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Machine learning (ML) can provide decision-making advice for major challenges in science and engineering,
and its rapid development has led to advances in fields like chemistry & medicine, earth & life sciences, and
communications & transportation. Grasping the trustworthiness of the decision-making advice given by ML
models remains challenging, especially when applying them to samples outside the domain-of-application.
Here, an untrustworthy application situation (i.e., complete extrapolation-failure) that would occur in
models developed by ML methods involving tree algorithms is confirmed, and the root cause of its
difficulty in discovering novel materials & chemicals is revealed. Furthermore, a universal extrapolation
risk evaluation scheme, termed the extrapolation validation (EV) method, is proposed, which is not
restricted to specific ML methods and model architecture in its applicability. The EV method
quantitatively evaluates the extrapolation ability of 11 popularly applied ML methods and digitalizes the
extrapolation risk arising from variations of the independent variables in each method. Meanwhile, the EV
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1 Introduction

Machine learning (ML) has made impressive achievements in
substance discovery, data analysis, and image processing over
the past decades, accelerating advances in fields as numerous
as earth & life science,’” communications & transportation,**°
and chemistry & medicine.""® As a spotlight to the field of
chemistry, ML provides experimentalists with advice on select-
ing target molecules for synthesis by predicting physicochem-
ical properties," " biological effects, and reaction
routes.”** Although ML models are still not a complete
substitute for expert intuition,> they are sufficiently sophisti-
cated to recognize complex patterns beyond the reach of expert
intuition to provide decision-making advice for major chal-
lenges in science and engineering, as multiple algorithms and
different architectures for ML solutions emerge.**>*

Grasping the trustworthiness of the decision-making advice
given by ML models remains challenging.**** Influencing the
trustworthiness of model decision-making involves the whole
process of modeling, i.e., not only the preparation of data but
also the process of algorithm selection, hyper-parameterization,
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prediction and selecting trustworthy ML methods.

etc.* The accurate prediction of previously unknown things and
the generation of reasonable decisions by ML models are
derived from the data information available during develop-
ment. As such, model uncertainty arising from the range of data
and its distribution may lead to models making unconvincing
(high-risk) decisions. For example, Li et al.** discovered that ML
models trained on Materials Project 2018 may have severely
degraded performance when predicting new compounds for
Materials Project 2021, which was attributed to the changes in
the distribution of the dataset.

Undoubtedly, if the prediction samples are located inside or
on the boundary of the convex hull of the training dataset, the
model prediction ability approximates its interpolation ability;
if the prediction samples are located outside the convex hull,
the model prediction ability depends on its extrapolation
ability.*® Thus, on any high-dimensional dataset, interpolation
will almost certainly not occur, and model predictability will be
more dependent on the extrapolation ability.***” For the field of
chemistry, the feature space is usually defined by the range of
descriptors or the distribution of groups for the molecule.*® The
number of descriptors or groups corresponds to the dimension
of the feature space. Indeed, an intersection of the prediction
samples with the training dataset in one or more dimensions is
possible,* and it is hard to assess the extent of the intersection,
which is a source of model uncertainty.

Model uncertainty can be estimated using cross-validation
and external validation tools.**»*****> External validation is
performed on data not involved in modeling. Cross-validation
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divides the training set according to various data partitioning
schemes (e.g., random, leave-one-out, cluster, or time-split**) to
evaluate the performance of the model in future applications.
For example, Meredig et al.** proposed the leave-one cluster-out
cross-validation method (LOCO CV), which is based on the K-
means clustering algorithm and classifies the samples into
multiple clusters, and then divides the training and test sets
according to the clusters. The k-fold-m-step forward cross-
validation (kmFCV) proposed by Xiong et al* divides the
training and test sets according to the sequence of target values.
Worth considering, the property distribution of molecules in
the training set may not be identical to the distribution of
molecules encountered in the future, i.e., molecules encoun-
tered in the future may be outside of the domain-of-applicability
of the model. In time-split cross-validation, the model is trained
on data generated before a certain date and tested on a retained
dataset generated after that date. Thus, the time-split cross-
validation method is deemed to be closer to the evaluation of
new discoveries, i.e., prospective validation.***® Due to data
availability constraints, it may be difficult to obtain data that
conform to this approach in certain cases.

