#® ROYAL SOCIETY
PPN OF CHEMISTRY

Digital
Discovery

View Article Online

View Journal | View Issue,

Learning conditional policies for crystal design

i") Check for updates‘
using offline reinforcement learningfy

Cite this: Digital Discovery, 2024, 3,
769 . . *a . . b . c
Prashant Govmdarapn,@ Santiago Miret, ©° Jarrid Rector-Brooks,

Mariano Phielipp,® Janarthanan Rajendran® and Sarath Chandar®

Navigating through the exponentially large chemical space to search for desirable materials is an extremely
challenging task in material discovery. Recent developments in generative and geometric deep learning
have shown promising results in molecule and material discovery but often lack evaluation with high-
accuracy computational methods. This work aims to design novel and stable crystalline materials
conditioned on a desired band gap. To achieve conditional generation, we: (1) formulate crystal design
as a sequential decision-making problem, create relevant trajectories based on high-quality materials
data, and use conservative Q-learning to learn a conditional policy from these trajectories. To do so, we
formulate a reward function that incorporates constraints for energetic and electronic properties
obtained directly from density functional theory (DFT) calculations; (2) evaluate the generated materials
from the policy using DFT calculations for both energy and band gap; (3) compare our results to relevant
baselines, including behavioral cloning and unconditioned policy learning. Our experiments show that
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1 Introduction

The widespread enthusiasm in exploiting artificial intelligence
(AI) for scientific discovery' has resulted in various methodol-
ogies to integrate existing scientific knowledge and large data-
bases to design and test new hypotheses more quickly. Recently,
AI has shown favorable results in expediting the discovery of
new chemical structural entities (e.g., small molecules, mate-
rials, and polymers).>* While several studies have focused on
small molecule design for applications in drug discovery, there
has also been an upsurge in attention for Al-based material
discovery.®® Among solid-state materials, crystalline substances
are abundant in nature and are extensively used in industry for
designing batteries, semiconductors, and photovoltaic systems.
The set of known and experimentally observed crystalline
materials is an infinitesimally tiny fraction (around 200 000) of
the exponentially large chemical space spanning over 100
elements in the periodic table and 230 space groups in 3
dimensions.'™ Determining a way to navigate through this
large space to select chemical candidates with desired proper-
ties would be immensely beneficial for a plethora of
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discovery evaluated with accurate and computationally expensive DFT calculations.

applications like designing energy-efficient semiconductors
and combatting climate change.

Besides the complex nature of the chemical space, designing
stable crystalline materials using computational chemistry is
a long-standing challenge primarily due to the time-consuming
density functional theory (DFT) calculations to estimate ener-
getic and electronic properties of materials. Previous works have
utilized generative adversarial networks (GANs),"> diffusion
models,"** and reinforcement learning (RL),"*® in addition to
advanced crystal representation schemes for generating crys-
tals.””'® However, we identify two major gaps in the existing
literature for Al-based material discovery. Firstly, most methods
do not incorporate quantum mechanics-based first-principles
calculations in the learning model, and instead use ML approx-
imators. Studies that incorporate DFT computations in their ML
pipeline for material design usually focus on smaller and very
specific chemical systems (with limited number of elements or
constraints on the space group) that might not generalize well to
diverse chemical systems.">"? Secondly, state-of-the-art generative
AI methods, such as diffusion models, predict the identities and
positions of all atoms simultaneously, which is orthogonal to
sequence based RL methods that also have more established
exploration methods applicable to vast search spaces.

In this work, we develop a model that learns to sequentially
construct crystal skeleton graphs by optimizing for both lower
formation energy and desired band gap value (energy gap
between the valence and conduction bands in solids), as
computed by DFT. In our case, the crystal lattice parameters and
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positions of atomic sites are known beforehand (crystal skeleton),
and the task is to learn a conditional policy that can sequentially
fill atoms to generate a stable and valid crystal with a desired
band gap energy. To alleviate the issue of time-consuming DFT
calculations when integrated into the scientific discovery loop, we
apply offline reinforcement learning using the conservative Q-
learning (CQL) approach,® which is known to mitigate over-
estimation and out-of-distribution issues when agents are
trained with static datasets in an offline manner. We construct
a state transition dataset from high-quality nonmetallic crystal
structures present in the Materials Project database. The reward
function is carefully formulated to penalize high energies and
large deviations from the desired band gap. Further, we leverage
an expressive graph neural network (GNN) for crystal represen-
tation that ensures invariance to periodicity, translation, and
rotation. Through our work, we aim to accelerate the process of
high-throughput virtual screening (HTVS) for materials,** where
usually elements are combinatorially substituted in a known
crystal structure and optimized using DFT calculations. Overall,
our contributions are three-fold, as follows:

(1) DFT evaluation of crystals designed with reinforcement
learning: our targeted formulation of the reward function for
offline RL is crafted from formation energy (per atom) and band
gap values computed using first-principles DFT calculations,
widely used in computational chemistry. The reward function
penalizes high energy and large deviations from the desired band
gap, resulting in a policy conditioned on a target band gap value.

(2) Conservative offline reinforcement learning approach:
using CQL as our offline RL framework, we show that conserva-
tism, combined with the right amount of importance for the
energy and band gap terms in the reward function, can result in
an intuitive approach for generating crystals with a favorable shift
in the distribution of properties of interest. Considering our task
has a very sparse reward scheme, allows no exploration, and has
a high dimensional action space and limited data, we highlight
the important challenges that could be addressed in the future.

(3) Open-source crystal structure design trajectory data: to
ensure consistency in our reward calculation, we evaluate ~20k
crystal structures using the Quantum Espresso* package for DFT
calculation and subsequently construct offline RL trajectories
based on the data. We release the dataset of trajectories and
calculations as part of the paper to enable research to further
improve our work. We use an open-source DFT calculator that is
highly reproducible and consistent for all the structures evalu-
ated. Prior work used different types of proprietary DFT software,
which is difficult for the research community to reproduce.

