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ng: a machine learning tool for
structure identification from X-ray pair distribution
functions†

Emil T. S. Kjær, a Andy S. Anker, a Andrea Kirsch, a Joakim Lajer,a Olivia Aalling-
Frederiksen,a Simon J. L. Billinge *b and Kirsten M. Ø. Jensen *a

Synchrotron X-ray techniques are essential for studies of the intrinsic relationship between synthesis,

structure, and properties of materials. Modern synchrotrons can produce up to 1 petabyte of data per

day. Such amounts of data can speed up materials development, but also comes with a staggering

growth in workload, as the data generated must be stored and analyzed. We present an approach for

quickly identifying an atomic structure model from pair distribution function (PDF) data from (nano)

crystalline materials. Our model, MLstructureMining, uses a tree-based machine learning (ML) classifier.

MLstructureMining has been trained to classify chemical structures from a PDF and gives a top-3

accuracy of 99% on simulated PDFs not seen during training, with a total of 6062 possible classes. We

also demonstrate that MLstructureMining can identify the chemical structure from experimental PDFs

from nanoparticles of CoFe2O4 and CeO2, and we show how it can be used to treat an in situ PDF series

collected during Bi2Fe4O9 formation. Additionally, we show how MLstructureMining can be used in

combination with the well-known methods, principal component analysis (PCA) and non-negative matrix

factorization (NMF) to analyze data from in situ experiments. MLstructureMining thus allows for real-time

structure characterization by screening vast quantities of crystallographic information files in seconds.
Introduction

Pair distribution function (PDF) analysis of total scattering data
is widely used to characterize the atomic structure of materials.
A PDF is obtained by Fourier transforming corrected and
normalized total scattering data, and as both diffuse scattering
and Bragg diffraction is included in the Fourier transform, PDF
analysis can be used for characterization of bulk crystalline
materials, as well as nanoscale1–3 and disordered materials4,5

with only local range structural order. As a PDF can be inter-
preted as a histogram of interatomic distances, some structural
information can be obtained from simple, model free analysis.
However, to analyze PDFs quantitatively, structure modelling is
required. In the modelling process, a structure model is rst
identied from which a PDF can be calculated. The structural
parameters in the model are then rened until a good agree-
ment between the experimental and calculated PDF is obtained.
Such PDF renements are oen performed based on crystallo-
graphic structures that can be obtained from structural
Center, University of Copenhagen, 2100
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plied Mathematics Science, Columbia
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tion (ESI) available. See DOI:

–918
databases. Aer the user identies a promising structure
candidate, PDF renement is performed using dedicated so-
ware such as PDFgui,6 DiffPy-CMI,7 DISCUS8 or Topas.9

With millions of potential structure candidates present in
databases, identifying a structure model for renement can be
challenging and time consuming, and oen involves manually
browsing through possible candidates. Automated screening
methods to identify candidate starting structures have begun to
appear, for example, the structureMining10 app at https://
PDFitc.org11 to nd crystal structural candidates given
a measured PDF of a well ordered material, or the
clusterMining12 algorithm for screening large numbers of
models of close-packed metallic nanoparticles. Whilst quick,
these tools require the user inputting prior chemical informa-
tion and are not fully automated.10,12–14 Here we explore the use
of machine learning (ML) to accelerate and automate this
process for the case of crystal structure model screening. ML
has been successfully employed for various tasks in crystallog-
raphy and structural analysis, for example, for isolating unique
signals from in situ PDF series,15,16 suggesting space groups17

and identifying structures ab initio from PDF data.14,18,19

For this task, we have developed a tree-based ML classier
named MLstructureMining, which has been trained to identify
crystal structures from PDFs. MLstructureMining works by
matching experimental PDFs with simulated PDFs from
a structure catalogue such that structural information can be
© 2024 The Author(s). Published by the Royal Society of Chemistry
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extracted. MLstructureMining's speed allows fast analysis of
e.g., in situ and operando data, and could potentially be used for
real-time structure characterization during such experiments.
MLstructureMining has been trained on PDFs simulated from
10 833 crystallographic structures obtained from the Crystal-
lography Open Database (COD)20 that contain at least one
transition metal, post-transition metal, lanthanide, or actinide,
and can only contain one or a combination of O, H or S besides
the metals. When using MLstructureMining, a PDF is given as
input, while the output is a ranked list of suggested structures,
whose simulated PDF matches with the input PDF. To reduce
the number of possible structure suggestions, the list contains
structure classes, where the CIFs that results in very similar
simulated PDFs are bundled together into one class. We rst
show that MLstructureMining obtains a top-3 accuracy of 99%
on simulated PDFs not seen during training, with a total of 6062
possible classes. We then demonstrate that MLstructureMining
can be used to identify the chemical structure from experi-
mental PDFs obtained from metal oxide nanoparticles of
different sizes. Lastly, we show how MLstructureMining can be
used in combination with the well-known methods principal
component analysis (PCA) and non-negative matrix factoriza-
tion (NMF) to analyze a large PDF dataset obtained from an in
situ experiment on the formation of Bi2Fe4O9.