While cross-validation and external validation provide an
important tool for testing the potential utility of ML workflows,
they are unable to distinguish between the predictions for in-
domain and out-of-domain samples, which makes it hard to
provide a quantitative evaluation of the extrapolation ability of an
ML model. The consequences would be inconceivable if ML model
extrapolation performance degradation, even extrapolation
failure, occurs in artificial intelligence (AI)-driven applications,
especially in high-risk scenarios such as self-driving cars, auto-
mated financial transactions, and smart healthcare. Hence,
a method for quantitatively evaluating the extrapolation ability of
a model is desired to reasonably circumvent the extrapolation risk.

Here, 11 ML methods are tested for out-of-domain sample
prediction results on datasets with linear univariate, linear
multivariate, and nonlinear multivariate functional relation-
ships. Based on the extrapolation results, the involvement of the
tree algorithm is suspected as the prime culprit in the
extrapolation-failure of the ML model. Subsequently, the
potential reasons are explored by using the random forest (RF)
method as an example. To quantitatively evaluate the extrapo-
lation ability, an extrapolation validation (EV) method is
proposed. The EV method is applied to ML models with data
from deterministic functional relationships, and the quantita-
tive structural property relationship models for glass transition
temperature (T) of polyimide (PI) in the macromolecular field
as a real-world application example.

2 Methodology

2.1 Mathematical model extrapolation test

To obtain modeling data with clear functional relationships,
five variables related to the x are defined, see eqn (1)-(5). With
the tolerance of 2, the arithmetic sequence in the range of (400,
1000), (488, 888), (20, 400), and (1000, 1400) was generated as
the independent variable data for the training set, the test (I)
set, the test (B) set, and the test (F) set, respectively. The
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dependent variable (y) data were calculated based on eqn
(6)—(8). This makes the dependent variable and the independent
variable have linear univariate, linear multivariate, and
nonlinear multivariate relationships accordingly. Complete
datasets can be found in the ESL}

1
Xp= X (1)
Xy = ﬁ (2)
x3 = log(x) (3)
X4 = \3/35 (4)
1
X5 = < (5)
y=x (6)
y=Xx1+tx+tx3+ x4+ x5 (7)
Y =x1+ X X X3+ X4 + /X5 (8)

To observe the extrapolation ability of ML models, we
developed models for data with deterministic functional rela-
tionships (i.e., linear univariate, linear multivariate, and
nonlinear multivariate) by 11 ML methods, including multiple
linear regression (MLR), least absolute shrinkage and selection
operator (LASSO), ridge regression (Ridge), support vector
machine (SVM), Gaussian process regression (GPR), multilayer
perceptron (MLP), adaptive boosting (AdaBoost), extreme
gradient boosting (XGBoost), RF, K-nearest neighbor (KNN),
and gradient boosting decision tree (GBDT) algorithms. A test
(B) set, and a test (F) set are set up to evaluate the extrapolation
performance of ML models, where the test (B) set is dominated
by dependent variables below the minimum value of the
dependent variable in the training set, and the test (F) set is
dominated by dependent variables above the maximum value of
the dependent variable in the training set. Moreover, a test (I)
set in which the dependent variable is included in the range of
the dependent variable of the training set is used to validate the
interpolation ability of the models.

2.2 Extrapolation validation (EV) method

For quantitatively evaluating the extrapolation ability of
a model, the extrapolation validation (EV) method is proposed.
Each independent variable is serialized (sorting from the largest
to the smallest or from the smallest to the largest), and then the
training and test sets are re-divided following the order in the
determined ratio. That is, the dataset is divided into the
training (EV) set and test (EV) set in the order of serialized
independent variables, e.g., choose the first 80% as the training
(EV) set and the remaining 20% as the test (EV) set (Fig. 1). The
performance of the re-fitted model by training (EV) set for the
test (EV) set (RMSE was adopted in this work) was used to
evaluate the extrapolation ability. Of note, due to the stochastic
property of ML methods such as RF and GBDT, it is suggested to
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Fig. 1 Schematic of extrapolation degree (ED). h is defined in egn (9); “forward sequence” means that the samples in the data set are sorted

according to the independent variable x; from the smallest to the largest;

“backward sequence” means that the samples in the data set are sorted

according to the independent variable x; from the largest to the smallest; see egn (10) for the definition of ED.

re-fit a model many times to obtain the average of several pre-
dicted values as the last predicted value. A model was re-fitted
100 times in this effort.

