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new framework for molecular
design†

Emmanuel Noutahi, *a Cristian Gabellini,a Michael Craig,a Jonathan S. C. Limb

and Prudencio Tossoua

Traditional molecular string representations, such as SMILES, often pose challenges for AI-driven

molecular design due to their non-sequential depiction of molecular substructures. To address this

issue, we introduce Sequential Attachment-based Fragment Embedding (SAFE), a novel line notation

for molecules. SAFE reimagines SMILES strings as an unordered sequence of interconnected

fragment blocks while maintaining compatibility with existing SMILES parsers. It streamlines complex

generative tasks, including scaffold decoration, fragment linking, polymer generation, and scaffold

hopping, while facilitating autoregressive generation for fragment-constrained design, thereby

eliminating the need for intricate decoding or graph-based models. We demonstrate the

effectiveness of SAFE by training an 87-million-parameter GPT-like model on a dataset containing

1.1 billion SAFE line notations. Through targeted experimentation, we show that our SAFE-GPT

model exhibits versatile and robust optimization performance. SAFE opens up new avenues for the

rapid exploration of chemical space under various constraints, promising breakthroughs in AI-driven

molecular design.
1 Introduction

Molecular design, which consists of constructing molecules
with desired characteristics, is a critical task in computational
drug discovery. It oen necessitates the preservation of certain
scaffolds or core chemical substructures, which serve as the
backbone for the design process, the motivation for preserving
these groups and constraints typically stems from their crucial
role in the molecule's biological activity. Nevertheless, incor-
porating such constraints can be challenging when relying on
conventional molecular string representations like the Simpli-
ed Molecular Input Line Entry System (SMILES).

Although SMILES has played a crucial role in chemistry and
drug discovery, it is unable to provide a contiguous represen-
tation of molecular substructures. This limitation hinders tasks
like adding structures to a molecule's scaffold and connecting
fragments, limiting its usefulness in improving potential drug
candidates, particularly during lead optimization efforts.
Addressing these challenges requires the development of an
enhanced line notation for molecules, one that can preserve the
integrity of molecular scaffolds and fragments while offering
exibility for de novo molecular design.
. E-mail: emmanuel@valencelabs.com;

elabs.com; prudencio@valencelabs.com

a. E-mail: jonathan.lim@u.nus.edu

tion (ESI) available. See DOI:

–804
To this end, we introduce Sequential Attachment-based
Fragment Embedding (SAFE),‡ a novel line notation for mole-
cules. In contrast to existing methods, SAFE represents mole-
cules as an unordered sequence of fragment blocks. This re-
imagines molecular design tasks, transforming them into
simpler sequence completion problems. Moreover, SAFE facil-
itates autoregressive generation, effectively bypassing the need
for intricate decoding schemes or graph-based models (see
Fig. 1 and Table 1). Importantly, despite these novel features,
SAFE strings are backward compatible with SMILES parsers,
promising an easy integration into existing workows. Our
contributions can be summarized as follow:

� We introduce SAFE, a novel line notation for molecules
compatible with SMILES that represents molecules as
a sequence of interconnected fragments.

� We introduce SAFE-GPT, an 87.3-million-parameter GPT-
like generative model, pretrained on a dataset of 1.1 billion
SAFE strings that can be used for diverse downstream tasks.
This model is shown to be effective in various molecule gener-
ation tasks, capitalizing on SAFE's unique characteristics.

� We propose a new benchmark inspired by real-world drug
discovery challenges to assess pure generative models' perfor-
mance in tasks such as scaffold decoration, linker design, and
motif extension.
‡ Code, data and model available at https://github.com/datamol-io/safe/
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Fig. 1 Molecular design tasks that can be performed easily with SAFE.

Table 1 Pure generative capabilities of various molecular representations. In the assessment of the inherent generative capabilities of each
molecular representation, we employ a marking system: 3 signifies intrinsic competence, ? indicates the need for additional and intentional
engineering, and 7 suggests unverified capabilities

Task SAFE SMILES Deep/gen SMILES SELFIES Group SELFIES InChi Graphs

De novo design 3 3 3 3 3 ? 3

Linker design 3 ? 7 7 ? 7 ?
Motif extension 3 ? 7 ? ? 7 3

Scaffold decoration 3 ? 7 7 ? 7 3

Scaffold morphing 3 7 7 7 ? 7 ?
Super structure 3 7 7 7 ? 7 3
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2 Related works
2.1 Molecular line notation representations

