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transformer: stepping beyond
ALIGNN into long-range interactions†

Marco Anselmi,a Greg Slabaugh,*b Rachel Crespo-Otero *c and Devis Di
Tommaso *a

Graph Neural Networks (GNNs) have revolutionized material property prediction by learning directly from

the structural information of molecules and materials. However, conventional GNN models rely solely on

local atomic interactions, such as bond lengths and angles, neglecting crucial long-range electrostatic

forces that affect certain properties. To address this, we introduce the Molecular Graph Transformer

(MGT), a novel GNN architecture that combines local attention mechanisms with message passing on

both bond graphs and their line graphs, explicitly capturing long-range interactions. Benchmarking on

MatBench and Quantum MOF (QMOF) datasets demonstrates that MGT's improved understanding of

electrostatic interactions significantly enhances the prediction accuracy of properties like exfoliation

energy and refractive index, while maintaining state-of-the-art performance on all other properties. This

breakthrough paves the way for the development of highly accurate and efficient materials design tools

across diverse applications.
1 Introduction

Across various scientic disciplines, from computer vision to
chemistry, graphs serve as powerful models for representing
systems of objects and interactions. A graph G = (V, E) consists
of a set of nodes V and a set of edges E between pairs of nodes,
representing the relationship between them. Geometric Deep
Learning (GDL) leverages the expressive power of graphs to
analyze these systems, providing insights into their underlying
structure. Common applications of GDL include shape analysis
and pose recognition in computer vision,1 link and community
detection on social media networks,2–4 representation learning
on textual graphs,5,6 medical image analysis for disease
detection7–9 and property prediction for molecular and crystal-
line materials.10–18

In the eld of quantum chemistry, the development of Graph
Neural Networks (GNN) has provided a means of computing the
properties of molecules and solids, without the need to
approximate the solution to the Schrödinger equation.
Furthermore, compared to other Machine Learning (ML) tech-
niques, they have shown immense potential in the eld of
chemistry, since they do not require manual feature
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engineering and have signicantly better performance
compared to other ML models.19 GNN models represent mole-
cules or crystalline materials as graphs with a node for each
constituent atom and an edges as bonds or inter-atomic rela-
tionships. By passing messages through the edges they update
the molecular representation and learn the function that maps
these graphs to properties obtained from reference electronic
structure calculations such as Density Functional Theory (DFT).

There has been rapid progress in the development of GNN
architectures for predicting material properties, such as such as
SchNet,10 Crystal Graph Convolutional Neural Network
(CGCNN),11 MatErials Graph Network (MEGNet),12 Atomistic
Line Graph Neural Network (ALIGNN)13 and similar
variants.14–18,20–25 These models consider only the pairwise
interactions between bonded atoms or between atoms within
a cut-off radius of typically 6 Å to 8 Å. Some have also incor-
porated many-body relationships, such as bond-angles, into the
molecular representation.13,14,16,17,20 Nevertheless, all of these
GNN models developed so far can be categorised as local
methods26 and are limited to analysing only the local environ-
ment around atoms or relying on multiple message passing
layers to approximate long range interactions.

However, for certain systems and/or tasks, long range
interactions can be important. To date there are only a few ML
models that have incorporated electrostatic interactions into
their architecture.27–30 One of the most important contributions
to the long-range interactions is electrostatics, which, together
with van der Waals, dene non-bonded interactions in the
potential energy (PE) equation (eqn (1)).
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Epotential ¼ Ebonded þ Enon-bonded

Ebonded ¼ Estretching þ Eangle þ Edihedral

Enon-bonded ¼ Eelectrostatic þ Evan der Waals

(1)

Although non-bonded interactions are composed of both
electrostatic and van der Waals interactions, as the latter decays
much faster, it is less relevant for the purpose of modelling
long-range interactions. Thus, to represent long-range interac-
tions only the electrostatic are necessary. The electrostatic
interaction between two atoms in a structure can be obtained
using Coulomb's law, shown in eqn (2).

Eelectrostatic ¼ 1

4p30

qiqj

r2
¼ ke

qiqj

r2
(2)

where qi and qj are the atomic partial charges of atoms i and j, 30
is the permittivity of free space and r is the distance between the
two atoms. Computing Coulomb interactions without trunca-
tion is limited by the availability of atomic partial charges.
However, in 2012, Rupp et al. introduced the Coulomb Matrix,31

which includes a simplied representation of the Coulomb
repulsion between two atoms that does not make use of the
atomic partial charges.

The other component to the non-bonding energy, the van der
Waals interactions, unlike electrostatics, does not have
a simplied representation. Thus, to obtain the van der Walls
energy, it would require the calculation of the parameters of the
Lennard-Jones potential, making it unsuitable as a potential
descriptor of the pair-wise interaction between atoms in a ML
architecture.