Method
Data preparation of structures and PDFs

The use of MLstructureMining is shown schematically in Fig. 1.
The classication task performed by MLstructureMining can be
thought of as PDF matching. When used, MLstructureMining
compares the input PDF to PDFs simulated from structure
models in a structure catalogue. The best matching PDFs can
then be found through SoMax scores as described below.
Having identied the best matching PDF, structural models
(space group, unit cell, composition and atomic fractional
Fig. 1 Inference process of MLstructureMining. This schematic illustrat
Distribution Function (PDF) is inputted, and the tool subsequently propo
a prioritized list of PDFs matching the input PDF, which identifies potenti
unit cell are directly derived.

© 2024 The Author(s). Published by the Royal Society of Chemistry
coordinates) can be inferred from knowing which structure/
structures were used for simulating each PDF.

MLstructureMining was trained on simulated PDFs from
crystal structure models obtained from the Crystallographic
Open Database (COD).20,21 The PDFs were simulated using
DiffPy-CMI7 and the simulation parameters mimic typical
experimental PDFs as shown in Section B in the ESI.†

The structure models, represented as Crystallographic
Information Files (CIFs) were downloaded from COD on the
24th of January 2023. Only structure models containing at least
one transition metal, post-transition metal, lanthanide, or
actinide and either O, H or S were included. This query resulted
in a total of 10 833 crystal structures. However, some of these
structure models are almost identical and contain similar
structural information and thus result in highly similar simu-
lated PDFs. As described below, we therefore determine the
similarity between different structures and PDFs and bundle
structures resulting in similar PDFs together. This results in
a ‘structure catalogue’ containing structure models and corre-
sponding PDFs.

To determine PDF similarity, we use the Pearson Correlation
Coefficient (PCC)22 as dened in Section C in the ESI.† We
calculate the PCC between simulated PDFs from all pairs of
structures in our dataset. If two PDFs have a PCC equal to or
above 0.95, then the structures are considered similar, and they
will be referred to as the same entity in the structure catalog.
Aer this step, the total number of unique structures with
simulated PDFs in the structure catalog was reduced to a total of
6062. Identifying and grouping structurally similar entries
within our structure catalog reduces the potential concerns
regarding the similarity among the PDFs and the skewed
representation of different structure types within COD. Given
the inevitability of some degree of similarity between PDFs from
distinct structures, we conducted comprehensive testing using
zeroth-order optimization (ZOO) and various experimental
es the inference process utilized by MLstructureMining, where a Pair
ses viable structure candidates through PDF matching. The output is
al structural candidates, from which the composition, space group and

Digital Discovery, 2024, 3, 908–918 | 909
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datasets, including in situ PDF data from which we extracted
NMF components. This was done to ensure that our model was
truly learning to generalize rather than merely overtting.

We have chosen to set the PCC threshold to 0.95, however,
this is an arbitrary value and can be congured aer need. By
increasing the value of the PCC threshold less structures will be
grouped together, hence increasing the overall structural simi-
larity within each entity of the structure catalog. The PCC
threshold was determined by looking at various tungsten oxide
structures, as they contain similar structural building blocks
but with various defects and oxygen disorder. Aer comparing
different structures, 0.95 was determined to be a suitable
threshold as it allows for some oxygen disorder but not for new
structural peaks within the PDF.

For each entity in the structure catalog, we simulate 100 PDFs
with various unit cell dimensions and isotropic atomic displace-
ment parameters (Uiso) chosen using Latin hypercube sampling.23

The unit cell parameter of a, b and c were varied taking into
account space group symmetry constraints. The unit cell param-
eters were varied with ±4%, and the Uiso values were varied from
0.005 Å2 to 0.025 Å2. All Uiso values are set to the same value
independent of the atom type. The simulation parameters for the
instrumental parameters (Qmin, Qmax, Qdamp) mimic typical
experimental PDFs as shown in Section B in the ESI.† The PDFs
are simulated from 0 Å to 30 Å with a step size of 0.1 Å, which due
to the Shannon–Nyquist sampling theorem24 is a sufficiently
small step size for PDFs generated with up to Qmax of 31.4 Å−1.25

We use XGBoost as our ML model for the classication task
in MLstructureMining,26 as gradient tree boosting has proven to
provide state-of-the-art results on classication benchmarks.27