The Simplied Molecular-Input Line-Entry System (SMILES)1 is
the most widely adopted molecular line notation in chemo-
informatics for its simplicity, compactness, and human read-
ability. In contrast to the International Chemical Identier
(InCHI) that provides global and unique identier to molecules,
SMILES are more suitable for molecular generation tasks.
However, SMILES lack robustness tominor changes and struggle
with ensuring the validity and integrity of fragments in deep
learning-based molecular design. They also underperform in
molecular search and substructure matching tasks. To overcome
these challenges, alternative notations like Self-Referencing
Embedded Strings (SELFIES)2,3 have been developed. SELFIES
address the robustness and validity issues in deep generative
modeling through a recursive approach, surpassing notations
like DeepSmiles4 and GenSMILES,5 but come at the cost of
simplicity, interpretability and compactness. None of these
notations consistently uphold the integrity of scaffolds and
fragments essential for several molecular generation tasks. A
recent innovation, Group SELFIES,6 builds on standard SELFIES
by introducing functional and chemical group tokens, to
improve compactness and chemical motif representation for
molecular generative tasks. Yet, neither Group SELFIES nor other
© 2024 The Author(s). Published by the Royal Society of Chemistry
line notations facilitate deep generative fragment-based mole-
cule design without extensive, task-specic engineering of
training processes and molecule generation steps,7–10 bespoke
model architectures,11 or goal-directed optimization frameworks.
In Table 1, we contrast the generative capabilities of various
molecular line notations, including SAFE.

2.2 Deep generative design

To contextualize our work within the domain of deep generative
design we refer interested readers to comprehensive reviews
provided in ref. 12–14. Herein, we briey describe sequence-
based and graph-based deep generative models. Sequence-
based methods, originally focused on character-by-character
SMILES generation.15 This approach provided considerable
versatility but faced challenges when dealing with fragment-
based constraints. Nevertheless, recent advancements have
attempted to address this limitation by separately generating
scaffolds and side chains,10 introducing transformations
derived from matched molecular pairs analysis,16 and employ-
ing conditional generation.17,18 In the realm of graph-based
methods, our work shares similarities with,19–21 which uses
motifs for molecular graphs but encounter difficulties when
extending design to scaffold-based generation, linker-design
and generating molecules with unseen building blocks. In
particular, these methods, while capable of assembling motifs
Digital Discovery, 2024, 3, 796–804 | 797
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in a tree-like structure, have difficulties creating novel cyclic
structures not seen during training.
2.3 Constrained molecular design

Notable contributions have emerged in the recent literature on
constrainedmolecular design. Li et al.22 introduced a conditional
graph generative model that excels in producing valid molecules
while offering the exibility needed for multi-objective optimi-
zation. MolGPT,18 which uses a transformer-decoder architecture
for the generation of drug-like molecules, has demonstrated the
capacity to conditionally control diverse molecular properties
and scaffold designs, highlighting its efficacy in craing mole-
cules tailored to specic requirements. Furthermore, Multi-
Constraint Molecular Generation (MCMG),23 combining condi-
tional transformers, knowledge distillation, and reinforcement
learning, has shown the capability to satisfy multiple constraints
during the process of molecular generation.

2.4 Scaffold-conditioned generation

Under hard scaffold constraints, Lim et al.24 proposed a graph-
based model explicitly trained on scaffold and molecule pairs.
Under so scaffold constraints, Li et al.25 have considered the
scaffold as part of the input, but their approach does not guar-
antee its presence in the generated molecules. Arús-Pous et al.11

used an iterative conditional training procedure to perform scaf-
fold decoration with an LSTM trained on SMILES. Their work was
extended in ref. 8, where a reaction-driven approach for scaffold
decoration was proposed. Finally, Langevin et al.9 proposed
a sampling algorithm that can adapt any SMILES-based auto-
regressive model to work with scaffolds. However, being trained
on SMILES, their models can neither guarantee validity of gener-
ated molecules nor the presence of the input scaffold constraint.