With the aim of enhancing GNN architectures akin to
ALIGNN13 for the incorporation of long-range interactions, this
paper introduces the Molecular Graph Representation (MGR)
and the Molecular Graph Transformer (MGT). In this
endeavour, the simplied Coulomb interactions that can be
obtained from the Coulomb Matrix31 are explicitly included
within the MGR and subsequently analysed by the MGT. The
MGR splits the graphical representation of the system into three
graphs: local graph (Glocal), line graph (Gline), and fully con-
nected graph (Gglobal). The MGT alternates between graph
attention layers on the Gglobal and graph convolutions on the
Gline and Glocal, to update the molecular representation through
non-bonding, three-body and two-body information. Our model
is trained on both the MatBench32 and the QMOF33 to predict
energetic, electronic and vibrational properties of solid-state
materials directly from their unrelaxed structures.
2 Related work
2.1 Message passing neural networks

Graph Neural Networks (GNNs) are a type of neural networks
that learn a mapping between graph-structured data and
a target space. Message Passing Neural Networks34 (MPNNs) are
a specic variation of GNNs, where a layer updates node
features by enabling information exchange and aggregation
between neighbouring nodes in a graph. Consider a Graph G =

(V, E), with nodes vi ˛ V and edges eij ˛ E, and representations
© 2024 The Author(s). Published by the Royal Society of Chemistry
hti and etij for nodes and edges, respectively, at layer t. The
message passing steps can then be described as:

mi
tþ1 ¼

X
j˛N

Mt

�
hi

t; hj
t; eij

t
�

(3)

hi
t+1 = Ut(hi

t,mi
t+1) (4)

where Mt and Ut are a message construction function between
nodes vi and vj and a node update function, respectively.

Restricting the input to unordered graph-structure data
allows all GNNs to be invariant to permutations in the input.
Furthermore, by acting only node and edge features – hi, eij –
composed of scalar values, such as atomic numbers for nodes
and interatomic distances for edges, makes MPNNs invariant to
geometric symmetry group E(3) operations – rotation, inversion
and translation. This is a desirable property since prediction
tasks for most scalar properties, such as molecular energy
prediction, require E(3) invariance. Whereas, the inclusion of
vector graph features and the prediction of vector properties,
such as atomic forces, require E(3) equivariance. Recently,
a class of models known as equivariant neural networks35–40

have been developed which can act directly on vector inputs,
while maintaining equivariance, by using equivariant opera-
tions only.

2.2 Attention mechanisms

The concept of attention in neural networks was rst intro-
duced in the transformer architecture proposed by Vaswani
et al. (2017).41 The traditional transformer was applied to text
represented as sequences of tokens. In the eld of computa-
tional chemistry, previous works applied attention mechanism
to text representations of structures,42–44 usually simplied
molecular-input line-entry system (SMILES),45 treating the
prediction as a machine translation task.

In the context of GNNs, however, the input data structure is
a graph. To adapt attention mechanisms to graph, on can
interpret the original self-attention as constructing a fully con-
nected graph over the input tokens and computing interactions
between them. Recently many attempts have been made to
adapt attention mechanisms to MPNNs. Most notably the
Graph Attention (GAT) Network introduced by Veličković, et al.46

and the GATv2 introduced by Brody et al.47 which implement an
attention function closely following the work of Bahdanau
et al.48 while using the multi-headed approach of the trans-
former. Other works5,49–51 have tried to adapt the transformer
directly to MPNNs with one of the most common research elds
being on positional encodings.

3 Molecular graph transformer
3.1 Molecular graph representation

The Glocal, Gline, and Gglobal sub-graphs of the MGR are used to
represent both the bonded and non-bonded interactions
between atoms. The local and line graph both describe bonded
interactions, with the local graph describing pair-wise interac-
tions (red edges in Fig. 1), and the line graph describing 3-body
Digital Discovery, 2024, 3, 1048–1057 | 1049
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Fig. 1 Schematic showing the Molecular Graph Representation (MGR). For simplicity, only an atom connected to three other atoms is shown.
Molecules are encoded by converting each atom i into a vector representation hi. Using the local graph interactions between atoms i, j are
dependent on their representations hi, hj and the distance between them eij. While, using the line graph interactions between triplets of atoms i, j,
k are dependent on the distance between pairs of atoms eij, ejk and the angle between the atoms tij,jk(tijk). Lastly, using the full graph the
interaction between pairs of atoms I, J are dependent on their vector representation hi, hj and the Coulomb repulsion between them fij.
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interactions using angles between triplets of atoms (green edge
in Fig. 1). These two graphs can be considered the equivalent of
Estretching and Eangle in the PE equation. The full graph is based
on the Coulomb Matrix31 representation, and it is used to
represent the non-bonded interactions between pairs of atoms
(blue edges in Fig. 1), making it the equivalent of the Eelectrostatic
term in eqn (1).