2 Related works
2.1 Automated materials design

Prior work has explored the application of various types of
methods to crystal structure design, including evolutionary
algorithms, simulated annealing, particle swarm optimization,
and high-throughput screening.>?* Machine learning based
methods have been more recently applied, primarily to molecular
design problems, but also to periodic crystal structures.'”>®
Moreover, there have been notable works using machine learning
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based methods to approximate the evaluation of material prop-
erties and behaviors.*”” This includes approximating DFT
outputs directly for different systems, such as ground-state
crystal structures for a variety of applications, such as cata-
lysts.”*?*® The recent progress in graph neural networks and
generative models has led to their successful application in
materials design.”** GANs have been well explored for crystal
structure design.">**** However, these approaches restrict the
complexity of the problem to a fixed crystal system or a smaller
chemical space."* proposed a physics-guided GAN model using
convolutional layers to learn the generative distribution of stable
crystals, and the evaluation of generated crystals was done using
DFT. CDVAE® introduced a diffusion-based framework with
highly expressive graph representation learning techniques to
generate stable and valid crystal structures in 3 dimensions.*
used their Distributional Graphormer to generate structures of
carbon polymorphs with the desired band gap." focused on
building an online RL framework with DFT integrated reward
function for surface reconstructions. However, they use the tight-
binding version of DFT (DFTB), whose accuracy is lower than full
DFT calculations. Other relevant works include ref. 33-35 and 36

2.2 Offline reinforcement learning

Offline RL*”*® enables for learning an optimal policy directly
from existing trajectories, making it possible to utilize knowl-
edge from known crystal structures. The ability to learn from
previously determined crystal structures reduces the need for
costly DFT calculations during training, which are necessary for
online RL methods. Many recently proposed offline RL methods
focus on managing distribution shift between the offline data
and the learned policy,**' with Conservative Q-Learning
(CQL)* proving to be a particularly robust approach. CQL has
shown success in training large capacity models and perform-
ing better with suboptimal data, which makes it a particularly
good fit for our crystal structure design case.

3 Background
3.1 Crystals

Solid-state crystals are characterized by ordered and periodic
arrangement of atoms in 3 dimensional space. They consist of
unit cells, which are the smallest group of atoms that form the
repeating pattern of the crystal. A crystal's composition and
arrangement of atoms give rise to distinct electronic properties
usually determined by experimental or simulation-based
density functional theory (DFT) calculations. In 3 dimensions,
we can mathematically express the unit cell U as follows.

U= {wilh +wih +w3h|0=w; <1}, (1)

where I3,1,,1;e R® are primitive translation vectors that define
the periodic translation symmetry of the crystal. Discrete linear
transformations can be performed to obtain unit cells at
different locations with V = ¢,1; + ¢,l, + ¢;13, where ¢4, ¢,, and c;
are integers, thus generating the entire 3-dimensional lattice.
Therefore, a 3-dimensional lattice A is defined as all integral
combinations of the lattice basis vectors.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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A= {C]ll + Czlz + C3l3‘C,EZ}. (2)

For a crystal with N atoms, where the atom positions are
given by X = {x,, ..., Xy_1}, the corresponding position of atom u
in a unit cell translated by ¢l + c,l, + ¢3l; is given by

Xy =x,+ ol + b+ ol (3)

Further, there are 230 space groups in the 3-dimensional
space, each of which describes a specific crystal symmetry. Every
crystal in the database is associated with one space group number
(1-230) depending on the arrangement of atoms in the crystal
lattice. The order is based on the increasing complexity of
symmetry elements and their combinations. For instance, space
group number 1 is the simplest and least symmetric crystal system
(triclinic), and 230 has the highest degree of symmetry (cubic).

3.2 Crystal representation

A natural way to represent crystals is using graphs, with atoms
as nodes and edges that connect neighboring or bonded atoms.
However, using simple graphs is often not expressive enough to
incorporate the inherent periodicity in crystals. In this work, we
adopt multigraphs, following** to represent crystal structures.
In multigraphs, two nodes can be connected by more than one
type of edge. In the context of crystals, consider a graph
G = (V,E) with nodes (atoms) V = {v,, ..., vy_4} and edges
(neighboring atoms) E = {eu, (¢, c, ;) |0 Su=N—-1,0=v=N-—
1,¢1,C2,C3€Z,u, ve V}. Here, ey, (c1,c2,c3) is a directed edge from
atom u to atom v in a unit cell translated by ¢, + ¢, + ¢c303. If ¢4
= ¢, = ¢3 = 0, it corresponds to an edge between u and v in the
same unit cell. Likewise, if ¢; = 1, ¢, = ¢3 = 0 it corresponds to
an edge between atom u in the original unit cell and atom v in
a unit cell translated by I;. This way, multigraphs carry infor-
mation about the entire 3 dimensional structure of crystals.

3.3 Offline reinforcement learning

While online RL methods demand frequent agent-environment
interactions, offline RL exploits existing data,*® which is useful
when receiving rewards or feedback from the environment is
computationally expensive or physically implausible. As previ-
ously mentioned, our reward formulation depends on the
energies and band gaps of crystals computed by DFT. Given that
the time it takes to perform DFT simulation ranges between 6
seconds to more than 20 minutes for each input, depending on
its size and type, it is highly infeasible to train an online rein-
forcement learning algorithm for this problem. Additionally,
the high dimensional action space and the extremely complex
reward landscape with narrow modes demand large amounts of
exploration while learning in an online manner. Offline RL aims
to learn from a static dataset D consisting of state transitions,
i.e., (S¢ gy Se+1, Te+1) Obtained from a behavioral policy w4(als) to
learn an offline policy m,(als). However, directly adopting
popular RL (e.g., deep Q-learning) approaches in a data-driven
manner causes two major issues - (1) the learned policy
becomes out-of-distribution from the behavioral policy, and (2)