To train, validate and test MLstructureMining, the simulated
PDFs were split into a training, validation and test set with the
ratios of 80%, 10% and 10%. We ensure equal representation of
each structure in the training, validation and test split. Hence,
80 PDFs of each structure were used for training, 10 for vali-
dation and 10 for testing. MLstructureMining's hyper-
parameters was optimized using Bayesian optimization,28 and
the best model was selected from the validation score. Incor-
porating Latin hypercube sampling was done to minimize the
similarities in the training, validation and testing split by
systematically sampling across the simulation parameter space.
All hyperparameters are shown in Section B in the ESI.† Aer
hyperparameter optimization, MLstructureMining obtains an
accuracy of 91% for structure suggestion and a top-3 accuracy of
99%, both are determined from predictions on the test set and
with a total of 6062 possible classes. To test the robustness of
MLstructureMining, we deploy ZOO from the Adversarial
Robustness Toolbox (ART)29 library to perform adversarial
attacks. These attacks indicate that MLstructureMining is well
regularized and robust as it obtains an accuracy of 89% and
a top-3 accuracy of 97%, with a total of 6062 possible classes.
For the ZOO attacks the test data was used. Further explanation
can be found in Section B in the ESI.†

MLstructureMining outputs the SoMax score for each class
which can provides and indication of its prediction certainty.
We note here that using the SoMax condence as a proxy for
uncertainty has proven to not be exact.30 Other methods can be
910 | Digital Discovery, 2024, 3, 908–918
used to better estimate uncertainties such as bootstrapping31,32

and ensemble methods,33 but these are beyond the scope of this
article.

MLstructureMining has been implemented as a Python
package with a command line interface. The implementation
makes it possible to install the library through a wheel le with
pip, which will automatically install all missing dependencies.
Additionally, MLstructureMining has been implemented as
a Hugging Face application, see the ‘Code availability’ section.
The only input required for MLstructureMining is a PDF le or
a directory of PDF les. Here, the PDF should be given with r in
the units of Å, with an r-range from minimum 0 Å to 30 Å. Aer
providing the path to the PDF data, MLstructureMining
proposes structural candidates for all data that can be found
within the provided path.
Results and discussion
Introduction of the four experimental PDFs

We demonstrate the capabilities of MLstructureMining on four
experimental PDFs, which have been obtained from different
samples with varying experimental parameters. The four PDFs
are shown in Fig. 2, while their synthesis and data collection can
be found in Section D in the ESI.† Example 1 is an experimental
PDF obtained from CoFe2O4 nanoparticles with the spinel
structure (purple, Fig. 2). The experimental PDF was obtained
with a Qmax of 17.5 Å−1 compared to the training data with
a Qmax of 25 Å−1. The CoFe2O4 nanoparticles are ca. 17 nm large
and are crystalline with no signicant structural disorder. This
makes them a suitable rst trial for MLstructureMining, as the
PDF closely resemblances the training data. Examples 2 and 3
are experimental PDFs from ultra-small CeO2 nanoparticles
with the uorite structure (red, Fig. 2) and tungsten oxide
nanoparticles with a structure related to W5O14 (blue, Fig. 2). As
seen from the PDFs, both samples have crystalline domains of
approximately 20 Å. The small particle sizes means that the two
experimental PDFs are outside MLstructureMining's training
distribution. Additionally, the tungsten oxide PDF (example 3)
is obtained with a signicantly lower Qmax (15 Å−1) than that of
the training data (25 Å−1), and the sample shows a high degree
of structural disorder.3,13 Such disorder causes peak broadening
and asymmetric peaks due to peak overlap, which adds an extra
layer of complexity to analyzing the PDF.13

Example 4 is an in situ PDF dataset collected during the
formation of multiferroic Bi2Fe4O9 nanoparticles (green, Fig. 2).
In this experiment, an amorphous precursor powder was heated
at 700 °C for 1 h, while scattering patterns were collected every 5
seconds to follow its transformation into the crystalline
product. With this example, we investigate MLstructureMining
capabilities to analyze larger amounts of data.
Example 1: identifying the crystal structure with
MLstructureMining on an experimental PDF obtained from
CoFe2O4

We start out by using MLstructureMining to analyze the
experimental PDF obtained from CoFe2O4 nanoparticles, shown
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Experimental PDFs. (a) Experimental PDFs obtained from; CoFe2O4 (purple), CeO2 (red), W5O14 (blue) andmullite Bi2Fe4O9 (green). (b) The
expected structures of the four samples.

Table 1 MLstructureMining's top-5 structure predictions when
applied on an experimental PDF of CoFe2O4. The Rwp values are
calculated after refinement of the respective structural models using
the CoFe2O4 data

Rank Composition Space group
Probability
[%] Rwp [%] COD ID

1 Cr2NiO4 I41/amd 34.4 16.9 1536758
2 Co2.28Cu0.72O4 Fd�3m 9.2 17.7 1537073
3 Ga2NiO4 Fd�3m 7.7 17.3 1541403
4 Co3O4 Fd�3m 4.9 49.7 5910031
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in purple in Fig. 2. The experimental parameters used to obtain
the PDF, e.g. Qmin of 1.6 Å−1 and Qmax of 17.5 Å−1 resembles the
data used to train MLstructureMining. The crystallinity and size
of the nanoparticles furthermore means that the PDF shows
structural information beyond 30 Å, as was also the case for the
training data simulated for crystalline materials. However, the
nanoparticle size still results in a slight damping of the PDF
peaks at higher r. Such damping is not seen in the training data
as all PDFs are simulated for crystals with innite size. Real-
space Rietveld renement using the CoFe2O4 spinel structure
are shown in Section E in the ESI.† The renement shows that
the size is approximately 17 nm.