The construction of the local and line graphs is the same as
the ALIGNN13 representation. The local graph is constructed
using a periodic 12-nearest-neighbour methodology, in which
an edge is formed between an atom and its 12 nearest neigh-
bours within a cut-off distance of 8 Å. Each atom is then
assigned a nine features feature set based on its atomic species:
(1) electronegativity; (2) covalent radius; (3) valence electrons;
(4) group number; (5) electron affinity; (6) rst ionization
energy; (7) period number; (8) block number; (9) atomic volume.
The feature sets are then encoded, through one-hot encoding, to
form the feature vectors of the atoms. The edges are instead
initialized with the distance between the two atoms that they
connect. To form the feature vectors for the edges, a Radial
Basis Function (RBF) is used with limits: 0 Å and 8 Å. The local
graph can then be dened as Glocal = (h, e), where h are nodes
and e are edges between pair of atoms, and Glocal has associated
feature sets H = {h1, ., hi, ., hN} and E = {eij, eik, ekl, emi, .},
where hi is the feature vector given to node i and eij is the feature
vector of the edge connecting nodes i and j.

The line graph is derived from the local graph. Each node in
the line graph represents an edge in the local graph, and nodes
and corresponding edges share the same feature vector, such
that any update on a node of the line graph is reected on the
corresponding edge in the local graph. Edges in the line graph,
correspond to the relationship between pairs of edges in the
local graph that have one atom in common, representing
a three-body interaction system between triplets of atoms, i.e.
bond pair eij, eik and atom triplet hi, hj, hk where atom hi is the
shared atom. The line graph edge features are given by an RBF
1050 | Digital Discovery, 2024, 3, 1048–1057
expansion of the angle formed by two connected local graph
edges, shown in green in Fig. 1. The line graph can then be
dened as Gline = (e, t), where e are local graph edges and t are
angles between connected edges or atom triplets, and Gline has
associated feature sets E = {eij, eik, ekl, emi, .} and T = {tijk, tikl,
tijm, .}.

The full graph is constructed similarly to the local graph. Each
node in the local graph represents an atom in the structure, and
it shares its latent representation with the nodes of the local
graph. Edges in the full graph represent an interaction between
pairs of atoms, and they are formed between all atoms that are
within a cut-off distance from each other. Full graph edges
features are derived from the Coulomb matrix31 of the structure
and they represent the Coulomb repulsion between the two
different atoms as described in the Coulomb matrix in eqn (5)

fij ¼

8><
>:

0:5Zi
2:4 ci ¼ j

ZiZj

Rij

cisj
(5)

where Zi and Zj are the atomic numbers of atoms i and j
respectively, and Rij is the distance between the two atoms. The
full graph can then be dened as Gglobal = (h, f), where h are
nodes and f are edges between pairs of atoms. Gglobal has
associated feature sets H= {h1,., hi,., hN} and F= {fij, fik,.},
where hi is the feature vector given to node i and fij is the feature
vector of the edge connecting nodes i and j.
3.2 Molecular encoder

The main part of the MGT is the encoder module. This module
executes updates on the nodes and edges of the MGR, by
applying different update functions based on the sets of edges
provided by the three parts of the MGR. Using the edges
provided by the Gglobal, the module updates the nodes using
Multi-Headed Attention (MHA). The encoder, then, uses a series
of Edge Gated Graph Convolution (EGCC) modules, which are
© 2024 The Author(s). Published by the Royal Society of Chemistry
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aggregated into a block called the ALIGNN block, to update the
edges and nodes of both the Gline and the Glocal. Outside of the
ALIGNN block, the EGCC module is also used for a further
update to the edges and nodes of the Glocal. Lastly, the encoder
also performs a nal update on the nodes without using any
edge information by running the nodes through a linear block,
which, contains a fully connected layer with a SiLU activation
function, followed by another fully connected layer.

The modications to the feature vectors follow a global-to-
local sequence. Initially, nodes for increased attention are
determined through non-bonding two-body interactions from
the global graph, followed by updates using the same interac-
tions. Subsequently, utilizing the line graph, updates involving
three-body interactions are executed, succeeded by updates
involving two-body interactions from the local graph. Lastly,
updates based on single-body information are performed using
only the node information.