3 SAFE algorithm

In SMILES, ring structures are marked by using digits to identify
the opening and closing ring atom, thus denoting a virtual
connection between the corresponding atoms. This rule also
contributes to the subjectivity of SMILES representation where
multiple different SMILES correspond to the same molecular
798 | Digital Discovery, 2024, 3, 796–804
graph. SAFE (Sequence Attachment-based Fragment Embed-
ding) leverages this rule to discover alternative SMILES strings
that enforce an order of SMILES characters in which all SMILES
tokens belonging to the same molecular fragment are consis-
tently arranged consecutively (see Fig. 2). As such, SAFE is
a molecular line notation that reimagines SMILES as a collec-
tion of connected fragments and remains a valid SMILES
representation. Furthermore, the arrangement of fragments
within a SAFE string has no impact on the underlying molecular
graph, ensuring that common data augmentation techniques
for generative models, such as randomization, remain
applicable.
3.1 Constructing a SAFE string

The detailed process to convert from SMILES to SAFE is illus-
trated by Algorithm 1 and Fig. S1.†
It starts by extracting all unique ring digits from the associ-
ated molecule and fragmenting it on a desired set of bonds. Our
implementation utilizes the BRICS algorithm,26 though other
bond-splitting algorithms, such as Hussain-Rea,27 RECAP,28 or
custom patterns, are equally valid. These substructures may
represent synthetically accessible building blocks that are
common in drug-like compounds. The extracted fragments are
sorted by size and concatenated, using a dot character (“.”) to
mark new fragments in the representation, while preserving their
corresponding attachment points. To construct the nal SAFE
string, we iterate over the numbered attachment points and
replace them by novel ring digits to simulate fragment linking.
These new ring digits create virtual connections between frag-
ments resulting in a set of linked fragments, as indicated by the
dot character. It's worth noting that, similar to canonicalization
in SMILES that yields a unique representation from multiple
valid forms, we can achieve a similar outcome by enforcing
a decoding order not only on SMILES characters within frag-
ments but also on fragment orders within the nal SAFE string.
3.2 SAFE facilitates fragment-based design

The inherent sequential block structure of SAFE presents
a distinctive advantage for fragment-based design tasks.
Traditionally, such endeavors primarily relied on graph-based
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Example of a molecule as a SAFE and SMILES representation. The colored fragments and their corresponding placement in each string
show how the ordering of the fragments in the SAFE representation are more easily readable and interpretable than the comparable SMILES
string.
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generative models. However, with a generative model trained on
SAFE strings, fragment-based design becomes remarkably
straightforward (refer to Fig. 1).

Among those, we found the following particularly suitable for
SAFE.

3.2.1 De novo generation. Which consists of sampling
a new sequence from the learned token distribution. It's as
straightforward with SAFE as with established SMILES-based
auto-regressive models used in molecular generation.

3.2.2 Scaffold decoration and motif extension. Which can
be framed as sequence completion and new tokens prediction
to create novel fragments using SAFE. Starting with an initial
sequence corresponding to a scaffold or motif, and marked
attachment points for completion, SAFE simplies this
compared to other notations.

3.2.3 Linker design and scaffold morphing. That can also
be approached as sequence completion task. Since the order of
fragments in a SAFE string doesn't affect the underlying
molecular graph, the fragments to be linked can be provided as
the initial sequence for a generative model to predict likely
tokens for the missing linker.

3.2.4 Superstructure generation. In this setting, the goal is
to generate new molecules while adhering to a specied
substructure constraint. In the SAFE framework, we achieve this by
rst generating random attachment points on the substructure to
create new scaffolds, followed by scaffold decoration.

4 Experiments

To evaluate the utility of our new molecular line notation, we
developed a generative model using a decoder-only transformer
architecture. Our aim is to showcase themodel's ability, trained on
SAFE strings, to generate valid and diverse molecules in de novo
scenarios. Additionally, we seek to evaluate its effectiveness in
practical, real-world scenarios where tasks like scaffold decoration,
scaffold morphing, linker design and goal-directed generation are
required.

4.1 SAFE-GPT: SAFE generative model

4.1.1 Dataset. We began by constructing a vast chemical
dataset comprising over 1 billion unlabeled molecules for pre-
© 2024 The Author(s). Published by the Royal Society of Chemistry
training purposes. This dataset was carefully constructed by
combiningmolecules from the ZINC and UniChem libraries,29,30

resulting in a diverse collection of 1.1 billion SMILES strings.
Our dataset spans various molecule types, encompassing drug-
like compounds, peptides, multi-fragment molecules, poly-
mers, reagents and non-small molecules, ensuring the wide
applicability of our generative model. It stands as the largest
and most diverse dataset designed specically for deep gener-
ative molecular design. To convert SMILES strings into SAFE
strings, we utilized a combination of BRICS decomposition and
a graph partitioning method (Louvain community detection),
when BRICS bonds where not available. Molecules that couldn't
undergo successful fragmentation were excluded from our
dataset. For our experiments we do not use randomization of
fragment positions or SMILES ordering due to the already large
size of the dataset.