The experimental PDF is directly given as input for
MLstructureMining, which performs structure identication as
described above. The top-5 structure suggestions for the
CoFe2O4 PDF are shown in Table 1. Within this list of predicted
structures, only spinel structure types are proposed. Only the
chromite structure differs in space group as it has a tetragonal
distortion.34 All structures belong to the family of spinel struc-
tures, where the oxygens are arranged in an fcc structure, and
metal ions occupy octahedral and tetrahedral sites.35

To check the structure suggestions, real-space Rietveld
renements were performed using each of the top-3 structures.
Here, the scale factor, cell (a, b, c, a, b and g if allowed by
symmetry), the particle size (psize), d2 and an isotropic Uiso were
rened. The Uiso values were rened to take the same value for
all atoms. The structure suggestions along with their ts to the
experimental PDF are shown in Fig. 3. We see that the ts using
the top-3 suggestions are almost identical and as the Rwp values
© 2024 The Author(s). Published by the Royal Society of Chemistry
range from 16.9% to 17.7%. The second and third structural
starting models used have slightly different lattice parameters,
which has caused them to not be bundled together in the
structure catalog as their PCC is below 0.95. However, when the
structures are rened to the PDF, almost identical results are
obtained.

From the ts shown in Fig. 3 we can conclude that
MLstructureMining found suitable structural candidates to
describe the experimental PDF as it suggests all structures of the
spinel type. However, MLstructureMining does not suggest
a structure with the correct composition of containing Co and
Fe. This relates to the almost indistinguishable X-ray scattering
factors of Cr (24 e−), Fe (26 e−) and Co (27 e−), Ni (28 e−), Cu (29
e−) and Ga (31 e−), and illustrates that MLstructureMining and
X-ray PDF in general cannot stand alone for complete structural
and chemical composition. We do not see this as a signicant
5 Cd0.75Fe2O4Zn0.25 Fd�3m 3.3 27.5 1539596

Digital Discovery, 2024, 3, 908–918 | 911
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Fig. 3 Real-space Rietveld refinements of the top-3 structures suggestions from MLstructureMining for the experimental PDF obtained from
CoFe2O4. (a) 1st prediction; Cr2NiO4 (COD ID: 1536758), (b) 2nd prediction; Co2.28CuO.72O4 (COD ID: 1537073) and (c) 3rd prediction; Ga2NiO4

(COD ID: 1541403). All fit parameters are provided in Section F in the ESI.†
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limitation of the method. In many cases, the chemical compo-
sition will be known from e.g., the synthesis or other analysis
methods. PDF is then used for structure characterization, and
here, MLstructureMining clearly shows that the CoFe2O4

particles have the spinel structure.
To further benchmark the capabilities of MLstructureMin-

ing, we compare its results with those of an existing structure
nding tool, namely structureMining,10 which is available as
a web service at https://PDFitc.org.36 We provide
structureMining with the PDF and the composition of
structure we want it to search through, see Section G in the
ESI.† structureMining requires the user to input information
about elements that are present in the target material,
although ‘wild-cards’ for elements can also be used where
appropriate. Here we used ‘Fe–O’ as composition query, which
searches through all stoichiometries of iron oxide. This query
yielded a total of 151 structures. The top ve structures
returned by structureMining all have the Fe3O4 composition
with Rwp values between 17% to 18%. MLstructureMining and
structureMining thus yielded similar results as spinel type
structures were returned in both cases. Both approaches
perform well, but there are differences in their use. Firstly,
chemical composition information does not need to be
submitted for the ML model to work making it convenient to
use, though it will only work on compounds similar to those
it is trained on, i.e., oxides, sulphides and hydrides of
transition metal, post-transition metal, lanthanide, or acti-
nide, compounds (∼11 000 structures). structureMining, on the
other hand, can be asked to mine from any compositional
subset of the entire database of∼400 000 structures specied by
the user. Looser compositional queries can be given to struc-
tureMining (for example, “Fe–O–*” would search for all struc-
tures in the database that contain Fe, O and any other element)
but the method becomes very slow if the query is too broad.
MLstructureMining always returns results rapidly.

Example 2 and 3: identifying the structure of CeO2 and W5O14

nanoparticles

We now proceed to more challenging experimental PDFs from
nanoparticles of CeO2 and W5O14, which are less similar to the
912 | Digital Discovery, 2024, 3, 908–918
PDFs that MLstructureMining has been trained on. Both PDFs
only show peaks to approximately 20 Å. Since MLstructur-
eMining has not been trained on PDFs of nanoparticles but on
simulated PDFs of ideal, innitive crystals, these examples let
us test MLstructureMining's capabilities to extrapolate outside
of its learned training distribution.