© 2024 The Author(s). Published by the Royal Society of Chemistry
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values of some states are over-estimated. Both these issues go
hand-in-hand. Addressing these issues,*® proposed conservative
Q-learning (CQL), which regularizes Q-values by concurrently
optimizing for the Bellman error to learn a conservative and
lower-bound Q function. The optimization objective of the
DQN* version (discrete action space) of CQL is given below

minwkE;, p
9

logZeXp(Qﬁ (57 a,)) - ]Es‘aND[Qﬁ(sv a)]:| +

W
FEons o | Qi) = (1 max0u(v.)) |

Here, Qy is the Q-network parametrized by 6, and Qp is the target
network. w controls the amount of conservatism, ie., higher the
value of w, the more the preference for a conservative policy that
better fits the data. When the action space is discrete, the learned
discrete and deterministic offline policy is therefore

a(als) = argmaxQy s, a). (5)

3.4 Density functional theory

DFT is a quantum mechanics-based simulation model that is used
to compute the electronic structure of multi-atom systems, thereby
estimating several properties including total energy, formation
energy, and band gap. This is achieved by iteratively solving the
Kohn-Sham equations.* For evaluating crystal structures, we
make use of the open-source Quantum Espresso software suite® to
perform self-consistent field (SCF calculations) using the Perdew-
Burke-Ernzerhof (PBE) exchange—correlation functional. However,
the PBE functional is known for its systematic underestimation of
band gap energies,* and is less accurate than functionals like
HSEO06 (ref. 46) or other self-energy approximations like GW."
Nevertheless, we used PBE because of its lower computational
costs and superiority over DFTB. The output produced by the DFT
simulation consists of two important properties that we are
interested in - total energy (in Rydberg) and band gap (in eV units).
Using total energy, we can also compute the formation energy
(in eV per atom units). We also faced multiple new crystals failing
to complete DFT simulation due to unknown properties (e.g., spin,
magnetization) as part of our evaluation. Details about failure
handling are provided in Section A.1.6.1.

4 Methods

4.1 RL formulation

The RL formulation of our problem follows a MDP defined as
M = (S, A, T ,R,v), where S denotes the state space, .A denotes
the action space, T(s'|s,s) :Sx S x A—]0,1] is the environ-
ment transition probability function, R(s,a) : S x A—R is the
reward function, and v € [0, 1] is a discount factor denoting the
preference for long term rewards over short term rewards. In
our setup, the state space consists of empty, partially or fully
filled multigraphs (G(V,E)) of crystal structures. The action
space A consists of atomic elements from which the agent has
to choose to assign an atom at a given atomic site in a unit cell.
Starting with initial state s, which is the graph G, of an empty
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crystal skeleton, the sequential construction of a crystal of N
atoms can be represented as a trajectory, as shown in Fig. 1a.

4.1.1 Reward function. For this property-driven crystal
design problem, our reward function is expected to penalize high
positive formation energies (Egrm) and large deviations from
a desired property of interest (e.g., band gap), whose value is
denoted by p. In the context of training an offline RL agent with
batches of transitions, we aim to minimize the deviation between
the ground truth property p of the crystal and p (desired prop-
erty). This bi-objective optimization can be addressed by using
a linear combination of terms that individually optimize for
lower energy and desired property. In other words, for a crystal
with N atoms, the terminal reward, which is also equal to the
return in this case, can be expressed in terms of its formation
energy Er,m and ground truth property p as follows.

rN(Eformaﬁap) = algE(Eform) + a2gp(paﬁ)~ (6)

Here, gx(Eform) enforces lower formation energy, g,(p,p) enforces
p and p to be close (e.g. distance function), and «; and «, are
design parameters that control the importance of each of the
terms. We use the exponentials of the negative formation energy
of the crystal and the distance between the true and desired
properties, yielding a terminal reward as follows:

ry = alexp( — %) + azexp [ — (1,_13)2} . (7)

B B>

This introduces more design parameters $,, and (3,, which
essentially influence the sharpness of the mode of the expo-
nential function; lower value of {8,};_; , results in a higher level
of sharpness.>

sz =Ga,P
’ 1 Focus
(b) | MATERIALS  Crystals Properties THEORY s REPLAY
PROJECT St, Aty St+1,Tt+1 BUFFER
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4.2 Q-Network and state representation

Our conditional Q-network Qy(s,a;p) consists of two components:
(1) a graph neural network that extracts meaningful state repre-
sentation of the input multigraph; (2) linear layers for computing
Q-values from this representation. To represent and process mul-
tigraphs in an expressive manner, we adopt the MEGNet model,*
a universal graph machine learning framework for molecules and
materials. MEGNet provides an effective way of iterative informa-
tion exchange among node, edge and state features, which is
particularly useful for chemical entities. For a crystal graph
G(V,E,y; p) conditioned on the desired property p, Vand E are sets
of nodes and edges, and y corresponds to the global state-level
feature. For the N atoms in a unit cell, the categorical feature of
the nodes H = {h,}_) denote the one-hot encoding of the atom
type in each of the nodes. It includes an additional dimension to
indicate whether the node is currently filled or unfilled with an
atom. Edges connect neighboring atoms based on the CrystalNN
scheme proposed by for determining the presence and type (i.e.,
(¢4, €3, ¢3) triplet) of edges. The set of edge features 7 = {tu,(c, c,.c,)}
represents the Gaussian distance between the position of atom u
in the reference unit cell and atom v in a unit cell shifted by ¢, +

ol + c3l;.
dm‘-(f‘l -l'z«,t‘z)2
p b

dzw.(q,cz,z’g) = \/(xv + Clll + 0212 + (,‘3[3 - xu)zv

Zu\'.(cl.('zA,q) = eXp |: - (8)

©)

where x,,x,eR? are the positions (Cartesian coordinates) of
atoms u and v in the reference unit cell. The state-level feature y
is expressed as follows:

R 7ro(aN—Al|
To(@2]82,p)  8N-1,D)