4.1.2 Tokenizer. We trained a BPE tokenizer on the full
dataset. As a pre-tokenization step for the inputs, we applied
a common regular expression for SMILES syntax.31 This process
yielded a vocabulary of 1180 tokens, including all special tokens
(EOS, BOS, UNK, MASK, PAD).

4.1.3 Model architecture. Our SAFE Generative model
(SAFE-GPT) is a 87.3 M parameters GPT2-like transformer. It
comprises 12 layers, each with 12 attention heads per layer, and
a hidden state size of 768. All other model parameters adhere to
the default settings of GPT-2, as outlined in Hugging Face.

4.1.4 Model training. The SAFE model (SAFE-GPT) was
trained using cross-entropy with the next token prediction as
training objective. We use the AdamW optimizer (b1 = 0.9 and
b2 = 0.999),32 a linear learning rate scheduler with 10 000
warmup steps and an initial lr = 1 × 10−4. We set the batch size
to 100 per GPU and used 2 steps of gradient accumulation and
gradient checkpointing. The model was trained on 4 Nvidia
A100 GPUs, for a maximum of 1 000 000 steps (7 days).

4.1.5 SAFE and Group SELFIES GPT-20 M models on
MOSES dataset. Additionally, we trained a smaller 20 M-
parameters (6 layers, 8 attention heads per layer, and
a hidden state size of 768) version of SAFE-GPT (SAFE-GPT-20
M), and a Group SELFIES version with the same architecture
(GSELFIES-GPT-20 M) on the MOSES dataset33 for comparative
analysis. These models were trained for 10 epochs, using
Digital Discovery, 2024, 3, 796–804 | 799
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similar loss functions, optimizer congurations as SAFE-GPT
but with an initial lr = 5 × 10−4. We followed the Group
SELFIES original implementation for tokenization. For
a detailed comparison between the performance of SAFE-GPT-
20 M and GSELFIES-GPT-20 M, refer to ESI section 2.†
4.2 De novo generation results

In de novo design, our objective is to generate entirely novel
compounds with desirable proles. Assessing a model's ability
to generate valuable compounds in such a setting, even without
an optimization objective is crucial, as some models may
encounter problems generating valid or sufficiently diverse and
novel compounds. We used classical metrics like molecule
validity, uniqueness, and internal diversity33,34 to assess these
qualities. Validity measures the percentage of chemically valid
structures according to the RDKit's parser, uniqueness is the
fraction of non-duplicate molecules, and diversity assesses the
internal diversity of generated molecules using the average
pairwise Tanimoto distance (ECFP4 representation).

Table 2 showcases a comparison of SAFE-GPT with various
generative models across 10 000 samples. Despite being trained
on a dataset encompassing challenging molecules, SAFE-GPT
still demonstrates impressive performance in validity, unique-
ness, and diversity. Remarkably, it surpasses other models in
uniqueness and diversity, although it has a marginally lower
validity score. To determine if this is linked to the complexities
in interpreting fragment connectivity, represented by digit
pairs—a common challenge also observed in SMILES-based
models – we trained a smaller version, SAFE-GPT-20 M, on the
MOSES dataset, as well as an alternative model with same
architecture that uses Group SELFIES representation
(GSELFIES-GPT-20 M). The 100% validity observed for SAFE-
GPT-20 M suggests that SAFE-GPT's slightly reduced validity is
largely due to its diverse and challenging training dataset.
Compared to SAFE-GPT models, GSELFIES-GPT-20 M appears
to generate more diverse molecules. However, a closer exami-
nation of its outputs (refer to ESI section 2†) reveals a tendency
to create large, unstable rings in otherwise “valid” chemical
Table 2 Molecule generation results on 10 K samples. The large pretraine
dataset while producing more diverse molecules

Model Repr. Val

SAFE-GPTa SAFE 0.9
SAFE-GPT-20M SAFE 1
GSELFIES-GPT-20M Group SELFIES 1
GSELFIES-VAE Group SELFIES 1
GMT-SELFIES SELFIES 1
SELFIES-VAE SELFIES 1
CharRNN SMILES 0.9
VAE SMILES 0.9
LatentGAN SMILES 0.8
LigGPT SMILES 0.9
JT-VAE GRAPH 1

a SAFE-GPT uses a different training dataset that includes non drug-like a

800 | Digital Discovery, 2024, 3, 796–804
graphs, leading to very low druglikeness and synthetic
accessibility.