3.2.1 Multi-headed attention. The MHA block, in Fig. 2a, is
derived from the Transformer41 attention mechanism and it is
adapted to a message passing architecture. Given a input set of
node featuresHL= hL1,h

L
2,.,hLn at layer L, it rst splits the set into

Q, K, V, using learnable parameters WQ, WK, WV. Q corresponds
to the target nodes hi (nodes to be updated) and K and V
correspond to the neighbouring nodes hj. Q, K and V are then
split into M different subsets (heads), Q = {Q1, Q2, ., QM}, K =
Fig. 2 (a) Molecular Graph Transformer (MGT) Encoder layer architectu
first updated using Multi-Headed Attention (MHA). The node features of
through individual linear layers. Attention scores are computed using ato
features of atoms j. Selected features of atoms j are added to core ato
normalization steps. The updated node features H0 from the MHA block a
Gated Graph Convolutions (EGGC) to update the input node features H0

ALIGNN block, returns updated node features H00, updated edge feature
refined through N EGGC layers using edge features E0. Lastly the output
block, which passes them through two linear layers with a SiLU activatio
module. Each EGGCmodule splits its input node features (X) into core nod
layers. Using edge features eij, core nodes i and neighbouring nodes j, ed
their representation. The EGGC then returns the edge message as an up

© 2024 The Author(s). Published by the Royal Society of Chemistry
{K1, K2, ., KM}, V = {V1, V2, ., VM}, such that we can obtain
attention scores for each subset (head). If the edges of the input
graph contain edge attributes, then, given a set of edge features
FL at layer L, they are transformed into a set F using learnable
parameter WF and then split into M different subsets (heads) as
well, F = {F1, F2, ., FM}. In the case of one attention head, we
have Qm = Q, Km = K, Vm = V and Fm = F. For each node hi the
attention for each subset of Q, K, V and F is obtained as:

Q = WQhi, K = WKhj, V = WVhj, F = WFfij (6)

Sij
m ¼ QmKm þ Fmffiffiffiffiffiffi

dm
p (7)

AttmðhiÞ ¼
X
j˛Ni

softmax
�
Sij

m
�
Vm (8)

where dm is the dimension of each subset of Q, K, V and F, Smij is
the attention score between nodes hi and hj, Ni denes the set of
neighbours of hi;

P
j˛Ni

denotes the summation with all the

neighbours of node hi, and somax is used to normalize each
message along the edges of node hi such that:

softmax
�
Sij

m
� ¼ exp

�
Sij

m
�P

k˛Ni

expðSik
mÞ (9)
re. For the current layer L of the model, the node (HL) embeddings are
central atoms hi and neighbouring atoms hj are separated and updated
ms i, j and coulomb repulsions (FL) between them, and used to select
ms i to update their features and further refined through residual and
re then used as input to the ALIGNN block, which uses a series of Edge
using edge information from the line graph TL and local graph EL. The
s E0 and updated triplet features T0. Node features H00 are then further
features from the EGGC layers, H000, are then refined through a linear
n function between then. (b) Edge Gated Graph Convolution (EGGC)
es xi and neighbouring nodes xj and are refined through separate linear
ge messages are computed and then added to core atoms i to update
dated edge information (E0) and the updated node informations (X0).

Digital Discovery, 2024, 3, 1048–1057 | 1051
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Fig. 3 Flowchart for the overall model architecture. The nodes and
edges from the MGR are first transformed to feature vectors through
encoding layers for the nodes and each edge type. The feature vectors
are then passed through a series of MGT Encoder layers each with the
same dimension. The output node features from the MGT encoders
are then aggregated using a pooling function to create a global feature
vector for the whole structure. The global features are then refined
through a linear layer, which, provides the output to themodel. For this
paper, 2 MGT encoder were used, with an input and output feature
length of 512.

Table 1 Optimal MGT configuration and hyper-parameters obtained
through testing. This configuration and hyper-parameters were used
for the testing of the model on both datasets used in this paper

Parameter Value

Encoder layers 2
MHA layers 1
ALIGNN blocks 3
EGGC layers 1
Atom input features 90
Edge input features 80
Angle input features 40
Coulomb input features 120
Embedding features 256
Hidden features 512
FC layer features 128
Global pooling function Average
Batch size per GPU 2
Learning rate 0.0001
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The update to each node is then dened as:

ĥi ¼ WHhi þ kMm¼1Att
mðhiÞ (10)

h
0
i ¼ Norm

�
ĥi

�
(11)

where ‖ denotes concatenation, and WH is a learnable
parameter.

