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imized nested line graph networks
for crystal structures†

Robin Ruff, a Patrick Reiser, ad Jan Stühmerbc and Pascal Friederich *ad

Graph neural networks (GNNs) have been applied to a large variety of applications in materials science and

chemistry. Here, we systematically investigate the graph construction for crystalline (periodic) materials and

investigate its impact on the GNN model performance. We propose the asymmetric unit cell as

a representation to reduce the number of nodes needed to represent periodic graphs by exploiting all

symmetries of the system. Without any loss in accuracy, this substantially reduces the computational

cost and thus time needed to train large graph neural networks. For architecture exploration we extend

the original Graph Network framework (GN) of Battaglia et al., introducing nested line graphs (Nested

Line Graph Network, NLGN) to include more recent architectures. Thereby, with a systematically built

GNN architecture based on NLGN blocks, we improve the state-of-the-art results across all tasks within

the MatBench benchmark. Further analysis shows that optimized connectivity and deeper message

functions are responsible for the improvement. Asymmetric unit cells and connectivity optimization can

be generally applied to (crystal) graph networks, while the suggested nested NLGN framework can be

used as a template to compare and build more GNN architectures.
1 Introduction

Since the seminal work by Duvenaud et al.,2 graph neural
networks (GNNs) have developed into one of the most versatile
and accurate classes of machine learning models for the
prediction of molecular andmaterial properties.3 Consequently,
GNNs nd increasing application in materials sciences for
structure–property predictions,4 materials screening5 and high-
throughput simulations.6 Learning on experimental or simu-
lated databases,7–9 GNNs show promising potential to develop
new materials to tackle our society's growing demand for high-
performance materials in the elds of catalysis, renewable
energies, energy conversion or functional materials.10,11

Graph convolutional neural networks operate on the (spatial)
graph structure to transform node embeddings and have been
suggested for semi-supervised node classication.12,13 With the
focus on molecular graphs, the message passing framework
(MPNN) was proposed by Gilmer et al.14 in order to group and
generalize many GNN architectures that update node
he Institute of Technology, Kaiserstr. 12,
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tion (ESI) available. See DOI:

–601
representations by iteratively exchanging information, or
messages, across edges in the graph.15,16 Neural networks
designed to predict the potential energy surface of molecules for
molecular dynamics simulations,17 such as the continuous-lter
convolutional network SchNet,18 can also be interpreted as
MPNN graph networks. Signicant progress was achieved by
incorporating further geometric information such as bond39

and dihedral angles19 into the MPNN scheme. To compute
explicit angle information, the graph network has to operate on
higher order pathways or connect edge information in a so-
called line graph, which sets up a graph on edges L(G), i.e. on
top of the underlying graph G.20 A state-of-the-art model that
makes use of this principle and reaches good performance for
materials is ALIGNN.21 Recently, equivariant graph networks
have been introduced,22 which build on irreducible represen-
tations of the Euclidean symmetry groups to achieve equivar-
iance under e.g. rotation and translation.23
2 Related work

Although many of the previously mentioned GNNs can or have
been applied to materials, fewer architectures have been
developed with a primary focus on crystalline systems. The
crystal-graph convolution neural network (CGCNN) rst intro-
duced a GNN architecture on a crystalline system by con-
structing a multi-graph that correctly represents the atomic
neighbors in a periodic system.24 Its improved version iCGCNN
incorporates information on the Voronoi tessellated crystal
structure and explicit three-body correlations of neighboring
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Edge selection for a single atom in a crystal structure. Red
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constituent atoms.25 MEGNet further leverages global state
information and added edge updates in the convolution
process.26 With GeoCGNN a geometric GNN was introduced,27

which encodes the local geometrical information using an
attention mask composed of Gaussian radial basis functions
and plane waves from a k-point mesh of Monkhorst Pack special
points.28 Althoughmultiple GNNmodel architectures have been
proposed in this context,21,24–27,29,30 there does not yet seem to be
unanimous consent in the literature on which is the best
method or the most decisive tool in geometric deep learning to
process crystalline materials.

In most cases, newly introduced GNNs make specic
improvements over previous architectures and propose
multiple reasonable new design decisions inspired by chemical
domain knowledge. While this approach has so far led to
a consistent improvement of model accuracy, we choose a more
systematic approach inspired by the work of You et al.:31 rst, we
stake out a new design space based on a general extension of the
original graph network (GN) framework,1 which we call nested
line graph networks (NLGNs). Then we navigate through that
design space to nd suitable NLGN architectures.