The top-5 structure suggestions for the experimental PDF
from CeO2 nanoparticles are shown in Section H in the ESI.†
MLstructureMining's SoMax output for its top-3 suggestions
are 41.7%, 7.2%, and 3.0%. This suggests that MLstructur-
eMining nds suitable structures even though the experimental
PDF is outside of the training distribution. Fig. 4 shows real-
space Rietveld renements using the three best structures.
Four out of ve structures show promising resemblance to the
baseline structure of CeO2 as all structures are uorite related.
In top-3 the rst and second suggested structures result in a low
Rwp, (16.5% and 17.3%) which indicates high structural agree-
ment with the experimental PDF. In the uorite structure, the
metal ions are arranged in an fcc lattice, while the anions
occupy the octahedral sites. Suggestion two and three are both
uorite-structured doped uranium oxides, and they are thus
closely related to the expected CeO2 structure. MLstructur-
eMining's rst suggestion is a rhombohedral RIII phase where
La and U layers alternate along [111]c.37 Prediction two deviates
from the classical uorite structure, as it takes the velikite
structure.38 Compared to the uorite structure, the velikite
structure misses every second O and the remaining oxygens are
replaced with S. Nevertheless, the metal atoms are the same
position as the uorite structure.

Again, MLstructureMining does not suggest structures with
the correct chemical composition. Instead of Ce, it suggests
a La/U-based oxide, with a structure with higher electron
density on the metal sites compared to CeO2. If comparing
simulated PDFs of CeO2 and La1.2U0.8O4 (Section I in the ESI†).
It is seen that the higher electron density results in a slight
change in ratio between the PDF peak intensities. In
La1.2U0.8O4, metal–metal PDF peaks are relatively more intense
than oxygen–oxygen and oxygen–metal peaks compared to
CeO2. Interestingly, the Rwp values of the t with suggestion 1
(16.5%) is lower than the t with the expected CeO2 structure
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Real-space Rietveld refinements of the top-3 structure suggestions for the experimental PDF obtained from CeO2. (a) 1st prediction;
fluorite La1.2U0.8O4 (COD ID: 1006067), (b) 2nd prediction; velikite Cu3.75Hg1.75S8Sn2 (COD ID: 1527617) and (c) 3rd prediction; CdH6O6Pb (COD
ID: 1527729). All fit parameters are given in Section F in the ESI.†
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(17.32%, Section E in the ESI†), i.e., the La/U-based oxide gives
a better description of the experimental data. This difference in
t quality could relate to oxygen vacancies or oxygen disorder in
our CeO2 nanoparticles, however, further analysis of this effect
is outside the scope of the paper.

Considering structure suggestions with unexpected chem-
ical compositions may thus provide additional information on
the sample in play. However, it is also possible to introduce
chemical constrains which means that MLstructureMining only
returns structures with relevant chemical composition or space
groups. If we eliminate all proposed structures that do not
include Ce, then we obtain a range of different cerium oxides in
our top-5 prediction. Interestingly, MLstructureMining's rst
cerium oxide suggestion is a zirconium doped uorite structure
in spacegroup P42/nmc. Performing a real-space Rietveld
renement using the proposed structure obtain an Rwp of
17.9%, which is comparable with the baseline CeO2 structure.
However, since Ce and Zr has a large difference in electron
density (18 e−), removing the Zr doping, thus making it a pure
CeO2 structure provide an Rwp of 16.1%. Fit parameters can be
found in Section J in the ESI.† This underlines the value of
having a tool for being able to rapidly screen through thousands
of structures, while being able to apply structural constraints to
the output.

We now compare the results from MLstructureMining with
those from structureMining. For this query ‘Ce–O’ was provided
as composition for structureMining, which yielded a total of 10
structures, see Section G in the ESI.† All the top-4 structures are
identical to the CeO2 structure used for the baseline t, but the
best structure has a lowered oxygen occupancy. structureMining
thus provides the expected result compared to
MLstructureMining.

We continue to challenge MLstructureMining on experi-
mental PDFs that are signicantly different from the simulated
PDFs that it has been trained on. We now use an experimental
PDF with a Qmax of only 15 Å−1. The PDF is obtained from ultra-
small tungsten oxide nanoparticles with a large degree of
oxygen disorder.13 Neither the low Qmax, the small size, nor
© 2024 The Author(s). Published by the Royal Society of Chemistry
oxygen disorder have been taken into account when training
MLstructureMining. We have previously analyzed the structure
of these tungsten oxide nanoparticles, and shown that the
W5O14 structure best describe the PDF.13 However, several other
known tungsten oxide structures containing pentagonal
columns of [WO6] octahedra can also account for the main PDF
peaks, and the unit cells of these structures, including W5O14,
are furthermore larger than the nanoparticles. Therefore, using
a crystalline model may not be a suitable way to describe their
structure. This PDF thus represents an extremely challenging
task for MLstructureMining, which it may in fact not be suited
for.