O Filled

O unfilled

FEATURE MEGNET
EMBEDDING / BLOCKS
ENCODING

Fig. 1

LEARN
READOUT Wo(a|37ﬁ)
AT o Qo(s,0) 1o )
/ OFFLINE RL

(a) Our design approach centers on filling in the composition of predefined crystal using an RL policy. (b) To successfully train an RL policy,

we obtain data from Materials Project,*® recompute relevant property values using open-source DFT (Quantum Espresso??) and create trajec-
tories for offline RL. (c) We train a graph neural network based policy based on MEGNet*® to achieve property-conditioned crystal generation.
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Yy = [ZH/]’Z = [aabac’¢la¢25¢35Ssp]’ (10)

where, a, b, ¢ are the lengths of the edges of the lattice (a = |||,
b =L, c = ||L|]), ¢1, ¢2, ¢3 are the angles of the lattice, S is the
space group number of the crystal, p is the desired property that
the policy is conditioned on, and fis a categorical feature, which
we refer to as focus - it instructs the policy which unfilled node to
focus on for atom type prediction in the following step. The
categorical features H and fare passed through embedding layers
to obtain embedded feature maps H,f. Numerical features 7 and
y are passed through multilayer perceptrons (MLPs)

¥ = MLP(iz]|/f)). (11)

A graph G with embedded and encoded features is then
passed through K MEGNet layers, followed by a readout layer
(Appendix A.1.4) to obtain a graph-level representation, which is
then passed through an MLP to obtain conditioned Q-values for
all actions in A.

G - MEGNET(6")V k=0, K—1  (12)
4(¢"") = rEADOUT () (13)
0i(s = G:p) = MLP(y(G")) (19)

13 Dataset

For this study, we used a subset of the Materials Project database,
referred to as MP-20, that was previously used by."* MP-20 consists
of ~45k metallic and nonmetallic crystals with different struc-
tures and compositions, covering 88 elements in the periodic
table. All of them have at most 20 atoms. For our experiments, we
excluded metallic crystals with zero band gap.} Metals constituted
more than 60% of the data, leading to class imbalance challenges
while conditioning the model with a nonzero band gap. Next, we
used Quantum Espresso to determine the formation energies and
band gaps of all nonmetallic crystals in the training and valida-
tion set. In the end, our training set included 8832 crystals, and
our validation set included 2486 crystals.

4.4 State transitions for offline RL

As shown in Fig. 1, we generated a static dataset for training the
offline policy using episodic trajectories consisting of (s, @, Sq1,
I'+1) transitions from MP-20 crystals. We applied a deterministic
policy Ts(als), where the actions correspond to the original
element identities of the atom at a specific position of interest in
an empty or partially constructed crystal skeleton graph. Each
trajectory of an episode starts with the initial state s,, which is
a graph G, of a crystal skeleton, where all atom identities are
hidden. Through the focus feature f, we are explicitly providing
the order of traversal through the nodes of the graph, thereby
simplifying the problem further. To mitigate the effects of bias

1 Metallic crystals, being conductors, have a zero band gap because of the
overlapping conduction and valence bands.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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due to this order dependency, we obtain up to 5 trajectories for
each crystal by varying the order of nodes with breadth-first
traversals of the graph from different source nodes. This way,
we obtained ~520k transitions to train our offline RL policies.

5 Experiments

In this study, we focus on training conditional CQL (c-CQL)
models to design stable (i.e., low formation energy) crystals
that have a desired band gap (p) of 1.12 eV, 2 €V, 3 eV, and 4 eV,
which fall within the semiconductor range. To determine the
amount of conservatism required for better performance, we
varied w using weights of 1 and 5, with the latter being more
conservative than the former. After an initial hyperparameter
sweep, we choose the coefficients as follows: a; =1, a, = 10, (;
=5, 8, = 3. Our baselines are (1) random policy, (2) behavioral
cloning (BC)§, and (3) Unconditional CQL (u-CQL) Policy (where
p is removed in the state feature vector and the reward is only in
terms of Eg,p,). For evaluating the model, we start with an empty
crystal skeleton graph G, as the initial state sy, and perform
a rollout using the learned conditional offline policy 7,(als,p) to
sequentially fill atoms in the crystal. We then perform a pre-
simulation assessment of the generated crystals using the
following metrics - (1) compositional validity: a generated
crystal is valid if it has an overall neutral charge, as computed by
SMACT,** (2) accuracy, which is the fraction of correctly pre-
dicted atoms, (3) similarity, which measures the similarity of
the predicted atoms with the ground truth, i.e., two atoms are
similar if they belong to the same class of elementsY], and (4)
novelty, which measures the fraction of valid crystals whose
composition is not present already in the Materials Project
database. Our results are shown in Table 1.

Next, we performed DFT simulation for all the valid crystals to
estimate the total energy and band gap. The post-simulation
metrics are (1) Average Formation Energy per atom Egyy, of the
policy-generated crystals (2) Earth Mover Distance (EMD) between
the generated and true band gap distributions (I%), (3) Earth
Mover Distance between the generated and true formation energy
distributions (I't.c), (4) % of crystals that have the band gap value
in the desired range (v), which in our case is from p — 0.25eVtop +
0.25 eV, and (5) Out-of-distribution (OOD) design (k) - % of
generated crystals that have band gaps in the desired range but
whose corresponding ground truth crystals have band gaps
outside the desired range. The results are shown in Fig. 2. Our
initial set of experiments incorporated total energy (Ey,) in the
reward formulation instead of formation energy, where we also
tuned the design parameters. The results of the same are detailed
in Appendix A.3.

5.1 Analysis of pre-simulation metrics

For all band gap targets, as seen in Table 1, the more conservative
models (ie, w = 5) generally perform better in terms accuracy,

§ Trained with supervised classification loss.