In this work, we re-evaluate edge selection methods to build
a multi-graph as suggested by Xie and Grossman24 and compare
their performance on a wide set of parameters. In this context,
we introduce the asymmetric unit cell as a representation to
further exploit crystal symmetries and effectively reduce the
number of edges. Next, we develop a connectivity-optimized
crystal graph network (coGN/coNGN) from message passing
and line-graph templates which are intentionally kept as
general as possible. By optimizing within the generalized family
of GNNs, we improve the state-of-the-art results on 6 out of 9 of
the MatBench benchmark datasets32 and achieve parity results
with the best models on the remaining 3 datasets, making our
model the best general model on the entire set of diverse tasks
in the benchmark.
atoms mark the cubic unit cell. Depicted edge selections methods are
k-nearest neighbors (kNN) in (a), cut-off radius in (b) and Voroni
diagram in (c).
3 Connectivity optimized nested line

graph networks (coNGN)
3.1 Connectivity optimized crystal graph construction

There are two main challenges when trying to build graph
representations of crystal structures in contrast to organic
molecules: (a) bonds between atoms in crystals have more
diverse types (covalent, ionic, metallic bonds), or are oen not
well dened at all. (b) Crystal structures have no xed nite size,
as they are dened as periodic repetitions of a unit cell.

3.1.1 Edge selection. The rst aspect raises the question of
which edges to add to the graph that describes the crystal. To
circumvent this problem one relies on the geometrical proper-
ties of the atom arrangement instead of chemically informed
bonds.

Fig. 1 schematically shows a two-dimensional crystal pattern
and three different methods for selecting edges between atoms.
The k-nearest-neighbors approach (Fig. 1a) depends on the
number of neighbors k, but can lead to largely different edge
distances when the crystal density varies. The radius-based
© 2024 The Author(s). Published by the Royal Society of Chemistry
approach (Fig. 1b) limits the distance between two nodes by
a hyperparameter r, but the number of neighbors is unbounded
and the method can lead to either disconnected or overly dense
graphs if r is chosen inappropriately. The parameter-free
Voronoi-based approach (Fig. 1c) leads to an intuitive edge
selection where edges are drawn between two atoms if there is
a Voronoi cell ridge between them. However, at least in theory,
the number of edges and their distances are also unbounded for
this approach.

All three edge selection methods have been used previously
in the context of crystals and GNNs.24–26,33 But to our knowledge,
there is no detailed comparison between the methods and
hyperparameters.

3.1.2 Exploiting crystal symmetries. In contrast to mole-
cules, crystal structures are modeled as (innite) periodic
repetitions of the unit cell atom motif. A direct approach to
Digital Discovery, 2024, 3, 594–601 | 595
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Fig. 2 Schmatic graph representations of crystal structures exploiting
different levels of symmetries with (a) no symmetries (b) periodicity of
the unit cell and (c) all symmetries within the asymmetric unit cell. The
symmetric equivalent atoms are reduced to a single node in the graph,
which leads to multi-edge graphs.

‡ The set of symmetries for crystals and thus the asymmetric unit cell
representation can be determined automatically based on the normal unit cell.34

§ It is in principle also possible to adapt E(3)-equivariant GNNs to asymmetric unit
graph representations, by specifying equivariant convolutional layers on the
asymmetric unit graph and adapting message passing accordingly.
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extracting a nite graph for a given crystal structure is to simply
select all unit cell atoms with their respective neighbors
(Fig. 2a). In an information-theoretical sense, this representa-
tion captures the entire information of the crystal for a given
edge selection method. However, from a naive message-passing
perspective, only the nodes representing atoms inside of the
central unit cell receive messages from all their neighboring
atom nodes, which would model a nite graph rather than an
innite periodic graph.

To solve this issue, Xie and Grossman24 proposed a multi-
graph crystal representation (Fig. 2b) introducing periodic/
cyclic boundary conditions, which we will refer to as a unit
cell graph. In this representation, one node represents all the
shi-equivalent atoms of the crystal, which usually results in
multiple edges with distance information matching their
translated lattice positions. As a consequence, GNNs will always
596 | Digital Discovery, 2024, 3, 594–601
provide equivalent node embedding for periodic atoms,
consistent with Bloch's theorem.