The leverage value (%) is part of the applicability domain (AD)
of the QSPR model.*” The AD is defined as the space that
contains the chemical space of the molecules in the training set.
The AD is both important for model evaluation and recognised
by the Organization for Economic Co-operation and Develop-
ment (OECD).** Within chemistry and drugs among other
related fields, % is often used to check compounds affected by
structure (i.e., independent variables) in QSPR modeling.* # is
defined by all independent variables in the model, as described
in eqn (9).

h=x(X"X)"'x] ©)
x;is the independent variable row-vector of the i-th sample, x; is
the transpose of x;, X is the independent variable matrix, and X*
is the transpose of X.

Considering the contribution from all the independent
variables, the serialized % is applied for dividing the training
and test sets. Both forward serialization (from small to large
values) and backward serialization (from large to small values)
are adopted, i.e., forward extrapolation validation and backward
extrapolation validation. Following this approach, all indepen-
dent variables for the developed model are evaluated.

To describe the EV method clearly, a list of its steps is as
follows:

(1) Calculate the training set sample leverage value (k)
according to eqn (9).

(2) Sort the same one independent variable (x;) for all
training set samples from the smallest to the largest (ie.,
forward sequence).

(3) The first 80% of the samples in the sorted training set are
used as the training (EV) set, and the last 20% of the samples are
used as the test (EV) set.

(4) Fitting the developed model using the training (EV) set.

1060 | Digital Discovery, 2024, 3, 1058-1067

(5) Using the re-fitted model in step 4 to predict the test (EV)
set samples, evaluate the performance of the re-fitted model on
the test (EV) set.

(6) Repeat steps 2 to 5 for 4 and all independent variables (x).

(7) Replace the order of the training set samples in step 2 to
“follow the order from the largest to the smallest (i.e., backward
sequence) of the training set x;”, and then repeat steps 2 to 6 for
h and all x.

When serializing extrapolation for one independent variable, it
is difficult to ensure that all independent variables in the test (EV)
set are outside the corresponding range of the training (EV) set, at
which point the performance of the test (EV) set will inevitably
include the contribution from interpolation. Hence, the extrapo-
lation degree (ED; eqn (10) and Fig. 1) is defined as a metric to
assist in evaluating the extrapolation ability of the model. Of
those, “e;;” in the definition of ED is the distance at which the
independent variable i of sample j in the test set is outside the
range of independent variable 7 in the training set. Since not all
sample independent variables of the test (EV) set are outside the
range of the training set, the performance of the test set (EV)
includes the contribution from interpolation ability. The ED
quantifies the extent to which the independent variables of the
test (EV) set are outside the corresponding domain of definition of
the training set, thereby digitizing the fraction of the test (EV) set
performance that is really extrapolated. When the performance of
the test (EV) set is good and the ED is high, it indicates that the
predicted values of the model are reliable even for the samples
that are farther away from the training domain. And when the
performance of the test (EV) set is good and the ED is low, it
indicates that the model may only be able to extrapolate to the
samples in the closer range outside the training domain. There-
fore, ED can be used as an assistant metric to evaluate the
extrapolation ability of a model. Furthermore, the standard
deviation of the samples within the 95% confidence level interval
(095, €qn (S2)t) is presented as a threshold for the evaluation of
the extrapolation ability. If the RMSEqrv) of an independent
variable is greater than o5, then it is possible that the prediction

© 2024 The Author(s). Published by the Royal Society of Chemistry
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error of the model is greater than the difference between the
actual value and the mean of the samples within the 95% confi-
dence level interval. The average of all RMSEs of the re-fitted
models after serialisation of the independent variables and #, i.e.
the average RMSE, is taken as a statistical parameter to evaluate
the overall extrapolation ability of the model.

1 Ze;,,,-
ED = — /

n; Z dai
J

(10)

: train test test : train
miln(x,./. > fo s xm <II‘1[1I1<)CI.1/- )

e,-1/- = X;e;t — max <x;rjam> , x}ejsl > max <x;r/am>
P i P : i P

0, others

1 . .
§ train test test : train
; xi,j —xid. s Xl-‘/- <llli1H(XiJ )
b

a;; = 1 i i
J x}e.st _ E xtlr‘am’ xl.e.st > max [ xirein
J n; & L Ly i Ly
1

0, others
where 7 and j are the serial numbers of the independent vari-

ables and samples, respectively, and 7; and n; are the number of
independent variables and samples.
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3 Results and discussion
3.1 Results of the mathematical model extrapolation test