9 Classes - transition metals, post-transition metals, group 1 metals, group 2
metals, nonmetals, lanthanides, actinides, halogens, and noble elements
(Appendix A.1.1.2).
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Table1l Pre-simulation metrics for all four band gap targets compared with random, BC and unconditioned policy baselines. More conservative
models generally perform well in accuracy, similarity, and validity, but generate less novel crystals. BC outperforms CQL models in accuracy and
validity

Accuracy (%) Similarity (%) validity (%) Novelty (%)
CQL weight w=1 w=>5 w=1 w=>5 w=1 w=>5 w=1 w=>5
Random 0.0115 0.1254 NaN NaN
BC 49.37 69.04 81.84 51.34
u-CQL 46.30 48.69 67.73 68.64 79.17 80.78 51.15 48.26
¢-CQL (p = 1.12 eV) 43.31 47.72 65.66 69.24 78.75 80.66 63.51 50.95
c¢-CQL (p =2 ¢eV) 42.73 47.97 65.35 68.87 80.23 79.99 65.57 51.18
c¢-CQL (p =3 €V) 43.59 48.16 65.95 69.67 79.15 81.15 65.08 50.11
c-CQL (p =4 eV) 43.40 46.63 65.92 68.29 79.87 78.29 65.55 51.03

Desired Range v

== oCQLiw1 O0OD DeSIgn K
= cCQLw5
4 = U-CQLiw=1
. U-CQL0=5 3.0
BC
s Random
i
2.5
3 i
i 2.0
| e
X
<15
1.0
1
0.5
0 A —4 e -
. o 5 2 00 = = = :
p=112eV p=2eV p=3 eV p=4.0 eV ) ) ) )
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Fig. 2 Results for conditioned CQL policies on four band gap design targets (1.12 eV, 2 eV, 3 eV and 4 eV) with formation energy in the reward
function (egn (7)). Conditioned and more conservative policies perform well in the x and » metric when the target is lower, while unconditioned
policies, including behavioral cloning, perform better at reproducing the original distribution. Random policies fail to reproduce the original
distribution and achieve desired properties. (a) % Desired range for the four band gaps targets for various policies. Conditioned policies
outperform random policy and compete with unconditional policies in designing crystalin the desired property range (p — 0.25, p + 0.25). (b) % of
generated crystals with property in the desired range with corresponding ground truth crystals outside the desired range. Conditioned policies
outperform baselines for lower band gap targets (1.12 eV and 2 eV). (c) Band gap EMD (generated vs. true) for various policies showing that
unconditioned policies reproduce the original dataset better. Lower value indicates more resemblance to the true distribution. (d) Formation
energy EMD (generated vs. true) for various policies showing that unconditioned policies reproduce the original dataset better. Lower value
indicates more resemblance to the true distribution. (e) Average formation energy for various policies yielding valid crystals with energy below 0.
The average formation energy of randomly generated crystals is high and positive. Lower is better.
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similarity, and validity. The metrics were also influenced by the
magnitude of the reward function - the higher the magnitude,
lower the accuracy, and in most cases, the lower the validity of
generated structures (pre-simulation results with total energy in
Tables 2 and 3). This is interesting because when the magnitude of
the reward is lower or w is higher, the conservative term in the CQL
objective in eqn (4) becomes dominant, resulting in the net
maximization of Q-values of state-action pairs present in the
dataset. Higher w also results in lower novelty scores. Behavioral
cloning (BC), trained with no reward signal, performed the best in
accuracy and validity (Table 1), which can be attributed to BC's
better prediction capacities attributed to supervised learning.
However, this might not be helpful from the perspective of
property-driven crystal design where the CQL-based policies
outperform BC in » and « in some cases, as described next in
Section 5.2 outlining relevant case studies.

5.2 Band gap design case studies: targeting 1.12 eV, 2 eV,
3ev&4ev

The results in Fig. 2, which include a well-performing policy for all
the design cases, show some clear trends: (1) for lower band gap
targets (ie. 1.12 eV, 2 eV), conditioned policies (with & = 5)
generate more materials in the desired property range when the
corresponding true materials have properties outside the desired
range (Fig. 2a). Examples of such materials are shown in Fig. 3. (2)
Greater conservatism leads to more materials in the desired range
as shown by the fact that v = 5 outperforms w = 1 in all design
cases. (3) Unconditioned policies manage to recreate the original
distributions better than conditioned distributions. This is shown
by better performance in Fig. 2c and d, holding for both band gap
and formation energy. (4) Random policies are not effective in
generating valid and desired crystal structures. It is likely that the
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~ Generated Generated
True Crystal True Crystal
p Y Crystal b Crystal
ol o ol o ?
g@‘ 42 afatl okek
’\%: LYY MYe LN
1.12 eV :%‘ 3 ;Z\, T Y Pe el ;E‘ ot
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Fig. 3 Examples of cases where the crystal generated by our model
has the band gap in the desired range, i.e., (o — 0.25,6 + 0.25), while the
ground truth crystal has the band gap outside the desired range. In
most cases, it can be observed that some of the elements are common
in the true and generated crystals. This indicates selective atomic
substitutions for favorable band gap shifts.
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random policy generated a small subset of valid metal-like crystals
given the close to zero average band gap shown in Appendix A.1.3.
Random policy generates many unrealistic crystals with high and
positive formation energies (Fig. 2e), and many of the DFT runs
validating the crystals failed (Table 2). Results of pre-simulation
metrics included in Table 1 also show poor performance of
random policy. As shown in Fig. 2, the higher values of p are more
challenging because: (1) most samples in the dataset have a lower
band gap value (Appendix A.2) making the number of samples
with a higher band gap that get exposed to the model while
training a very small fraction, (2) underestimation of band gaps by
DFT, which causes an unfavorable shift from the expected band
gap distribution.