The periodicity of the unit cell graph represents translation
symmetry. Since crystals oen exhibit more symmetries, we
propose the asymmetric unit graph representation for crystals,
which considers all symmetries of a crystal structure.‡ For more
information about the asymmetric unit (ASU) and space groups
please see for example ref. 35–38. In this representation, all
symmetry-equivalent atoms are represented by a single node in
the graph. The example crystal in Fig. 2 exhibits a horizontal
reection symmetry. The two yellow atoms in the crystal unit
cell are symmetry-equivalent and therefore merged into one
node (with multiplicity two) for the asymmetric unit cell
(Fig. 2c). Just like in unit cell graphs, self-loops and multi-edges
can occur in asymmetric unit cell graphs.

Since physical target properties in ML tasks are oen
invariant under E(3) symmetry operations, many GNNs are
designed to be E(3)-invariant, but as a consequence yield equal
node embeddings for symmetrical atoms in the unit cell graph,
leading to redundant computations in the message passing step.
The asymmetric unit graph representation can further remove
these redundancies and yet maintain the same node embed-
dings xv.§However, global readout operations have to be adapted
to handle asymmetric unit cells, since atoms can have different
symmetry-related multiplicities mv (the number of symmetry
equivalent atoms for each equivalence class). A simple adapta-
tion of the readout function can x the issue and restore equal
results for unit cell graphs and asymmetric unit graphs:

agg
0ðxvÞ

v˛V
¼

8>>>>>>><
>>>>>>>:

agg
v˛V

ðxv$mvÞ$ jV jP
v

mv

for mean or attention

agg
v˛V

ðxv$mvÞ for sum

agg
v˛V

ðxvÞ for min or max

It should be noted that for the ASU representation the
structure needs to remain in the same space group and its
atoms in their original Wyckoff sites, which means that for
inference during e.g. molecular dynamics simulations and
structure changes, the ASU has to be reevaluated which is
cumbersome and expensive. Nonetheless, GNNs can be trained
on ASU structures, which requires one ASU evaluation of the
training set, and then used on the normal unit cell represen-
tation for inference.
3.2 Nested line graph network framework

In addition to the choice of input representation, the GNN
model architecture has a substantial impact on the quality of
crystal graph property predictions.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 On the left: a graphG and the construction of its line graph L(G).
On the right: nested line graph network architecture with GN blocks
working on G and containing other GN blocks working on the line
graph L(G) as an edge update function fE. The line graph is able to
process multi-node geometric features, such as angles (see Table 1)

Table 1 Correspondence between entities in the crystal, the crystal
graph G, its line graph L(G), etc.

Entity in crystal G L(G) L(L(G))

Atoms Nodes
Bonds Edges Nodes
Angles Edges Nodes
Dihedrals Edges
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To nd the best GNN architecture for a certain task, it is
instructive to systematically explore (see e.g. ref. 31) the design
space of GNN modules and building blocks. Moreover,
a framework has to be chosen on how to dene and process
GNN modules. The Message Passing Framework by Gilmer
et al.,14 for example, has shown that a framework can unify and
accelerate the efforts of the scientic community.

For a combinatorial generalization of GNNs, we build upon
the graph network (GN) framework of Battaglia et al.1 in this
work. In this framework, one GNN layer is described by a GN
Fig. 4 Other models in the NLGN framework.

© 2024 The Author(s). Published by the Royal Society of Chemistry
block, which transforms a generic attributed graph with edge,
node, and global graph features via three update functions f

and three aggregation functions r.
However, many state-of-the-art models such as DimeNet,39

GemNet,19 ALIGNN21 and M3GNet,30 which incorporate many-
body interactions between atoms, are only indirectly captured
by GNs. Therefore we propose an extension to the framework
which we term nested line graph networks (NLGNs). In the
following, we introduce NLGNs by rst discussing how angle
information is incorporated via the line graph concept21 and
then explaining the ow of NLGN calculations, before we will
show concrete examples of implementations of NLGNs in
Section 4.1. Note that the term nested refers here to stacking
GNs on the line graph, not to confuse with nesting as intro-
duced by Zhang and Li,40 which describes nesting and pooling
GNNs on sub-graphs.

To achieve rotation invariance, popular models such as
SchNet18 or MEGNet26 only include scalar distances between two
atoms as edge features. However, to incorporate more
geometric information, models such as DimeNet39 or ALIGNN21

additionally use E(3)-invariant angle information, represented
by combinations of edges (see Fig. 6). In the line graph L(G),
which can be constructed uniquely based on G (see Fig. 3 and
Harary and Norman41), there is an edge eeij,ejk

L(G) for every two
incident edges eij, ejk in G. This enables the assignment of
angular information between three atoms to the edges of the
line graph. The same applies to (generalized) dihedral angles (4-
node or 3-edge objects) in the second-order line graph L(L(G)).