3.2.2 Edge gated graph convolution. The EGGC used in this
work, shown in Fig. 2b, was introduced by Choudhary and
DeCost.13 It takes inspiration from the CGCNN update,11 but in
contrast to it, the edge features are incorporated into normalized
edge gates. Furthermore, EGGC, unlike the CGCNN update, also
updates edge features by utilising edge messages. Using EGGC,
the input node representations H0 are updated as follows:

h00 i ¼ h
0
i þ SiLU

 
Norm

 
Wsrch

0
i þ
X
j˛Ni

ê
0
ijWdsth

0
j

!!
(12)

ê
0
ij ¼

s
�
e
0
ij

�P
k˛Ni

sðe0ikÞ þ ˛
(13)

e
0
ij ¼ eij þ SiLU

�
Norm

�
Ah

0
i þ Bh

0
j þ Ceij

��
(14)

where SiLU is the Sigmoid-weighted linear unit,52 s denotes the
sigmoid function and A, B, C are weight matrices for updating
h

0
i; h

0
j and eij respectively.
3.2.3 ALIGNN block. The ALIGNN block combines an

EGGC update on the line graph Gline with an EGGC update on
the local graph Glocal. The convolution on Gline produces
updates edge updates that are propagated to Glocal, which,
further updates the edge features and the atom features.

m
0
; t

0 ¼ EGGCðGline; e; tÞ (15)

h
0
; e

0 ¼ EGGC
�
Glocal; h;m

0� (16)

3.3 Overall model architecture

The MGT, shown in Fig. 3, is composed of M encoder layers,
with a pooling function, applied on the edge features of all three
graphs, in between the encoders. AerM encoder layers we then
apply a global pooling function to aggregate the node features
into one feature for the whole graph. Finally to predict the
properties of the input structure or perform classication on it,
we apply a fully connected regression or classication layer.
Table 1 shows the hyper-parameters that were used to train the
model with which we obtained the results shown in the Results
and discussion section. These hyper-parameters were obtained
through hypothesis-driven hyper-parameter search.

3.4 Model implementation and training

The MGT is implemented using PyTorch53 and the Deep Graph
Library.54 The code also relies on Pytorch Fabric for the distri-
bution of the model across multiple GPUs and devices. For
regression tasks the loss is obtained using the Mean Squared
Error (MSE) function, while the error is obtained using the
1052 | Digital Discovery, 2024, 3, 1048–1057
Mean Average Error (MAE) function. The models trained on the
MatBench database were trained for 300 epochs. However, for
the QMOF database, given that the structures are, on average,
larger, resulting in larger graph representation, the models were
trained for 100 epochs due to computational resources limita-
tions. For all models the Adam optimizer was used with a weight
decay of 10−5 and a learning rate of 0.0001. Calculations were
© 2024 The Author(s). Published by the Royal Society of Chemistry
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performed using the Sulis Tier 2 HPC platform and on the JADE
2 Tier 2 HPC platform. On the Sulis HPC at most 5 nodes with 3
A100 40GB GPUs were used, while on JADE 2 the model was
trained on 8 V100 32GB GPUs.
4 Results and discussion
4.1 Performance on datasets

The MGT was created with the purpose of predicting properties
of solid-state materials from their unrelaxed structures. To
evaluate its performance, the Materials Project's MatBench32

version 0.1 dataset and the QMOF33 version 14 database were
used. The MatBench32 dataset encompasses eight distinct
regression tasks, each associated with an individual database
containing a varied number of structures, ranging from 636 for
the “jd2d” task to 106 113 for the “Formation Energy” task. As
reported by Dunn et al.,32 each task has been appropriately
curated, according to specic per-task procedures, to ensure
that there is no extraneous data and biases in the datasets.

The “jd2d” task involves predicting the exfoliation energy
for separating 2D layers from crystal structures, computed with
the OptB88vdW55 and TBmBJ56 exchange–correlation DFT
functionals. The “Phonons” task is dedicated to predicting the
vibrational properties of crystal structures computed using the
ABINIT code within the harmonic approximation based on
density functional perturbation theory. The “Dielectric” task is
concerned with predicting refractive index from crystal struc-
tures. The “log 10 GVRH” and “log 10 KVRH” tasks involve pre-
dicting the logarithm (base 10) of the shear (GVRH) and bulk
(KVRH) modulus property of crystal structures. The “Bandgap”
task focuses on the prediction of the electronic bandgap of
crystal structures computed with the Perdew–Burke–Ernzer-
hor57 (PBE) functional. Lastly the “Perovskites” and “Formation
energy” tasks are dedicated to predicting the formation energy
of crystal structures, with the “Perovskites” task focusing on
perovskites. For all the tasks, the train-test splits provided by
Table 2 Performance on theMatBench v0.1 dataset. The errors shown in
MGT the values have been obtained from the official MatBench website.
task are shown