Hence, we note that SAFE is able to maintain comparable
performance in de novo generation in terms of validity,
uniqueness and diversity compared to other line notations.
Together with Table 1, SAFE has the advantage of enabling new
capabilities as exemplied by the fragment-constrained gener-
ation tasks while also being able to perform on par with the
other methods.

In Fig. S2,† we show a subset of randomly selected molecules
generated with SAFE-GPT. This visual representation offers
readers an intuitive sense of the quality and reasonableness of
the generated molecules. Furthermore, in Fig. S3,† we show the
distribution of selected molecular properties for the 10 000
generated molecules.

4.3 Performance on fragment-constrained generation

De novo compound generation is only one approach for
advancing a drug discovery program. In fact, in many real-world
scenarios, generative design involves modifying existing mole-
cules in user-dened ways rather than creating entirely new
compounds. This is especially true in later stages of drug
discovery, such as hit-to-lead or lead optimization, where well-
established structure–activity relationships (SAR) are already
in place. Therefore, we examined SAFE's intended capabilities
for performing fragment-constrained generative design tasks
such as scaffold decoration, scaffold morphing, linker genera-
tion, motif extension, and superstructure generation (see
Section 3.2). To facilitate this evaluation, we designed a bench-
mark that involved working with scaffolds and fragments from
10 existing drugs. Further details about the benchmark design
can be found in ESI section 4† in the Appendix. Our focus on
SAFE-GPT is due to its unique capability to perform these tasks
without substantial modications in the representation,
training, or sampling process. In fact attempts at performing
those tasks with the Group SELFIES model (GSELFIES-GPT-20
M) mostly resulted in a failure to maintain the fragment
constraints. Although we were able to perform the superstruc-
ture tasks, the generated samples by the Group SELFIES model
d SAFE-GPTmodel performs similarly to models trained on the MOSES

id@10k [ Unique@10k [ Diversity [

84 1 0.878
0.999 0.864
0.999 0.887
0.999 0.859
1 0.870
0.999 0.858

75 0.999 0.856
77 0.998 0.856
97 0.997 0.857
00 0.999 0.871

0.999 0.855

nd challenging molecules.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 3 Performance on fragment-constrained generative design tasks on 1000 molecules sampled

Task Validity [ Diversity [ Uniqueness [ Distance [ SA score Y

Linker design 1.000 � 0.000 0.641 � 0.099 0.887 � 0.191 0.712 � 0.097 3.864 � 0.928
Motif extension 1.000 � 0.000 0.681 � 0.089 0.923 � 0.179 0.772 � 0.101 3.750 � 0.651
Scaffold decoration 1.000 � 0.000 0.571 � 0.113 0.851 � 0.162 0.643 � 0.137 4.017 � 0.889
Scaffold morphing 1.000 � 0.000 0.608 � 0.096 0.717 � 0.219 0.688 � 0.113 3.604 � 0.910
Superstructure 1.000 � 0.000 0.715 � 0.059 0.929 � 0.106 0.812 � 0.063 3.868 � 0.919
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exhibit very low uniqueness (6%) and low internal diversity
(0.43). Therefore, the aforementioned complexities precludes
a straightforward quantitative comparison.

Table 3 presents averaged validity, diversity, and uniqueness
scores for 1000 molecules sampled in each fragment-constrained
design task using SAFE-GPT across all drugs. It displays the
average Tanimoto distance between the generated molecules to
the original drug molecules, along with the average SA score
(Synthetic Accessibility Score),35 which we used the RDKit library36

to generate. We observe that SAFE-GPT maintains full validity for
all sampled molecules under constraints, while achieving high
internal diversity and novelty compared to the original drugs.
Moreover, generated molecules exhibit a low SA score, indicating
their ease of synthesis. For a visual inspection of samplemolecules
from each task using Maribavir as the starting molecule, please
refer to Table S2 (ESI section 4†).