NLGNs operate on the graph G as well as the line graph L(G)
(potentially also L(L(G)) etc.), exploiting the one-to-one mapping
of edges in G and nodes in L(G) (see Table 1). Each edge update
function fE in GN blocks that operate on G can be instantiated
as a nested GN (see Fig. 3). A more detailed description of the
algorithm can be found in the ESI.† The NLGN framework
extends the usual sequential compositionality of GN blocks
with a hierarchical/nested compositionality, thereby increasing
the expressiveness.42 The composition of simple and well-
known building blocks facilitates the implementation and the
ease of understanding of the framework. Furthermore, NLGNs
generalize existing models such as SchNet,18 DimeNet39 and
ALIGNN,21 making them more comparable and extensible (see
Fig. 4).
Digital Discovery, 2024, 3, 594–601 | 597
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Fig. 5 MAE for GNs, NLGNs, and different edge selection methods on
the log_gvrh dataset.
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4 Experiments and evaluation
4.1 Datasets

To evaluate the preprocessing methods and GN architectures
we relied on the MatBench benchmark,32 which can be
considered to be the CIFAR43 dataset for machine learning
models in materials science. The benchmark currently consists
of 13 strictly standardized supervised crystal property predic-
tion tasks curated from different data sources.44–47 Out of the 13
tasks, four provide only the crystal composition as input and the
other nine incorporate the crystal structure with the geometric
arrangement of atoms. Since this work focuses on crystal
structures specically, we only use the nine datasets that rely on
structural information for property prediction. The size of the
datasets ranges from 636 to 132 752 crystal instances.

4.2 Implementation

We used the Keras Graph Convolution Neural Networks
(KGCNN) library48 to implement the GN and NLGNs used in the
experiments of this work. The code for crystal preprocessing
and GNN models is available online.{

4.2.1 GNN architecture search. To nd a suitable GN
architecture, we conducted an architecture search within the
NLGN framework. In order to generalize previous models, our
NLGN framework is exible and spans a large hyperparameter
space for architectural decisions which makes the exploration
of the entire space infeasible. If no nesting is explicitly required,
the NLGN framework falls back to the GN framework of Batta-
glia et al.1 For comparison, we searched architectures with and
without nesting, which led to the connectivity-optimized graph
architectures coGN and coNGN, respectively. The search
procedure and architecture details are discussed in the ESI.†

4.2.2 Crystal graph connectivity. For GNNs in particular,
there is a strong interdependency between input representation
and model as the topology of the input graph also affects the
{ https://github.com/aimat-lab/gcnn_keras/tree/v3.0.1/kgcnn/literature/coGN.

598 | Digital Discovery, 2024, 3, 594–601
computational graph. The interdependency between the pre-
processing of crystals and model architecture also occurs with
respect to crystal property predictions and should therefore be
considered.

Fig. 5 shows the effect of different preprocessingmethods for
a non-nested GN. Again, results were obtained before the nal
ordinal hyperparameter optimization, which explains the
discrepancy with Table 2. The MAE is plotted as a function of
the average degree over the resulting graphs of the log_gvrh
dataset for different edge selection methods. The accuracy of
GNN models tends to fall for increasing graph connectivity up
to an average degree of approximately 30. For a higher average
degree the accuracy either gets worse or quickly converges
depending on the dataset. Interestingly, for the kNN edge
selection the minimum corresponds to k = 24, whereas other
works use a value of 12.21,24 The Voronoi-based edge selection
results in graphs with an average degree of approximately 12.
Adding the area of the Voronoi cell ridge to each edge as an
additional edge feature can improve the predictive power of the
GNN. We found, however, that this effect is much less
pronounced aer optimization of ordinal hyperparameters,
making the k = 24 nearest-neighbor method the preferred
choice for edge selection in our experiments.

The observations for non-nested GNs do not apply to NLGNs,
when comparing their behavior in Fig. 5. For NLGNs, the
minimum test error occurs at a lower average degree of
approximately 12 edges per node and is followed by a steeper
increase for higher connectivity. Higher-order nesting could
potentially lead to further improvement at yet lower connec-
tivity of the base graph, which should be systematically explored
in the future.