Tasks jd2d Phonons Dielec

Units meV per atom cm−1 Unitle
ALIGNN 43.4244 (8) 29.5385 (3) 0.344
AMMExpress v2020 39.8497 (6) 56.1706 (13) 0.315
CGCNN v2019 49.2440 (13) 57.7635 (14) 0.598
coNGN 36.1698 (5) 28.8874 (2) 0.314
coGN 37.1652 (4) 29.7117 (4) 0.308
CrabNet 45.6104 (9) 55.1114 (12) 0.323
DimeNet++ (kgcnn v2.1.0) 49.0243 (12) 37.4619 (6) 0.340
Finder_v1.2 composition only version 47.9614 (11) 46.5751 (10) 0.320
Finder_v1.2 structure based version 46.1339 (10) 50.7406 (11) 0.319
MegNet (kgcnn v2.1.0) 54.1719 (15) 28.7606 (1) 0.339
MODNet (v0.1.12) 33.1918 (2) 34.2751 (5) 0.271
MODNet (v0.1.10) 34.5368 (3) 38.7524 (7) 0.297
RF-SCM/Magpie 50.0440 (14) 67.6126 (15) 0.419
SchNet (kgcnn v2.1.0) 42.6637 (7) 38.9636 (8) 0.327
MGT 31.4223 (1) 39.0179 (9) 0.304
Dummy 67.2851 (16) 323.9822 (16) 0.808

© 2024 The Author(s). Published by the Royal Society of Chemistry
the MatBench api, which avoid data leakage between the splits,
were used. The training set was then divided into train-
validation splits, consisting of approximately 80% and 20%,
respectively, for each task. The performance of the MGT model
on the MatBench dataset is shown in Table 2.

The “jd2d” and “Dielectric” tasks have beneted the most
from the inclusion of electrostatic interactions in the MGT
model, with improvements of 27% and 12%, respectively,
compared to ALIGNN. The jd2d task is related to the predic-
tion of exfoliation energy of crystal structures, which involves
the energy required to remove a layer of the material from its
surface.58 Since molecular layers usually are connected through
non-covalent weak interactions,59–61 as in the case of graphene,
the inclusion of non-bonding interactions, such as electro-
statics, can benet GNN models in this task. Inclusion of elec-
trostatics can also benet in the dielectric task, which predicts
the refractive index and is affected by the electrostatic interac-
tions between all neighbouring atoms within 12 Å in the
structure.

On the other hand, the “Formation energy” task has seen the
least benet from this inclusion, with a MAE of 0.0378 eV per
atom with the MGT model compared to 0.0215 meV per atom
with ALIGNN. The Formation Energy task is a regression task
for predicting the energy required to form the crystal structure.
As the energy needed to form a covalent or ionic bond between
two atoms is much greater than the electrostatic interaction
between them, the bond energy plays a dominant role in
determining the formation energy of a molecule or compound.
Therefore, including the electrostatic interaction without using
a ltering function to correctly add the processed electrostatics
to the bonded interactions, and using simplied Coulomb
interactions can result in a negative impact on the performance
of the model.

The remaining tasks (“phonons”, “log 10 GVRH” and “log 10
KVRH”) refer to properties that benet more from a description
of the structure rather than its electronic properties. The
the table are Mean Average Errors (MAE). For themodels other than the
Next to the errors, in the parenthesis, their respective rankings for each

tric log 10 GVRH log 10 KVRH Perovskites Bandgap Formation E

ss log10 GPa log10 GPa eV per unit cell eV eV per atom
9 (13) 0.0715 (3) 0.0568 (5) 0.0288 (2) 0.1861 (3) 0.0215 (3)
0 (6) 0.0874 (10) 0.0647 (9) 0.2005 (12) 0.2824 (13) 0.1726 (15)
8 (15) 0.0895 (11) 0.0712 (12) 0.0452 (9) 0.2972 (14) 0.0337 (7)
2 (5) 0.0670 (1) 0.0491 (1) 0.0290 (3) 0.1697 (2) 0.0178 (2)
8 (4) 0.0689 (2) 0.0535 (2) 0.0269 (1) 0.1559 (1) 0.0170 (1)
4 (9) 0.1014 (14) 0.0758 (13) 0.4065 (14) 0.2655 (12) 0.0862 (13)
0 (12) 0.0792 (6) 0.0572 (6) 0.0376 (8) 0.1993 (5) 0.0235 (5)
4 (8) 0.0996 (13) 0.0764 (14) 0.6450 (16) 0.2308 (10) 0.0839 (12)
7 (7) 0.0910 (12) 0.0693 (11) 0.0320 (4) 0.2193 (7) 0.0343 (8)
1 (11) 0.0871 (9) 0.0668 (10) 0.0352 (6) 0.1934 (4) 0.0252 (6)
1 (1) 0.0731 (4) 0.0548 (3) 0.0908 (10) 0.2199 (8) 0.0448 (10)
0 (2) 0.0731 (5) 0.0548 (4) 0.0908 (11) 0.2199 (9) 0.0448 (11)
6 (14) 0.1040 (15) 0.0820 (15) 0.2355 (13) 0.3452 (15) 0.1165 (14)
7 (10) 0.0796 (7) 0.0590 (7) 0.0342 (5) 0.2352 (11) 0.0218 (4)
7 (3) 0.0840 (8) 0.0636 (8) 0.0361 (7) 0.2145 (6) 0.0378 (9)
8 (16) 0.2931 (16) 0.2897 (16) 0.5660 (15) 1.3272 (16) 1.0059 (16)
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“perovskites” and “bandgap” tasks encounter the same
problem as the “Formation energy” task, in which the covalent
or ionic bonds play a much more important role in their
calculation. Thus, the inclusion of electrostatic interaction can
have a slight negative impact of the performance on these tasks.