6 Limitations

The important limitations of this work are that the scope is limited
to predicting only the atom types, given all other information
about the skeleton of the crystal and the order of traversal, and the
training data is small and limited to nonmetals. Considering
computational challenges attributed to DFT calculations, we had
to restrict our design parameter space to a very small set, but it
would be interesting to see the results after an extensive analysis
after training models with several values of w, oy, oy, 87 and G,. A
recent study showed that the performance of offline RL algorithms
is influenced by the bias of the dataset generated by the behavioral
policy and the strength of the reward signals.” These aspects
should be analyzed in the context of the crystal design problem
with DFT-based reward signals for choosing the most appropriate
offline RL algorithm and design parameters. Due to the significant
underestimation of band gaps by DFT, many of the generated
crystals had an estimated band gap value of 0.0, which severely
hindered our evaluation and analyses. This explains the very low
fraction of generated crystals having a greater band gap. Further,
resolving the imbalance in the data due to the large number of
samples in the lower band gap regions could help in learning
better policies for generating crystals with higher band gap.

7 Conclusion

We show that it is possible to train reinforcement learning based
policies that can design valid crystal compositions conditioned on
a crystal structure skeleton and a target property, such as the band
gap, evaluated on precise and expensive computational chemistry
engines, such as DFT. We demonstrate that offline RL methods
can be used to learn distributions of design trajectories for valid
crystal structures and provide tuning based on desired properties.
While our results suggest that one can train policies for materials
design problems, there is still significant space for future work to
improve the performance, robustness, and capabilities of the RL
policies. First, our approach can be extended to include additional
design variables, such as crystal lattice parameters and atomic
positions, for greater design flexibility to design more performant
materials. Second, the dataset we used for offline RL is still limited
in size given the large cost of generating the dataset in a consistent
manner and evaluating the reward function for structures gener-
ated by the policy. This leaves significant room for future work in
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creating large pretraining datasets and accelerating the evaluation
of crystal structures through more optimized high-throughput
DFT or machine learning based approximators. Third, much
algorithmic work remains in designing better policies for material
design that can further improve the performance of conditional
design.
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The source code and models for this work can be obtained from
https://github.com/chandar-lab/crystal-design. The offline
trajectory datasets can be obtained from https://zenodo.org/
records/10626005.
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A Appendices
A.1 Experimental details

A.1.1 Pre-simulation metrics. Pre-simulation metrics were
computed for crystals designed by the policies prior to performing
simulation using DFT - they are (1) accuracy, (2) similarity (3)
compositional Validity (referred to as validity for simplicity), and
(4) novelty. Further details on how to calculate them are provided
below.

A.1.1.1 Accuracy. Accuracy is measured as the percentage of
predicted atoms that match the ground truth. Note that the
accuracy in this case is computed globally across atoms pre-
dicted in all the crystals present in the validation dataset.

Accuracy (%) =

#predicted atoms that exactly match the ground truth
Total number of predicted atoms

We can also measure the fraction of crystals that were
reconstructed to match the ground truth exactly. However, this
was a very small percentage (~2-7%) for all the models.

A.1.1.2 Similarity. While accuracy measures the fraction of
exact matches, our similarity metric considers a prediction as
a match if the predicted atom and the ground truth atom belong
to the same category. The categories are defined as follows.

(1) Group 1: Li, Na, K, Rb, Cs

(2) Group 2: Be, Mg, Ca, Sr, Ba

(3) Transition metals: Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr,
Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg

(4) Nonmetals: H,B, C, N, O, Si, P, S, As, Se, Te

(5) Halogens: F, Br, Cl, I

(6) Noble: Xe, Ne, Kr, He

(7) Lanthanides: La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho,
Er, Tm, Yb, Lu

(8) Actinides: Ac, Th, Pa, U, Np, Pu

Similarity (%) =

#predicted atoms that have same category as ground truth
Total number of predicted atoms

776 | Digital Discovery, 2024, 3, 769-785

View Article Online

Paper

A.1.1.3 Compositional validity. We follow" and compute the
compositional validity of crystals using SMACT.**

#valid crystals

N
Validity(%0) = Total number of crystals

A.1.1.4 Novelty. To assess the novelty aspect of our
approach, we compute the fraction of valid generated crystals
whose compositions are novel, i.e., when the compositions are
not present in the Materials Project Database.*® We utilised the
API of Materials Project (mpr . summary . search function)
to retrieve crystals with matching compositions. Note that our
novelty percentage is conditioned on the valid crystals, and we
do not query invalid compositions. Hence, in Table 1, while
other metrics are computed by dividing the total number of
crystals in the validation set, novelty is computed by dividing
the number of valid crystals generated by the model.

#crystals with novel compositions
Novelty(%) = -
ovelty(%) #valid crystals

Average Band Gap p

® # # ®

|I‘ || |}| |J|
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Fig. 4 Analysis of average band gap of generated crystals in the vali-
dation set. BC and unconditional policies have an average band gap
closer to the ground truth average (1.892 eV). Random policy failes to
generate crystals with higher band gap.

Table 2 % Generated valid crystals that successfully underwent DFT
simulation, for random policy and each of the trained models. Most of
the crystals generated by the random policy failed DFT simulation

% DFT success

CQL weight w=1 w=>5
Random 15.18

BC 68.25

u-CQL 68.97 70.29
¢-CQL (p = 1.12 eV) 58.59 66.82
c-CQL (p = 2 eV) 56.04 67.99
¢-CQL (p = 3 eV) 56.55 68.38
¢-CQL (p = 4 eV) 55.64 66.19

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Distribution of band gap (eV), total energy (Ry), and formation energy (eV per atom) for training and validation datasets.

A.1.2 Post-simulation metrics. Post-simulation metrics
were computed for crystals designed by the policies after per-
forming simulation using DFT. As indicated in Appendix
A.1.6.1, crystals that failed DFT simulation were not included
while computing post-simulation metrics. Details on how to
calculate them are provided below.