At the same time, our observations raise the question of
a trade-off between nesting and graph connectivity. This trade-
off can also be explained from an analytical point of view. The
reason for including angle information with NLGNs is shown in
the example in Fig. 6. The two geometric graphs are not
distinguishable for GNNs from relative distance information
alone. Incorporating angles between edges into the GNN
architecture increases expressiveness and allows for the
distinction of the graphs. Yet, similar enhancements of
expressiveness can also be achieved by increasing graph
connectivity. In the example, adding the single dashed edge
between two red nodes makes the graphs distinguishable for
GNNs, without any angle information.

From our experiments, we cannot conclude that NLGNs offer
a systematic advantage in accuracy over simple GNs when used
on graphs with high connectivity. Inspired by the results of
Fig. 5, we optimized an NLGN for less connected Voronoi (+
ridge area) preprocessed graphs and achieved the results dis-
played in Table 2. Although NLGNs showed the best perfor-
mance on the specic dataset they have been (hyperparameter)
optimized on, they cannot maintain their advantage consis-
tently on all other datasets without re-optimizing. Unfortu-
nately, NLGNs require the construction of line graphs and tend
to have signicantly more trainable parameters. Consequently,
training is more than three times as computationally expensive
as for non-nested GNs.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Two different geometric graphs which are undistinguishable
from distance edge features, but become distinguishable with angle
information between edges or by adding the dashed edge to the
graphs.

Table 2 Comparison with results of the state-of-the-art model on MatBench structure datasets and splits.32 Ordered by descending cardinality,
these are e_form (meV per atom), is_metal (AUC(ROC)), gap (meV), perovskites (meV per unit cell), log_kvrh (log 10 (GPa)), log_gvrh (log 10
(GPa)), dielectric (unitless), phonons (1/cm) and jdft2d (meV per atom). Current benchmark holders on MatBench, namely, ALIGNN,21 MODNet49

and CGCNN,24 are listed. Additionally, recentmodels M3GNet30 andMatformer50 are added, which have been published during the preparation of
this work. Since Matformer was not trained on the official benchmark, we retrained the original model. The best results are indicated in bold font,
while other results within one standard deviation are underlined

Dataset coGN (ours) coNGN (ours) ALIGNN MODNet CGCNN M3GNet Matformer

e_form Y 17.0 � 0.3 17.8 � 0.4 21.5 � 0.5 44.8 � 3.9 33.7 � 0.6 19.5 � 0.2 21.232 � 0.302
is_metala [ 0.9124 � 0.0023 0.9089 � 0.0019 0.9128 � 0.0015 0.9038 � 0.0106 0.9520 � 0.0074 0.958 � 0.001 0.812 � 0.05
Gap Y 155.9 � 1.7 169.7 � 3.5 186.1 � 3.0 219.9 � 5.9 297.2 � 3.5 183 � 5 187.825 � 3.817
Perovskites Y 26.9 � 0.8 29.0 � 1.1 28.8 � 0.9 90.8 � 2.8 45.2 � 0.7 33 � 1.0 31.514 � 0.71
log_kvrh Y 0.0535 � 0.0028 0.0491 � 0.0026 0.0568 � 0.0028 0.0548 � 0.0025 0.0712 � 0.0028 0.058 � 0.003 0.063 � 0.0027
log_gvrh Y 0.0689 � 0.0009 0.0670 � 0.0006 0.0715 � 0.0006 0.0731 � 0.0007 0.0895 � 0.0016 0.086 � 0.002 0.077 � 0.0016
Dielectric Y 0:3088� 0:0859 0:3142� 0:0740 0.3449 � 0.0871 0.2711 � 0.0714 0.5988 � 0.0833 0.312 � 0.063 0.634 � 0.131
Phonons Y 29:712� 1:997 28.887 � 3.284 29:539� 2:115 34.2751 � 2.0781 57.7635 � 12.311 34.1 � 4.5 42.526 � 11.886
jd2d Y 37:165� 13:683 36:170� 11:597 43.424 � 8.949 33.192 � 7.343 49.244 � 11.587 50.1 � 11.9 42.827 � 12.281

a For is_metal the classication metric is likely to change in future versions.
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Finally, we were able to demonstrate the effectiveness of
densely connected crystal graphs with the coGN model, by
surpassing current state-of-the-art models on most of the Mat-
Bench datasets as shown in Table 2. The results also support
that hyperparameters, which originate from the optimization
on the log_gvrh dataset, generalize to other datasets and tasks.

Results of coGN/coNGN on other comparable materials
benchmarks like JARVIS51 or OC22,9 which feature structure to
property tasks, can be found in the ESI† and yield similar top
ranking performance.