4.4 Goal-directed generative capabilities

To effectively apply generative approaches in live drug discovery
projects, it is essential to incorporate goal-directed generation,
guiding generation of novel molecules towards specic prop-
erties. Therefore, we follow established methodologies37,38 to
assess the model's ability for goal-directed generation using
simple molecular properties. More precisely, we optimize
toward specic values for key molecular properties, including
Topological Polar Surface Area (TPSA), Molecular Weight (MW),
Calculated LogP (CLOGP), and Quantitative Estimation of Drug-
likeness (QED). To achieve this, we use Proximal Policy Opti-
mization (PPO)39 with Adaptive KL Penalty to train a policy for
generating molecular samples with the targeted property value.
A total of 50 steps was performed with a learning rate of 1 ×

10−5 (AdamW optimizer) and a batch size of 100. The reward
objective used for this optimization was dened as follows:

Reward ðmolÞ ¼ 1

1þ a$jprop ðmolÞ � targetj
Fig. 3 Property distributions of generated molecules, grouped by molecu
line in each plot shows the target value the agent was optimized toward

© 2024 The Author(s). Published by the Royal Society of Chemistry
where prop (mol) represents the calculated molecular property
value for a given sample, target signies the desired target
value, and a is set to 0.5.

With the methodology described above, we ne-tuned agents
for two target values on each molecular property and evaluated
their performance by generating 500 samples from each of them.
Notably, all generated samples were valid and unique. The
property distribution of these samples is visually presented in
Fig. 3, where the red line within each plot represents the target
value of the molecular property that the agent was optimized
towards, and the blue and orange histograms representing the
distribution of samples from different agents with distinct goals.
The results depicted in Fig. 3 demonstrate that the property
distribution of the generated molecules, achieved through goal-
conditioned optimization using PPO, is notably centered
around the respective target values. This outcome indicates the
success of our optimization process in aligning the generated
molecules distribution with the desired property targets.
4.5 Scaffold-constrained optimization of CNS penetration of
EGFR inhibitors

In this section, we introduce a novel and challenging optimiza-
tion task aimed at improving the Central Nervous System (CNS)
penetration of EGFR Tyrosine Kinase Inhibitors. This optimiza-
tion task specically addresses the challenge of CNS metastases
in non-small cell lung cancer, a signicant concern in cancer
treatment.40 Our objective involves optimizing the CNS-MPO
score, a comprehensive metric assessing physico-chemical
properties associated with CNS penetration.41 The CNS-MPO
score ranges from 0 to 6, with higher scores indicating better
desirability, and a score above 4 typically suffices. We introduce
additional constraints to our optimization task, requiring that all
generated molecules feature a scaffold that has demonstrated
activity against EGFR (see Fig. S6†). For an in-depth exploration
of this topic, please consult Section 3 in the ESI.†
lar properties, after goal-conditioned optimization using PPO. The red
s.
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Fig. 4 Distribution of CNS-MPO rewards and generative metrics score (validity, internal diversity and SA score) throughout the 25 optimization
steps when sampling 100 molecules from the RL agent.
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We directly optimize the CNS-MPO score using PPO for 25
steps, and the same training parameters outlined in Section 4.4.

Fig. 4 illustrates the reward distribution obtained by sampling
100 molecules at each optimization iteration. Our ndings
demonstrate that scaffold-constrained optimization, even when
facing challenging metrics, can be efficiently executed with SAFE-
GPT using a straightforward optimization algorithm like PPO. As
the CNS-MPO policy renes, we observe an expected reduction in
the diversity of sampled candidates, while overall validity remains
robust. Intriguingly, there's a slight decline in the SA score across
iterations, suggesting the presence of synthetically favorable yet
optimal compounds within the solution space.
5 Discussion

This work introduces SAFE, a novel molecular line notation that
enhances versatility and expressive power in molecular design
while retaining compatibility with SMILES parsers. SAFE
represents molecules as sequences of interconnected frag-
ments, offering a new paradigm in molecular description. It
emerges as a promising alternative to existing molecular line
notations, addressing their limitations by striking a balance
between simplicity and robustness, thus making it suitable for
a wide range of applications.

We also present SAFE-GPT, a pioneering generative model
with 87.3 million parameters, trained on 1.1 billion diverse
SAFE strings. The model's effectiveness in various generative
and optimization tasks highlights SAFE's unique attributes.
Although we observed slightly lower molecule validity in SAFE-
GPT, this can be mostly attributed to the complexity and
diversity of its training set. We posit that a better sampling
algorithm, potentially enforcing phrasal constraints42 around
digit tokens, could address this issue.

