used to identify the top ranked inhibitors with a classier score
of >0.99. The 20 top-ranked compounds were docked to the
crystallographic structure of the EGFR kinase domain using
Digital Discovery, 2024, 3, 1776–1792 | 1787
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MOE.120 One of these compounds was predicted to bind in
a mode where its terminal acrolein group formed a close non-
bonded contact with Cys797 (r(Cb–S) = 3.8 Å). This non-
covalently-bound structure was modied to form a covalent
adduct, where the cysteine has undergone a 1,2-conjugate
addition to the warhead. Aer minimization, the structure of
the covalent adduct holds a similar pose to the experimental X-
ray crystallographic structure of covalent-bound afatinib
(Fig. 4). A general implementation of this workow could
generate candidates for covalent variants of non-covalent
inhibitors in a fully automatic process.

4 Conclusions

Machine learning methods for predicting if a molecule is
protein-reactive were developed. A new dataset, ProteinReacti-
veDB was constructed from public datasets of molecular
inhibitors. These data were used to train classiers to designate
a molecule as being protein-reactive or not protein reactive. To
test the transferability of these models, an external test set was
constructed from compounds that are not present in these sets,
as well as a non-reactive decoy test set of compounds that
contain functional groups that can be protein-reactive but are
not reactive in the chemical context of that molecule.

Conventional ML methods using Morgan ngerprints as
features had limited transferability and performed poorly in
identifying protein-reactive molecules in the external test set.
The HGB and LR classier was the best-performing models of
this type, both with an AUCROC of 0.95 on the internal test set.
This performance on the external test set degraded to 0.73 and
0.74. The primary limitation of these models is a high false
negative rate; both HGB and LR have poor recalls of 0.53 and
0.54, respectively.

The GNNs showed improved performance over the models
based on Morgan ngerprints, with GCNII model performing
the best across most metrics. This model had an AUCROC of
0.95 for the internal test set and 0.80 for the external test set.
Notably, the recall of these models was much improved. Anal-
ysis of the GNN using the gradient activation map indicates that
these models successfully identify the relevant reactive regions
of these inhibitors and can distinguish electrophilic groups that
are made less electrophilic by their environment.

The GNN can also be compared to other pattern-based lters
that have been developed to screen for protein-reactive inhibi-
tors. The calibrated GCNII classier outperformed PAINslter
and Eli Lilly Medchem rules on the external test set. These
pattern-based lters were developed by cheminformaticians
over many years by dening specic substructure patterns for
each electrophilic group, while the GNN classier was built over
a much shorter time period using only public databases of
covalent and non-covalent inhibitors. The GNN classier can be
updated to recognize new warheads simply by adding new
compounds into the training set. The GNN is also better able to
discern if a potentially protein-reactive group is deactivated by
the molecule, while pattern-based lters would ag the pres-
ence of these substructures indiscriminately. The GNN archi-
tecture can also be used for transfer learning to other ML
1788 | Digital Discovery, 2024, 3, 1776–1792
problems and generative AI methods in a way that pattern-
based lters cannot be.

These models were effective using only basic atomic and
bond properties as features and adding more sophisticated
CDFT properties did not provide a model that was systemati-
cally improved. Analysis of the GradCAM heatmaps showed that
thesemodels can successfully identify the electrophilic warhead
of the compound, indicating the classication being made
based on chemically sensible criteria.

The GNN models may have a small but signicant false-
positive rate, so when these are applied to large databases,
there will be a signicant number of compounds incorrectly
classied as protein-reactive. This can be partially rectied by
calibrating the decision threshold cutoff.

These models show the ability to recognize “decoy”
compounds that contain similar functional groups as covalent
inhibitors but are not sufficiently reactive to be considered
a practical covalent inhibitor. This is generally more chal-
lenging because it requires the degree of electrophilicity to be
estimated rather than just the presence or absence of a reactive
motif. However, thesemodels had limited success in identifying
protein-reactive compounds with newly developed warheads
that are not well-represented in the training set.