Based on the results of models established for data with
deterministic functional relationships with the initial hyper-
parameters of the 11 ML methods (Fig. 2a-c, ESI Text S2 and
Tables S1-S37), it is found that the regressors involving tree
algorithms (i.e., RF, KNN, XGB, AdaBoost, and GBDT) show
excellent predictability in the value domain of the training set,
which is confirmed by the coefficient of determination (R, eqn
(S3)t) of the training set and test (I) set being close to 1.
However, facing target values outside the value domain of the
training set, their predicted vs. observed values behave as
horizontal straight lines, with the fact that Reesyr)” and Reesi(r)”
are both 0. This suggests that ML models involving tree algo-
rithms have great interpolation ability but may not have
extrapolation ability. Since hyperparameters have non-
negligible effects on model performance, the hyperparameters
of the models established by the 10 methods other than MLR
are optimized. Even for the optimal models (Fig. 2d-f and ESI
Tables S4-891), Reest(r)” and Reese(r)” Of the ML models involving
tree algorithms are still 0, which rules out the correlation
between extrapolation inability and hyperparameter selection.
Furthermore, the predicted values of the optimal models of the
MLR, LASSO, GPR, and MLP methods are almost close to the
observed values. Nevertheless, Ridge and SVM models using
data from linear or nonlinear multivariate functional relation-
ships have large prediction errors when observed values are far

a b ¢ —— MLR(Training set)
T MLR(Test(F) set)
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Fig. 2 Predicted values vs. observed values for the training set, test (F) set, test (I) set, and test (B) set of the initial hyperparametric model
established for data with deterministic functional relationships, i.e., (a) linear univariate, (b) linear multivariate, and (c) nonlinear multivariate, by 11

ML methods; predicted values vs. observed values for the training set, test (F) set, test (

) set and test (B) set of the optimal hyperparametric model

established for data with deterministic functional relationships, i.e., (d) linear univariate, (e) linear multivariate, and (f) nonlinear multivariate, by 11

ML methods.
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away from the domain of values in the training set, as evidenced
by their Reesy(s)” failing to reach 1 (Fig. 3e and f).

During hyperparameter conditioning of the regressors
involving tree-based algorithms (ESI Fig. S1-S3t), all predic-
tions in the test (B) and test (F) sets are close to the maximum
and minimum values in the training set, respectively. Particu-
larly noteworthy is that AdaBoost, RF, and XGBoost models
exhibit piecewise functional data relationships as the hyper-
parameters are varied, therefore, conjecturing that this may be
the reason for the extrapolation-failure of the model developed

a b
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Fig. 3 R?for the training set, test (F) set, test (I) set, and test (B) set of
the initial hyperparametric model established for data with determin-
istic functional relationships, i.e., (a) linear univariate, (b) linear multi-
variate, and (c) nonlinear multivariate, by 11 ML methods; R? for the
training set, test (F) set, test (I) set and test (B) set of the optimal
hyperparametric model established for data with deterministic func-
tional relationships, i.e., (d) linear univariate, (e) linear multivariate, and
(f) nonlinear multivariate, by 11 ML methods.
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by ML methods involving tree algorithms, i.e., having constant
output values for a certain range of input values.

Furthermore, for samples far from the domain of definition
of the training set, the predicted values of Ridge and SVM
models developed with linear or nonlinear multivariate func-
tional relationship data differ significantly from their observed
values (Fig. 2e and f). This emphasizes the fact that the reli-
ability of the predicted values of a model for dataset out-of-
distribution samples is related to the distance between the
sample independent variable and the domain of definition of
the training set. If the ED in the EV is small (i.e., the extrapo-
lation ability contributes less) and the extrapolation ability is
worse (i.e., the performance of the test (EV) set is worse), while
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Fig.4 Schematic diagram of the model architecture containing 10 DTs (each with a depth of 4) for data with linear univariate relationships via the

RF method.
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the ED of the predicted sample is large, one can consider the
reliability of the model predicted values to be low in this case.