© 2024 The Author(s). Published by the Royal Society of Chemistry

A.1.2.1 Average formation energy. Following Appendix A.1.7,
the formation energy was calculated for all the generated and
valid crystals that successfully underwent DFT simulation. The
average formation energy if therefore,

N

- E orm,i
Efom = Z—fN ~ (eV per atom)
=1
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Table 3 Pre-simulation metrics for band gap design case of 1.12 eV
with (a; — ap — B) corresponding to the terms of the reward function in
eqn (16) and best by metric highlighted. Unconditional policies
perform better on pre-simulation metrics while conditioned policies
produce target designs shown as in Fig. 7 and discussed in Section 5.2

Accuracy (%) Similarity (%) Validity (%)

CQL weight w=1 w=5 w=1 w=5 w=1 w=5
Random 0.0115 0.1254 NaN

BC 52.26 71.98 85.00

uCQL 49.77 51.53 70.85 71.26 81.50 82.54
0-5-1) 38.64 48.85 61.23 69.38 69.99 77.84
(0-5-3) 43.02 46.43 65.01 67.04 73.57 78.44
(0—-10-1) 36.54 43.72 59.3 65.18 73.33 80.81
(0—-10-3) 35.16 42.42 57.48 64.15 71.20 81.30
r1-5-1) 42.11 47.72 64.00 68.12 75.62 80.29
1-5-3) 40.59 47.57 63.70 67.26 72.93 76.51
r1-10-1) 35.02 43.18 58.63 65.13 67.82 75.14
(1-10-3) 35.38 43.81 57.23 65.58 61.87 77.19

where N is the number of valid crystals whose formation energy
values were computed successfully using DFT.

A.1.2.2 EMD (band gap). The Earth Mover's Distance (EMD)
was computed to determine the distributional distance between
the properties of generated crystals and the ground truth crys-
tals in the validation dataset. For band gap, the I%,. was
calculated as follows.

F{’rue = EMD({pl};M: ]s{ﬁf};vz l)

where M is the total number of crystals in the validation set, and
N is the number of valid generated crystals that successfully
underwent DFT simulation. p; is the property value of the ith
crystal in the validation set, and p; is the property value of the jth
valid crystal generated by the model.

A.1.2.3 EMD (formation energy). Similar to I%,., EMD
between the true and generated formation energy distributions,
T'E .. were computed as follows.

Fgue = EMD({Eform,i}t{M: la{EformJ}}v: 1)

Eform,; is the property formation energy (ev/atom) of the ith
crystal in the validation set, and Egou, is the property value of
the jth valid crystal generated by the model.

A.1.2.4 Desired range. The desired range metric (v) is the
fraction of generated crystals whose property (here, band gap)
lies between p — 0.25 and p + 0.25, where p is the target property.
For simplicity and easier analysis, the denominator of this
fraction is the total number of crystals in the validation set. This
way, the metric provides a way to quantitatively compare the
corresponding percentages across different models.

#generated crystals in the property range(p — 0.25,p + 0.25)
M

Here, M is the number of crystals in the validation set.

A.1.2.5 00D design. Through the «x metric, we compared the
number of crystals generated (from the validation set) whose
property value lies in the desired range, i.e., (p — 0.25,p +0.25), but
the corresponding ground truth property is outside the desired
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range (hence, OOD crystals). This indicates that the model has
learned to place atoms such that the property shifts from a value
outside the desired range to within the range. Similar to », the
denominator is M, the number of crystals in the validation set.

‘ #00D crystals
B M

A.1.3 Additional post-simulation results. As part of the
post-simulation analysis, we also investigated the average band
gap of the crystals designed by each model (Fig. 4).

A.1.4 MEGNet. In our work, we adopted the MEGNet*
model to process crystal graphs and extract state representa-
tion, as part of the Q-network Q, The important hyper-
parameters of the model are listed below.

e Number of MEGNet blocks: 3

e Node embedding dimensions: 16

e Edge embedding dimensions: 1

e State embedding dimensions: 8

e READOUT Function: order-invariant set2set>

A.1.5 Offline RL. We adopt conservating Conservative Q-
Learning (CQL)* as the offline RL approach. The important
hyperparameters of our training process is listed below.

e Number of steps trained: 250 000

e Discount factor: 0.99

e Batch size: 1024

e Learning rate: 3 x 10"

e Soft target network update rate: 5 x 10>

e Optimizer: Adam

A.1.6 DFT parameters (Quantum Esperesso). For perform-
ing DFT calculations, we use the Quantum Espresso v7.1 (ref.
22) simulation suite. The details of the DFT parameters are
given below. For simplicity, this configuration was used for all
crystals, and the evaluation is consistent for the training and
generated crystals. Note that we do not perform structure
relaxation in any of the cases.

e Calculation: SCF

e Pseudopotentials: solid-state pseudopotentials (SSSP)
version 1.3.0 obtained from https://www.materialscloud.org/
discover/sssp/table/efficiency

e Tolerance: 10™°

e Number of bands: 256

e k-points: (3-3-3)

e Occupations: fixed (since our training set consists only of
nonmetallic crystals)

¢ Diagonalization: David

e ecutrho: 245

e ecutwfc: 30

e mixing beta: 0.7

e degauss: 0.001

e Default charge: 0

e Maximum iterations: 1000

A.1.6.1 Handling failures. It is important to note that DFT
can be best leveraged once we know certain properties of the
crystals — for example, charge, magnetization, and metallicity.
Considering the difficulty in determining these properties for
completely unknown crystals, we standardized the evaluation

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 8 Full design parameter values for all learned policies for the band gap design case of 4.0 eV. Nomenclature of the table is (& — ap — )
corresponding to the terms of the reward function in eqn (16).
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procedure by using the same DFT configuration for all crystals
(except for the crystal-specific parameters like number of atoms,
species, and pseudopotentials directory). However, this resulted
in multiple crystals failing DFT simulation. Some of the errors
are explained below.