From the test results on the all the tasks in the MatBench
dataset, the incorporation of the attention module for long-
range interactions shows promising results. While the overall
MAE of MGT across all tasks is higher than that of ALIGNN, it
ranks h out of 16 models, as shown in Table S1 (ESI†), and it
still manages to rank in the top 10 best-performing models
across all tasks. This demonstrates its broad applicability and
competitive performance.

The QMOF33 consists of 20 375 Metal Organic Framework
(MOF) structures with results from electronic structure calcu-
lations done using the following functionals: PBE,57 High Local
Exchange 2017 (ref. 62) (HLE17), and Heyd–Scuseria–Ernzer-
hof63 06 (HSE06) with 10% and 25% of the Hartree–Fock exact
exchange. As documented by Rosen et al.33 the QMOF database
includes structures that have chemical elements covering nearly
the entire periodic table, facilitating the creation of versatile ML
models. Nevertheless, it is worth noting that structures with Cu,
Zn and Cd, because they are the three most common types of
inorganic nodes in the literature, they constitute a large part of
the QMOF database. Furthermore, as a result of their curation
process, certain types of MOFs are under-represented. A train-
validation-test split of 16000-2000-2375 was applied. The
performance of MGT on this dataset is presented in Table 3. The
test part of the dataset was randomly sampled from the whole
dataset and kept across all training sessions to ensure result
comparability and prevent data leakage between training and
testing sets. For each training session, the validation and
training sets were randomly selected eliminating potential
biases from algorithm/heuristic-based splitting approaches.

The performance on the prediction of bandgap values in the
QMOF database is comparable to that observed in the bandgap
task within the MatBench dataset. However, in addition to the
bandgap predictions we also considered two other properties:
the Highest Occupied Molecular Orbital (HOMO) and the
Lowest Unoccupied Molecular Orbital (LUMO) energy levels.
Given the greater signicance of bonded interactions over long-
range interactions in determining the HOMO and the LUMO, it
is expected that integrating long-range interactions into the
model may introduce unnecessary complexity, resulting in the
difference of 0.02 eV between the MAEs of ALIGNN and MGT.
Additionally, as the bandgap is the difference between the
HOMO and LUMO, it follows that the difference in MAE
Table 3 Performance on the QMOF v14 dataset. All the error reported
have been obtained by retraining the original models on theQMOF v14
dataset, using the train-validation-test splits reported in this paper

Property MGT ALIGNN CGCNN

Bandgap (eV) 0.240 0.224 0.330
HOMO (eV) 0.263 0.245 0.361
LUMO (eV) 0.252 0.232 0.330

1054 | Digital Discovery, 2024, 3, 1048–1057
between ALIGNN and MGT mirrors that for the HOMO and
LUMO.

Overall, the results on both datasets suggest that the atten-
tion module can be a valuable tool for analysing long-range
interactions and improving the performance of graph neural
networks.
4.2 Ablation study

Each component of the MGT Encoder is ablated to further
understand the impact that they have on the performance of the
model. The ablation study was performed using the QMOF33

dataset for the prediction of Bandgap, HOMO and LUMO
energies. All the parameters, other than the number of MHA,
ALIGNN and EGGC Layers, were kept the same as the ones
specied in Table 4.