The top-3 structures suggested by MLstructureMining can be
seen Fig. 5 along with their real-space Rietveld renements. The
SoMax output for these structures are 1.2%, 1.1% and 1.1%.
These values are signicantly smaller than those of the
suggestions made in example 1–2 (Table 1 and Section H in the
ESI†). In this example MLstructureMining predicts an evenly
distributed set of output, this behavior indicates that the
provided input is outside of the training distribution, which
should alert the user about limited success. Suggestions 1 and 2
are metal oxide structures, while suggestion 3 is an alloy. It is
evident from the ts that the suggested structures only match
the most intense peak located at 3.8 Å (Fig. 5), which corre-
sponds to the distance between tungsten ions in corner-sharing
[WO6] octahedra in W5O14. Apart from this, the suggested
structures show little structural similarity with tungsten oxide
as highlighted by the Rwp values obtained from the real-space
Rietveld renements (66.9%, 67.2% and 61.6%).13 For this
PDF, MLstructureMining's suggestions thus seem almost
random and are not useful for structural analysis. Fortunately,
this can be identied by MLstructureMinings low SoMax
output in its predictions. When using MLstructureMining, the
user should thus take note of these values.

Utilizing structureMining for proposing structures for the
experimental PDF of W5O14 yielded promising results when
using ‘W–O’ as the composition input. This resulted in a total of
25 structures, see Section G in the ESI.† Here, the best and
Digital Discovery, 2024, 3, 908–918 | 913
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Fig. 5 Real-space Rietveld refinements of the-3 three suggestions for the experimental PDF obtained from tungsten oxide nanoparticles. (a) 1st
prediction; O4PbW structure (COD ID: 9014025), (b) 2nd prediction; Bi2O9W2 structure (COD ID: 7230340) and (c) 3rd prediction; Fe3S4Tl2
structure (COD ID: 1536855). All fit parameters can be seen in Section F in the ESI.†
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second best structure were W5O14 and W18O49, which is in
agreement with prior structure characterization.13 This under-
lines the usefulness of the structureMining app for cases not
suited for MLstructureMining.
Example 4: structure identication from in situ PDFs obtained
during the formation of Bi2Fe4O9

To test MLstructureMining's capabilities for larger datasets, we
use it to analyze an in situ PDF series collected during the
Fig. 6 Analysis of the experimental in situ PDFs obtained during the form
of the amorphous precursor at 700 °C crystallizing into Bi2Fe4O9 and (b)
prediction on the last frame of the in situ series. The real-space Rietveld re
in (c) AlBi2Ga3O9 (COD ID: 4342599), (d) Bi2Ga4O9 (COD ID: 2104768) and
F in the ESI.†

914 | Digital Discovery, 2024, 3, 908–918
formation of Bi2Fe4O9. In the experiment, we follow the crys-
tallization of an amorphous precursor powder into the crystal-
line product during heating at 700 °C. The precursor was
synthesized by the sol–gel method, which is further described in
Section D in the ESI.†During heating, the amorphous precursor
transforms into an intermediate crystalline phase before
Bi2Fe4O9 forms, as shown in Fig. 6a. The three distinct phases,
precursor, intermediate and product, are highlighted in white
(Fig. 6a). To get a better overview of the structural changes in the
ation of Bi2Fe4O9. (a) Waterfall plot of the PDFs obtained during heating
corresponding PCC matrix. MLstructureMining was used for structure
finements of the top-3 predictions of the experimental PDF are shown
(e) Bi2Ga4O9 (COD ID: 2002314). Fit parameters can be seen in Section

© 2024 The Author(s). Published by the Royal Society of Chemistry
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data, we rst use a PCCmatrix as shown in Fig. 6b. A description
of how to obtain the PCCmatrix is given in Section C in the ESI†
and in previous work.13 The PCC measures the linear relation-
ship between two continuous functions ranging from opposite
(−1) to similar (1), and the PCCmatrix thus allows us to visually
compare the similarity between different PDFs throughout the
dataset. The yellow regions of the PCC matrix (Fig. 6b) indicate
areas of the in situ PDF series with few structural changes, hence
a high PCC value. The transformation of the precursor into the
crystalline intermediate is very sudden, which can be seen from
the sharp change in PCC value at around 11 minutes (Fig. 6b).
In turn, the color gradient is smoother at the transition between
the intermediate phase to the product. This indicates that the
structural transition occurs slower and that both the interme-
diate and product might exist at the same time for a certain
period.