The potential for ne-tuning SAFE-GPT on specialized
chemical spaces opens avenues for enhancing its utility in tar-
geted tasks. While this work focuses on a benchmark set of 10
drugs for fragment-constrained generation, we plan to extend
this to a broader range of drugs, providing a comprehensive
evaluation of the model's capabilities in various molecular
generation scenarios. In future works, we aim to explore SAFE's
performance in multi-property optimization (MPO) scenarios,
including the integration of a prediction head into the SAFE-
GPT architecture for simultaneous molecular generation and
property prediction. Ultimately, we seek to efficiently scale
SAFE-GPT to larger models and datasets, laying the groundwork
for a new generation of foundational models in drug discovery.
802 | Digital Discovery, 2024, 3, 796–804
Our work brings signicant advancements in molecular
representation and generative modeling. We believe that these
innovations will continue to drive progress in drug discovery,
materials science, and other elds where molecular design
plays a pivotal role.
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15 R. Gómez-Bombarelli, J. N. Wei, D. Duvenaud,
J. M. Hernández-Lobato, B. Sánchez-Lengeling,
D. Sheberla, J. Aguilera-Iparraguirre, T. D. Hirzel,
R. P. Adams and A. Aspuru-Guzik, Automatic chemical
design using a data-driven continuous representation of
molecules, ACS Cent. Sci., 2018, 4(2), 268–276.

16 J. He, E. Nittinger, C. Tyrchan, W. Czechtizky, A. Patronov,
E. J. Bjerrum and O. Engkvist, Transformer-based
© 2024 The Author(s). Published by the Royal Society of Chemistry
molecular optimization beyond matched molecular pairs,
J. Cheminf., 2022, 14(1), 18.

17 L. Yang, G. Yang, Z. Bing, T. Yuan, Y. Niu, L. Huang and
L. Yang, Transformer-based generative model accelerating
the development of novel braf inhibitors, ACS Omega,
2021, 6(49), 33864–33873.

18 V. Bagal, R. Aggarwal, P. K. Vinod and U. D. Priyakumar,
Molgpt: molecular generation using a transformer-decoder
model, J. Chem. Inf. Model., 2021, 62(9), 2064–2076.

19 W. Jin, R. Barzilay and T. Jaakkola, Junction tree variational
autoencoder for molecular graph generation, in Proceedings
of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, ed.
J. Dy and A. Krause, PMLR, 2018, pp. 2323–2332, https://
proceedings.mlr.press/v80/jin18a.html.

20 W. Jin, R. Barzilay and T. Jaakkola, Multi-objective molecule
generation using interpretable substructures, in
International conference on machine learning, PMLR, 2020,
pp. 4849–4859.

21 K. Maziarz, H. Jackson-Flux, P. Cameron, F. Sirockin,
N. Schneider, N. Stie, M. Segler, and M. Brockschmidt.
Learning to extend molecular scaffolds with structural
motifs, arXiv, 2021, preprint, arXiv:2103.03864, DOI:
10.48550/arXiv.2103.03864.

22 Y. Li, L. Zhang and Z. Liu, Multi-objective de novo drug
design with conditional graph generative model, J.
Cheminf., 2018, 10, 1–24.

23 J. Wang, C.-Y. Hsieh, M. Wang, X. Wang, Z. Wu, D. Jiang,
B. Liao, X. Zhang, B. Yang, Q. He, et al., Multi-constraint
molecular generation based on conditional transformer,
knowledge distillation and reinforcement learning, Nat.
Mach. Intell., 2021, 3(10), 914–922.

24 J. Lim, S.-Y. Hwang, S. Moon, S. Kim andW. Y. Kim, Scaffold-
based molecular design with a graph generative model,
Chem. Sci., 2020, 11(4), 1153–1164, DOI: 10.1039/c9sc04503a.

25 Y. Li, O. Vinyals, C. Dyer, R. Pascanu and P. Battaglia,
Learning deep generative models of graphs, 2018.

26 J. Degen, C. Wegscheid-Gerlach, A. Zaliani and M. Rarey, On
the art of compiling and using’drug-like’chemical fragment
spaces, ChemMedChem, 2008, 3(10), 1503–1507.