Excluding all three modules (MHA, ALIGNN and EGGC) the
model has an error of 0.8734 eV, including even just a single
MHA shows an improvement of at least 54% bringing the error
down to 0.4031, which demonstrates the importance of these
layers. Excluding two and using just one of the modules shows
the individual performance of these layers. Using only EGGC
layers there is an improvement of at least 56% over using no
layers, and the performance saturates at 4 layers with an error of
0.3016 eV. Performance using only one ALIGNN layer is
improved to 0.3224 eV and saturates at 4 layers with an error of
0.2609 eV. Meanwhile, the use of MHA Layers only shows
a performance saturation at 4 layers with an error of 0.3816 eV.

The effect of each layer and the coupling between them can
also be studied by varying the number of layers, while using all
modules at the same time. Due to the number of possible
congurations and the training time only a subset of them have
been tested. Increasing the number of MHAs within an encoder
has almost no effect on the performance on the model; using
congurations with 1, 2, 3 and 4 MHAs the MAE obtained are
0.2888 eV, 0.2880 eV, 0.2865 eV, 0.2877 eV respectively, which
shows a very small improvement when using more MHAs with
a performance saturation at 3 layers.

Increasing the number of ALIGNN blocks, on the other hand
has the biggest effect on the QMOF, with errors of 0.2888 eV,
0.2685 eV, 0.2661 eV, 0.2672 eV using 1, 2, 3, 4 layers respec-
tively, showing improvements with an increase of Layers up to 3.
Increasing the number of EGGCs, similarly to MHA, also brings
small improvements on the performance, with errors of
0.2888 eV, 0.2828 eV, 0.2750 eV and 0.2716 eV using 1, 2, 3, and
the MGT encoder on their own, at varying number of repetitions. In the
tests performed for each component, the linear block is included after
the component being tested, while the other two components were
excluded completely

Component

Number of repetitions

1 2 3 4

MHA 0.4031 0.3981 0.3880 0.3816
ALIGNN 0.3224 0.2894 0.2767 0.2609
EGGC 0.3840 0.3328 0.3152 0.3016

© 2024 The Author(s). Published by the Royal Society of Chemistry
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4 layers respectively. These results have been obtained by
changing the number of repetitions of each component while
keeping the other two components at one. Nevertheless, even
when testing for all possible combinations the results (shown in
Table S2 in the ESI†) are almost the same.

Changing the number of layers of each module, impacts not
only the performance but also size, training time and inference
time of the model. Although, getting access to more powerful
computers is becoming easier, not everyone has the latest and
best computing resources, thus, the decision to add more or
Fig. 4 Graphs showing the impact that each module within the MGT
encoder has on model size, training and inference. (a) Shows the
impact of the modules on the number of parameters. (b) Shows the
influence that each module has on the training time of the model
(results obtained by training the model on 4 GPUs). (c) Shows the
impact that the modules have on the inference time (results obtained
by running the model on 1 GPU).

© 2024 The Author(s). Published by the Royal Society of Chemistry
less layers is also dependent on their impact upon computa-
tional requirements. From Fig. 4a it can be seen that the
ALIGNN blocks are the ones that have the biggest impact on the
model size, with each block adding 2 630 656 parameters, while,
the MHA and EGGC modules add 1 052 672 and 1 315 328
respectively. Nevertheless, the module that has the largest
impact on training and inference times is the MHA module, as
shown in Fig. 4b and c. Each additional MHA layer adds around
20 seconds to the inference time, double that of each additional
ALIGNN block and quadruple the EGGC layers, which, add
around 10 seconds and 5 seconds respectively.

5 Conclusions

In this paper the Molecular Graph Representation (MGR) and
the Molecular Graph Transformer (MGT) were introduced and
tested on the prediction of several materials properties. The
combination of MGT and MGR introduces a methodology for
including long-range electrostatic interactions between pairs of
atoms within an arbitrary cut-off distance, here set at 12 Å, by
using a simplied representation of Coulomb interactions ob-
tained from the Coulomb matrix.31 The MGT has achieved
results in line with the state-of-the-art models on most tasks,
and in some cases performing better than previously published
models. While the size and training time of the model can be
a constraint for some users, the MGT has shown capable of
achieving great performance even on tasks with smaller data-
sets, such as the jd2d task in the MatBench dataset, which
contains only 636 structures. Therefore, users have the option of
reducing the training time by training on a smaller set.
Furthermore, with the modularity of the model, its size can be
reduced, making it trainable even on smaller machines, at the
cost of reduced performance.

Data availability

The code for the Molecular Graph Transformer introduced in
“Molecular Graph Transformer: Stepping Beyond ALIGNN Into
Long-Range Interactions” can be found at: https://github.com/
MolecularGraphTransformer/MGT. The version of the code
employed for this study is version 1.0. This study was carried
out using publicly available data from the QMOF database at
https://github.com/Andrew-S-Rosen/QMOF/tree/main and
from the MatBench database available at https://
matbench.materialsproject.org/.
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