3.2 Reasons for the difficulty of discovering new materials &
chemicals via ML models involving tree algorithms

To gain insights into the reason for the poor extrapolation ability
of regressors involving tree algorithms, an RF model developed
for data from the linear univariate functional relationship is
visualized, which contains 10 Decision Trees (DTs), each of depth
4 (Fig. 4, ESI S4 and S51). Each node can be considered as
a dichotomy point in the decision-making process. For any input
value lower than the domain of the definition of the training set,
each node is determined to be “True”, so the predicted value of
each DT is the minimum of its value domain. For any input value
higher than the domain of the definition of the training set, each
node is determined to be “False”, so the predicted value of each
DT is the maximum of its value domain. The predicted value of
the RF model is the average of the predicted values of all DTs. The
example model, with only one independent variable, has
a maximum predictive value of 979.9619 and a minimum
predictive value of 417.0969, the potential predicted value range is
[417.0969, 979.9619] (ESI Fig. S471). Thus, the range of potential
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predicted values for any of the independent variables is a closed
interval in the case of ML methods involving tree algorithms.

When having multiple independent variables, the dependent
variable is a combined transformation of values within these
closed intervals. Furthermore, the value domain constituted by
the combined transformations of the potential maximum to
minimum predicted values of all the independent variables is
a closed interval, which may be the reason for extrapolation-
failure of the models developed by ML methods involving tree
algorithms. It should be noted that because the regression models
involving tree algorithms have low extrapolation ability, they may
have difficulty discovering novel materials or chemicals.

3.3 Application of the EV method for mathematical models

Adopting the EV method, the optimal models for the tested data
of three mathematical relationships are evaluated (Fig. 5a—c, ESI
S6, S7 and Text S3t). Root mean squared error (RMSE, eqn (S4)t)
is adopted as the main statistical parameter in this work. For
distinction, the RMSEs on the test (EV) set for the developed
model and the model re-fitted by the training (EV) set are rep-
resented by RMSEcgimodery aNd RMSE eggy). For the data from
whether linear or nonlinear relationships, RMSEv) of models

a b c
¢+ MLR 14 MLR MLR CIRMSEuaey, ©RMSE cumiosen
41 LASSO 44 asso +- - - - | e e e e LASSO ++ « « .+ . . kQ\ s
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Fig. 5 Results of extrapolation validation (EV) for the ML model developed with data from (a) linear univariate, (b) linear multivariate, and (c)

nonlinear multivariate relationships.
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developed by methods involving tree algorithms, such as Ada-
Boost, RF, and GBDT, is large. For example, RMSE¢rv) of ML
models involving tree algorithms developed on the data obtained
from linear univariate functions were all greater than 50 (Fig. 5a).
Models established by methods such as MLP, GPR, and SVM
have better extrapolation ability, i.e., RMSE v, is nearly 0.
Results of EV indicate that the models developed by ML methods
involving tree algorithms have poor extrapolation ability, while
the models developed by ML methods not involving tree algo-
rithms have good extrapolation ability, which is consistent with
the results of Section 3.1. Furthermore, since the methods
involving tree algorithms have small prediction errors in model
development (i.e., RMSEes(moder) but big prediction errors in the
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model application (i.e., RMSEesgv)), this creates the phenom-
enon of performance degradation leading to reduced ML model
trust. So, a prior evaluation of extrapolation ability using the EV
method will help in selecting a trustworthy ML model.

3.4 Application of the EV method for the PI-T, model

An application of the EV method is demonstrated with the help of
a PI model, developed on a dataset containing 1321 7,. In
previous work, after external validation and leave-one-out cross-
validation, the established multiple linear regression (MLR)
model containing 29 descriptors was sufficient to ensure predictive
accuracy and robustness, L., Resting- and Q° of 0.8793 and 0.8718,
respectively. Besides the MLR model developed in the literature, 10
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models such as MLP, RF, and GBDT are established, all of which
are fully consistent with the literature in terms of independent
variables (norm index, J), training set, and test set settings (ESI Text
S4, Table S10 and Fig. S87). The extrapolation ability of 11 PI-T,
models is evaluated by the EV method (Fig. 6, 7 and ESI Text S57).

In the case of EV instance for PI-T, models, the RMSEcg(gv) for
forward and backward serialized extrapolation validations for
models established by the involving tree algorithm is always larger
than that for models established by the non-tree-involving algo-
rithm, for every I and % (Fig. 6a). To evaluate the overall extrapo-
lation ability of the model, the average of RMSE for the all
independent variable and #/ extrapolation validation, ie., the
average RMSEcqrv) and the average RMSE csimodel), is used as the
statistical parameter. The average RMSEqgv) of MLP, MLR,
Ridge, GPR, and LASSO is around 20 °C (Fig. 6b), which is close to
the experimental measurement error and acceptable.”® By
contrast, the average RMSE.qxv) Of the models developed based
on RF, KNN, GBDT, XGBoost, and AdaBoost methods is larger,
with around 40 °C (Fig. 6b), which suggests that these models
involving tree algorithms have relatively poor extrapolation ability.