Aer having gained a visual representation of the changes
occurring in the in situ PDF series, we use MLstructureMining to
suggest structural candidates for the PDFs of the in situ series.
The probability for the top-3 structural predictions per PDF for
the whole in situ series is plotted in Section K in the ESI.† As
nding the structure of the amorphous precursor is currently
not within the capabilities of MLstructureMining, we focus on
analyzing the structure of the product, while similar analysis for
the intermediate can be found in Section L in the ESI.† Fig. 6c
and d shows ts of the top-3 structure predictions for the last
Fig. 7 PCA, NMF component reconstruction and real space Rietveld r
variance explained by the PCA components. (b) Reconstructed NMF com
purple) together with the difference curve (green) shown below. The
experimental PDF of the product are shown in (c) AlBi2Ga3O9 (COD ID:
2104768). Fit parameters can be seen in Section F in the ESI.†

© 2024 The Author(s). Published by the Royal Society of Chemistry
PDF of the in situ series. The top-5 suggestions are shown in
Section H† and the t parameters are given in Section E in the
ESI.† All of the three suggested structures are Bi-based oxides
with the mullite-type structure, i.e. Bi2Ga4O9 and Bi2Ga3AlO9.
Both of these structures are isostructural with the expected
structure Bi2Fe4O9 and differ only in composition.39 All three
structures proposed by MLstructureMining provide a suitable
t to the nal PDF of the in situ series, which is shown by the low
Rwp values (23.6%, 30.4% and 22.68%).

When using structureMining on the experimental PDF of
Bi2Fe4O9, three different composition were tested to screen
through a larger chemical space, see Section G in the ESI.†
Ultimately, structureMining returned the structure of Bi2Fe4O9

and Bi2Ga4O9, which have similar structures to those also
proposed by MLstructureMining.

Supervised ML models have successfully been applied to
gain structural information from scattering and spectroscopy
data.17,18,40–47 However, these methods are limited when dealing
with data measured on chemical systems with multiple phases.
On the other hand, unsupervised ML models such as PCA and
NMF have been employed to identify structural components in
scattering and spectroscopy data but these methods do not
provide a characterization of the structure.16,44,45,48–51 Here, we
demonstrate that by combining supervised and unsupervised
ML, it is possible to characterize the structure of data that
contains contributions from multiple chemical structures.
efinement of MLstructureMining's top-3 suggestions. (a) Cumulative
ponents (orange and red) shown on top of experimental data (blue and
real-space Rietveld refinements using the top-3 suggestions to the
4342599), (d) Bi2O4Pd (COD ID: 2002219) and (e) Bi2Ga4O9 (COD ID:

Digital Discovery, 2024, 3, 908–918 | 915
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PCA and NMF analysis can be employed to both identify the
number of phases in a dataset, and for isolating the phases
contained within an in situ PDF experiment.16,48,50,52 Here, we use
a combination of PCA and NMF to reduce the complexity of the
dataset. If the total number of components (here distinct pha-
ses in the in situ series) is not known, PCA can be used to
propose the number of components needed to fully describe the
data by determining the variance explained by each compo-
nents (Fig. 7a). Once the number of components has been
proposed by PCA, NMF can be used to reconstruct the compo-
nents of the in situ series, in this example going from several
hundred PDFs down to a few PDFs.

Due to the limited structural information (0–10 Å) from the
precursor phase, all PDFs only containing structural informa-
tion about the precursor was excluded in the PCA and NMF
analysis. The PCA and NMF analysis including the entire in situ
series is shown in Section M in the ESI.† Fig. 7a shows the
cumulative sum of explained variance by each PCA compo-
nent.53 This information can be used to determine the number
of components needed to describe the in situ PDF series. Here,
the two rst components describe 99% of the variance within
the data. Individually, component 1 explains 67% and compo-
nent 2 explains 32%, while the remaining 1% are either uc-
tuations in the data caused by noise or small structural changes.
Using 3, 4 or 5 components does not improve the description of
the data. We therefore chose to compute two components using
NMF, as seen in Fig. 7b. We show the reconstructed compo-
nents on top of the experimental PDFs of the product and
intermediate together with their difference curves. NMF
component 1 corresponds to the product Bi2Fe4O9, while NMF
component 2 corresponds to the intermediate phase appearing
during the in situ experiment (Fig. 7b). We then provide NMF
component 1 as input for MLstructureMining. From this anal-
ysis, we obtain similar results for the top-3 structural candidates
as when directly providing MLstructureMining with the last
PDF of the in situ series shown in Fig. 6c–e. Fig. 7c–e shows
strong agreement between MLstructureMining's rst and third
suggestions from NMF component 1 and the experimental PDF.
It is only the second predictions which differentiates. The t
parameters can be seen in Section E in the ESI† and only show
minor differences between the t parameters obtain from the
experimental PDF and NMF component 1.

Applying structureMining on NMF component 1 proposes
the same top-5 structures as when used on the experimental
PDF of Bi2Fe4O9, see Section G in the ESI.† The consistency of
this result further highlights the utilization opportunities of
combining PCA with NMF to extract the unique PDF signals
from large multiphase in situ experiments.

Conclusion

We have presented a ML tool for identifying structural candi-
dates for PDF renement called MLstructureMining. MLstruc-
tureMining has been trained on PDFs simulated from 10 833
crystal structures from the COD. Within a second, it can
propose structure candidates for the provided experimental
PDF without any additional inputs, and thereby without any
916 | Digital Discovery, 2024, 3, 908–918
bias. Within its top-3 suggestions, MLstructureMining scores
an accuracy of 99% on the test data, with a total of 6062 possible
classes. MLstructureMining's speed means that it can be used
to rapidly analyze large PDF data sets from time- or position
resolved experiments.