Despite these limitations, this study demonstrates the
remarkable ability of GNNs to learn to recognize reactive
chemical substructures based exclusively on the classication
of compounds as covalent and noncovalent inhibitors. This
suggests that the substantial libraries of covalent and non-
covalent inhibitors are an effective training set for machine
perception of electrophilicity. Currently, there are only a modest
number of experimental chemical datasets that have the quality
and extent that is suitable for machine learning, so the success
of these models using these data opens new possibilities in
chemical reaction prediction. There are also possibilities to
improve these classiers by adding new features and more
advanced ML techniques.

Data availability

The ProteinReactiveDB, the external test set, and our complete
code for both the ngerprint and graph models are distributed
on our GitHub repository: https://github.com/RowleyGroup/
covalent-classier. The version of the code employed for this
study is version july2024. The classier scores of the GNN
model and the Eli Lilly model for the compounds in the
CheMBL dataset are distributed on FigShare: https://
gshare.com/articles/dataset/
ChEMBL_with_GNN_preds_and_Eli_Lilly/25853467.
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E. K. Grant, J. M. Kirkpatrick, K. Rittinger, D. House,
G. A. Burley and J. T. Bush, ACS Chem. Biol., 2023, 18,
285–295.

57 D. Wade, S. Airy and J. Sinsheimer, Mutat. Res., Genet.
Toxicol., 1978, 58, 217–223.

58 U. Blaschke, A. Paschke, I. Rensch and G. Schüümann,
Chem. Res. Toxicol., 2010, 23, 1936–1946.

59 J. A. Hanley and B. J. McNeil, Radiology, 1982, 143, 29–36.
60 J. L. Durant, B. A. Leland, D. R. Henry and J. G. Nourse, J.

Chem. Inf. Comput. Sci., 2002, 42, 1273–1280.
61 L. Xie, L. Xu, R. Kong, S. Chang and X. Xu, Front. Pharmacol,

2020, 11, 606668.
62 C. Cortes and V. Vapnik, Mach. Learn., 1995, 20, 273–297.
63 J. H. Friedman, Ann. Stat., 2001, 29, 1189–1232.
1790 | Digital Discovery, 2024, 3, 1776–1792
64 S. Pal and S. Mitra, IEEE Trans. Neural Netw. Learn. Syst.,
1992, 3, 683–697.

65 F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot and E. Duchesnay,
J. Mach. Learn. Res., 2011, 12, 2825–2830.

66 T. N. Kipf and M. Welling, International Conference on
Learning Representations, 2017.

67 A. Kensert, G. Desmet and D. Cabooter, MolGraph: a Python
package for the implementation of molecular graphs and
graph neural networks with TensorFlow and Keras, arXiv,
2022, preprint, arXiv:2208.0994, DOI: 10.48550/
arXiv.2208.0994.

68 R. Zubatyuk, J. S. Smith, J. Leszczynski and O. Isayev, Sci.
Adv., 2019, 5, eaav6490.

69 Y. Zhang, P. Tiño, A. Leonardis and K. Tang, CoRR, 2020,
abs/2012.14261.

70 Z. Liu and F. Xu, Front. Artif. Intell., 2023, 6, 974295.
71 P. E. Pope, S. Kolouri, M. Rostami, C. E. Martin and

H. Hoffmann, 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2019, pp. 10764–
10773.

72 M. Chen, Z. Wei, Z. Huang, B. Ding and Y. Li, Simple and
Deep Graph Convolutional Networks, arXiv, 2020,
preprint, arXiv:2007.02133, DOI: 10.48550/
arXiv.2007.02133.

73 W. L. Hamilton, R. Ying and J. Leskovec, Inductive
Representation Learning on Large Graphs, arXiv, 2018,
preprint, arXiv:1706.02216, DOI: 10.48550/
arXiv.1706.02216.
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