27 J. Hussain and C. Rea, Computationally efficient algorithm
to identify matched molecular pairs (mmps) in large data
sets, J. Chem. Inf. Model., 2010, 50(3), 339–348.

28 X. Q. Lewell, D. B. Judd, S. P. Watson andM. M. Hann, Recap
retrosynthetic combinatorial analysis procedure: a powerful
new technique for identifying privileged molecular
fragments with useful applications in combinatorial
chemistry, J. Chem. Inf. Comput. Sci., 1998, 38(3), 511–522.

29 J. J. Irwin and B. K. Shoichet, Zinc- a free database of
commercially available compounds for virtual screening, J.
Chem. Inf. Model., 2005, 45(1), 177–182.

30 J. Chambers, M. Davies, A. Gaulton, A. Hersey, S. Velankar,
R. Petryszak, J. Hastings, L. Bellis, S. McGlinchey and
J. P. Overington, Unichem: a unied chemical structure
cross-referencing and identier tracking system, J.
Cheminf., 2013, 5(1), 3.
Digital Discovery, 2024, 3, 796–804 | 803

https://doi.org/10.26434/chemrxiv.7097960.v1
https://chemrxiv.org/engage/chemrxiv/article-details/60c73ed6567dfe7e5fec388d
https://chemrxiv.org/engage/chemrxiv/article-details/60c73ed6567dfe7e5fec388d
https://chemrxiv.org/engage/chemrxiv/article-details/60c73ed6567dfe7e5fec388d
https://doi.org/10.1016/j.knosys.2023.110429
https://www.sciencedirect.com/science/article/pii/S095070512300179X
https://www.sciencedirect.com/science/article/pii/S095070512300179X
https://www.sciencedirect.com/science/article/pii/S095070512300179X
https://doi.org/10.1039/D3DD00012E
https://doi.org/10.1021/acs.jcim.0c01015
https://doi.org/10.1021/acs.jcim.0c01015
https://doi.org/10.1002/wcms.1608
https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/wcms.1608
https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/wcms.1608
https://proceedings.mlr.press/v80/jin18a.html
https://proceedings.mlr.press/v80/jin18a.html
https://doi.org/10.48550/arXiv.2103.03864
https://doi.org/10.1039/c9sc04503a
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00019f


Digital Discovery Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

1 
M

ar
ch

 2
02

4.
 D

ow
nl

oa
de

d 
on

 7
/2

3/
20

25
 1

0:
58

:4
3 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
31 P. Schwaller, T. Laino, T. Gaudin, P. Bolgar, C. A. Hunter,
C. Bekas and A. A. Lee, Molecular transformer: a model for
uncertainty-calibrated chemical reaction prediction, ACS
Cent. Sci., 2019, 5(9), 1572–1583.

32 D. P. Kingma and J. Ba, Adam: A method for stochastic
optimization, arXiv, 2014, preprint, arXiv:1412.6980, DOI:
10.48550/arXiv.1412.6980.

33 D. Polykovskiy, A. Zhebrak, B. Sanchez-Lengeling,
S. Golovanov, O. Tatanov, S. Belyaev, R. Kurbanov,
A. Artamonov, V. Aladinskiy, M. Veselov, A. Kadurin,
S. Johansson, H. Chen, S. Nikolenko, A. Aspuru-Guzik and
A. Zhavoronkov, Molecular sets (moses): A benchmarking
platform for molecular generation models, Front.
Pharmacol., 2020, 11, 565644.

34 K. Huang, T. Fu, W. Gao, Y. Zhao, Y. Roohani, J. Leskovec,
C. W. Coley, C. Xiao, J. Sun and M. Zitnik, Therapeutics
data commons: Machine learning datasets and tasks for
drug discovery and development, Proceedings of Neural
Information Processing Systems, NeurIPS Datasets and
Benchmarks, 2021.

35 P. Ertl and A. Schuffenhauer, Estimation of synthetic
accessibility score of drug-like molecules based on
molecular complexity and fragment contributions, J.
Cheminf., 2009, 1, 1–11.

36 G. Landrum, P. Tosco, B. Kelley, Ric, D. Cosgrove, sriniker,
gedeck, R. Vianello, N. Schneider, E. Kawashima, G. Jones,
N. Dan, A. Dalke, B. Cole, M. Swain, S. Turk,
804 | Digital Discovery, 2024, 3, 796–804
A. V. AlexanderSavelyev, M. Wójcikowski, I. Take,
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