e Charge is wrong. Smearing is needed: this error mainly
occurs because of unpaired electrons in the system, and can be
resolved by changing the occupation to ‘smearing’ instead of
‘fixed’. However, doing so will not help in determining the band
gap of crystals, as it will only output the Fermi energy. Another
way is to set the ‘nspin’ parameter to 2 and specify the total
magnetization value as an additional input to Quantum
Espresso. This helped us resolve most of the failures for the MP-
20 crystals in the training and validation set because the total
magnetization value is retrievable from the Materials Project,
but for the newly generated crystals, we had to ignore those that
failed because of this error. The error could also occur if the
generated crystal is metallic, and this property is also difficult to
identify directly from the structure and composition.

e NOT converged in 1000 iterations: for some crystals, the
DFT simulation did not converge even after 1000 iterations.
These crystals were ignored while constructing the offline
dataset, and also when evaluating the policy-generated crystals.

o Time limit exceeded: for constructing the offline dataset using
known crystals, we used a flexible time limit to ensure none of the
crystals were discarded because of time restrictions. However,
while performing DFT simulation for the policy-generated crystals,
due to the high-throughput nature of our evaluation pipeline, we
had to ignore crystals that did not converge in 15 minutes.

¢ Too few bands: this error occurs when the number of bands
specified, through ‘nbnds’ parameter is insufficient for the
crystal system being simulated. This error was largely resolved
by specifying a higher number of bands. In our case, we used
256 bands for all crystals.

Overall, during evaluation of generated crystals, only 50-70%
of the valid crystals successfully underwent DFT simulation to
output the energy and band gap (Table 2), and the rest failed
because of the above errors.

A.1.6.2 % DFT success. Table 2 shows the percentage of
policy-generated crystals that successfully underwent DFT
simulation based on failure handling strategies discussed in
Appendix A.1.6.1.

View Article Online
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Table 4 Band gap design case of 4 eV with similar nomenclature and
conclusions as Table 1

Accuracy (%) Similarity (%) Vvalidity (%)

CQL weight w=1 w=5 w=1 w=5 w=1 w=5
Random 0.0115 0.1254 NaN

BC 52.26 71.98 85.00

uCQL 49.77 51.53 70.85 71.26 81.50 82.54
0-5-1) 41.82 48.09 64.34 68.82 80.21 82.18
(0—5—3) 39.46  47.61  61.59 6824  74.46  80.09
(0—-10-1) 33.24 39.42 60.78 53.42 62.39 67.82
(0—-10-13) 35.24 41.47 57.14 64.06 64.40 75.54
1-5-1) 38.80 46.79 60.09 68.77 70.80 80.17
(1 -5 - 3) 42.06 47.49 63.36 68.35 78.32 81.0
1-10-1) 36.52 42.21 59.57 65.07 76.55 74.41
(1-10-23) 35.94 42.91 56.8 64.2 68.95 77.63

A.1.7 Formation energy calculation. The formation energy
per atom was calculated using the total energies of the crystals
and their constituent elements. The total energies of the isolated
elements (88 in the action space) were calculated by performing
SCF calculations on the most stable elemental crystals (ie.,
0 formation energy) present in the Materials Project. For elements
that do not have a stable elemental crystal (e.g. Lu) or those that
have large number of atoms in the elemental crystal (e.g. P, Se),
the total energies were calculated for a single atom inside
a primary cubic cell of length 10 A. For a crystal with N atoms, the
formation energy (per atom) calculation is defined as follows.

Eu~ SN
n

ot

i
Erorm =

~ x 13.6057039763 (eV atom)

(15)

Here, N; is the number of atoms of the constituent element i
present in the crystal, n; is the number of atoms (sites) of i in the
elemental crystal, and EL.. is the total energy of 7 in the most
stable elemental crystal form. 13.6057039763 is the value of 1
Rydberg constant in eV.

A.1.8 Algorithm. A.2 True distributions of properties

This section shows the true distribution of the band gaps and
total energies for both training and validation data (Fig. 5).

Algorithm 1 Training Conditional CQL: DQN Version for Crystal Design with Target Property p

Construct dataset D of size Np consisting of transitions (s, @, s, ) using known crystals

Load D in Replay Buffer B

Initialize Q-network Qy and target network Q/, batch size B

for j = 1 to max_steps do

Sample B transitions, {(s;, a;, s5,7;)}2 | from B

Compute TD loss

D
L) = (Qo(ss,a4;9) —74)°

L™P(9) = LB LTP(9)

_ J(Qo(s4,a4;p) — (i + ymaxa Qo (S5, a;p)))? if s/, is not terminal

otherwise

Compute conservative loss, LC(§) = & S8 llog >, exp(Qo(si, a; p)) — Qo(si, ai; p)]
Compute total CQL loss LEPL(0) = wLC(0) + 1L7P(6)
Compute gradients and backpropogate: 6 < 0 — nVLC?L(6), n is the learning rate

Update target network parameters 6’
end for
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A.3 Experiments with total energy

As part of our initial analysis, we performed the experiments
with total energy (Eo) in the reward formulation instead of
formation energy, with the aim of designing crystals that are
generally considered stable (in an absolute sense), so they can
be used for practical purposes. However, total energy is less
meaningful when it comes to comparing the stability of
different crystals, while energy above hull is the best-known
metric to compare thermodynamic stability.

A.3.1 Reward formulation. Since the units of total energy
are in Rydberg (Ry), our reward function in eqn (7) can be
redefined as follows.

(16)

(v ﬁ)z}

'y = allogm(—Emt) + aexp |: -

A.3.2 Full experimental metrics with total energy. We
provide full experimental for our reward function design
parameters for both the 1.12 eV design case (Table 3 and Fig. 7)
and 4 eV case (Table 4 and Fig. 8) below. The tables and figures
include evaluation of both the pre-simulation (except Novelty)
and post-simulation metrics (except k) described in Section 5.
With oy = 1, a, = 5, 8§ = 1, the post-simulation results for all
four band gap targets are shown in Fig. 6. All models in high-
lighted in this section were trained for 500 000 steps.

Note added after first publication

This article replaces the version published on 22 March 2024.
The caption for Fig. 2 contains additional details regarding

parts (a)—(e).
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