4.2.3 Asymmetric unit graphs. In Section 3.1, we discussed
different graph representations for crystals and found that
asymmetric unit graphs are smaller than unit cell graphs and yet
lead to identical predictions of GNNs with E(3)-invariant layers.
The exact reduction factor for asymmetric unit graphs depends
on the symmetries each specic crystal exhibits. Since the
maximal space group order for crystals is 48, we can specify the
theoretical lower and upper bounds for the number of nodes nasu
in asymmetric unit graphs in relation to unit cell graphs:

nunit $ nasu $
1

48
$nunit

We found that for the MatBench datasets, the empirical
average reduction factor for the number of nodes (n), edges
(m = nL(G)) and line graph edges (mL(G)) is approximately 2.1:k
k The perovskite dataset is a special outlier, where asymmetric graphs are on
average not signicantly smaller than unit cell graphs.

© 2024 The Author(s). Published by the Royal Society of Chemistry
nunit

nasu
z

munit

masu

z
munit

LðGÞ

masu
LðGÞ z 2:1

Approximately the same factor can be observed for the GPU
memory footprint during training. Due to parallelization and
batching the acceleration of the training runtimes is somewhat
smaller and depends on the selected batch size. For batch sizes
of 32, 64, and 128, for example, we observed a speedup of 1.2,
1.3, and 1.8, respectively.
5 Conclusions

This paper discusses fundamental aspects of crystal property
prediction with GNNs: the incorporation of symmetries in GNN
models, the interdependence of input graph generation from
crystal structures (i.e. preprocessing) with the systematic
exploration of a suitable GNN architecture, and the general-
ization of model architectures as nested line graph networks.
We conclude that these aspects cannot be considered sepa-
rately, which is done in many other studies.

Our contribution to the rst aspect includes the proposal of
the asymmetric unit graph representation, which decreases
training time and memory consumption without effects on
predictive performance for E(3)-invariant GNNs. To use asym-
metric unit graphs with equivariant GNNs some adaptations to
message passing and readout operations are required, which
will be addressed in future work. We furthermore compared
different edge selection methods and discovered that graphs
with higher connectivity (compared to previous works) can yield
better performance. From this insight, we construct the coGN,
which achieves state-of-the-art results on the MatBench
benchmark.

To explore the space of GNN architectures, we introduced the
nested line graph network (NLGN) framework, which subsumes
state-of-the-art GNN models that incorporate angle information
in line graph form. Although for the given dataset sizes in the
MatBench benchmark we could not nd an architecture for
Digital Discovery, 2024, 3, 594–601 | 599
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nested line graph networks that substantially outperforms
graph networks without nesting, we still encourage further
research in this direction, specically into the scaling laws of
accuracy as a function of data set size and complexity as well as
the depth of line-graph nesting. Future work might overcome
the mentioned trade-off between high connectivity and nesting
and potentially explore specic nested line graph network
architectures, which we did not consider due to hyperparameter
space restrictions. Moreover, a practical but systematic
comparison between recent equivariant GNs, which are more
expressive than invariant GNs, and NLGNs could potentially
offer further insight and gradual improvements.
Data availability

Training code and results can be found in the official bench-
mark submission (https://github.com/materialsproject/
matbench/tree/main/benchmarks/matbench_v0.1_coGN,
https://github.com/materialsproject/matbench/tree/main/
benchmarks/matbench_v0.1_coNGN, https://github.com/
usnistgov/jarvis_leaderboard/tree/main/jarvis_leaderboard/
contributions/kgcnn_coGN, https://github.com/usnistgov/
jarvis_leaderboard/tree/main/jarvis_leaderboard/
contributions/kgcnn_coNGN). Additionally, the code for the
crystal GNNs can be found on github: https://github.com/
aimat-lab/gcnn_keras/tree/v3.0.1/kgcnn/literature/coGN. We
provide a static Zenodo repository (https://doi.org/10.5281/
zenodo.10557203) of the documented code and training
scripts of all MatBench and Jarvis submissions in the folder
training_scripts. Training was run on MatBench v0.1 and
Jarvis 12-12-2022 version with the official train-test splits
provided by the benchmarks. How to use the benchmark data
and submit benchmarks can be found on the respective
benchmark websites (https://matbench.materialsproject.org/
HowToUse/2run/, https://pages.nist.gov/jarvis_leaderboard/
guide/). Moreover, we provide a code capsule with the
environment for training and example scripts for custom data
at: https://doi.org/10.24433/CO.7659719.v1.
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