MLstructureMining was used on four PDFs measured on
different instrumental parameters (Section D in the ESI†) and
types of chemical systems; crystalline CoFe2O4 nanoparticles,
ultrasmall CeO2 and tungsten oxide nanoparticles and an in situ
PDF series obtained during the formation of Bi2Fe4O9. For the
crystalline CoFe2O4 spinel nanoparticles, MLstructureMining
successfully predicts spinel type structures as the most prom-
ising structure and automated real-space Rietveld renements
of the top-3 suggestions yield Rwp values of 16.9%, 17.7% and
17.3%. Example 2 demonstrates that MLstructureMining can be
applied to experimental PDFs from ultra-small nanoparticles.
Here, MLstructureMining suggested several uorite structures
with high structural similarity to the CeO2 structure that the
PDF was obtained from. The obtained Rwp values top-2 structure
suggestions (16.5% and 17.3%) highlights the structural
agreement. MLstructureMining was thus successful even
though the experimental PDF shows only little structural
coherence, and thus is far from the training PDFs, which are
simulated from crystalline materials. In example 3, we
demonstrated that the predicted probability scores can be used
as a proxy of how trustworthy the MLstructureMining sugges-
tions are. Here, MLstructureMining was used on an extremely
challenging experimental PDF with low Qmax obtained from
ultra-small tungsten oxide nanoparticles with high degree of
oxygen disorder. MLstructureMining's predicted probability
scores of top three (1.2%, 1.1% and 1.1%) indicate that no
suitable structural models were found. Lastly, in example 4, we
demonstrate MLstructureMining's capability to deal with an in
situ PDF series and thereby characterize large amounts of data.
We furthermore show how a combination of PCA and NMF can
reconstruct the unique PDF signals within an in situ PDF series
containing multiple components, thus reducing the amount of
data from several hundred PDFs to a handful but also enabling
supervised ML to identify the structure. The reconstructed NMF
components are robust enough for MLstructureMining to
analyze and show similar results as directly analyzing experi-
mental PDFs.

MLstructureMining offers the advantage of rapid screening,
capable of siing through thousands of structures in mere
seconds without requiring specic compositional input. This
feature can be particularly useful when there is a need to
broaden the understanding of a synthesized structure.
However, if there is a low degree of uncertainty regarding the
sample, structureMining offers a more targeted approach. In
essence, while MLstructureMining offers speed for the class of
materials it is trained on, structureMining provides a deeper,
more rened analysis, making them complementary tools in
the study of structures.

As shown throughout these four examples presented,
MLstructureMining show great generalization capabilities and
the SoMax output show a high correlation with suggestion
suitable structures. When MLstructureMining predicts an
© 2024 The Author(s). Published by the Royal Society of Chemistry
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unevenly distributed set of SoMax outputs, the predictions
have shown to be reliable. Evenly distributed SoMax outputs
indicate little reliability, as in the case for the experimental PDF
of W5O14. To evaluate robustness of MLstructuremining, thus
ensuring regularized behavior of the model, we deployed ZOO
attacks from ART. These demonstrated amodest decrease in the
model's top-3 accuracy, from 99% to 97%, indicating a strong
generalization capability. We deemed that it was out of the
scope for this article to further quantify how far it was possible
to push the testing distribution before breakdown of the model
was achieved.

MLstructureMining has been implemented as a Python
library with a command-line interface and on Hugging Face to
ensure easy accessibility to MLstructureMining. MLstructur-
eMining has additionally been installed on the DanMAX
beamline at MAXIV in Sweden, and is planned to be imple-
mented in https://PDFitc.org.11 Due to MLstructureMining's
easy deployment, fast structure analysis and less biased data
analysis capabilities, we expect that MLstructureMining is
a new powerful tool for PDF analysis.

Code availability

The code for data preparation and training of MLstructur-
eMining can be found at: https://github.com/EmilSkaaning/
MLstructureMining-workow. MLstructureMining as a Python
library can be found at: https://github.com/EmilSkaaning/
MLstructureMining. MLstructureMining has been uploaded
as a Hugging Face model and can be found at: https://
huggingface.co/Ekjaer/MLstructureMining.

Data availability

The Python package ‘MLStructureMining’ version 4.1.0 has
been used to predict suitable structural models. The link to the
code can be found here: https://github.com/EmilSkaaning/
MLstructureMining. The code used for the PCA and NMF
analysis (extract the number of components and generate
NMF features) can be found at: https://github.com/Kabelkim/
phase-splitter. The version used was updated on the 13th of
March 2022. All crystallographic information les (CIFs) have
been downloaded from ‘Crystallography Open Database’
(COD), https://www.crystallography.net/cod/. Data
preprocessing and generating Pair Distribution Function
(PDF) data was done using the code found at: https://
github.com/EmilSkaaning/MLstructureMining-workow. The
version used is the newest version, ‘Merge Pull Request #20’,
updated on the 3rd of September 2023.
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