Furthermore, g5 is presented as a threshold for the evalua-
tion of the extrapolation ability. If the RMSEsrv) of an inde-
pendent variable is greater than oys, then the prediction error of
the model may be greater than the difference between the actual
value and the mean of the samples within the 95% confidence
level interval. The RMSE;4(gv)s of the ML methods established by
involving tree algorithm are generally high, and with several
RMSEs(gv)S are even near the oos (60.35 °C; Fig. 7f-j), for
instance, the results of the AdaBoost model of forward extrapo-
lation validation with Iy, Iis, I3, and I; and the backward
extrapolation validation of I,, and I, (Fig. 7f), the XGBoost model
of I,y and I5 forward serialization extrapolation and I, backward
serialization extrapolation (Fig. 7g). This indicates that the
prediction error of this model even exceeds AE when the above-
mentioned independent variable in the sample exists far away
from the corresponding domain of definition of the training set.

The MLP, MLR, LASSO, GPR, and Ridge models have
RMSEcs(gv) Of any I close to the corresponding RMSEct(model)
(Fig. 7a-e), which indicates their good predictive ability.
Furthermore, I, I3, and I, of the SVM model have small back-
ward EDs along with large RMSE c¢zv), therefore, in applying this
model, if there are Iy, I3, and I, in the prediction samples that
are smaller than the minimum in the corresponding training set,
the predicted values may be unreliable, i.e., extrapolation of such
an independent variable is not recommended. In contrast, the I5
in the SVM model has a high forward ED but a small RMSEcg(gv).
It means that this independent variable has little effect on the
prediction reliability of the model when it exceeds the definitional
domain of the corresponding training set, therefore, the predicted
value of the sample can be considered reliable when such inde-
pendent variables are extrapolated.

4 Conclusions

In this contribution, the extrapolation ability of models established
by multiple ML methods is explored. Furthermore, the extrapola-
tion validation (EV) method is proposed to quantitatively evaluate

© 2024 The Author(s). Published by the Royal Society of Chemistry
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the extrapolation ability of a model. Establishing ML models from
data with deterministic functional relationships found that ML
models involving tree algorithms are fixed for predicted values out
of the training set domain, confirming its extrapolation-failure
phenomenon. Taking the RF model as an example reveals that
the intrinsic reason for the poor extrapolation ability of the
regressor involving tree algorithms may be that the value domain
constituted by the combined transformations of the potential
maximum to minimum predicted values of all the independent
variables is a closed interval. The EV validation results for the ML
model with the data from defined functional relationships and
with the 1321 PI-T, data confirm that the models developed by ML
methods involving tree algorithms have poor extrapolation ability,
while the models developed by ML methods not involving tree
algorithms have good extrapolation ability. Before transitioning
a model to applications, the EV method is sufficient to evaluate the
extrapolation ability of the model and help in selecting trustworthy
ML models. Meanwhile, the ED gives digital advice on the extent of
reliability for the models to predict samples.

The EV method is independent of the architecture of the
developed model. Essentially, the EV method is a pioneering
dataset division scheme that is based on the range of each inde-
pendent variable/descriptor/dimension in the training set. It
evaluates the extrapolation of each variable by serializing each
independent variable (i.e., sorting from the smallest to the largest
and from the largest to the smallest) and later dividing the training
and test sets. Some predictive models developed based on ML
architectures such as advanced generative adversarial network
(GAN), convolution neural network (CNN), and recurrent neural
network (RNN) can be considered for evaluating the extrapolation
ability of the models via the EV method. Meanwhile, it provides the
Data Science community with some insights and solutions for
evaluating the reliability of out-of-distribution sample prediction
in ML models (e.g., molecular and material properties, reaction
yields, etc.).

Data availability

The data for the three mathematical relationship models ob-
tained in this work have been provided in the ESL{ The 1321
polyimide (PI) glass transition temperature (7,) dataset is
available from https://pubs.acs.org/10.1021/acs.jcim.2c01389.
The 33 mathematical relationship ML models developed in
this paper and the 10 PI-T, models are available from GitHub
(https://github.com/fangyouyan). Example code for the
extrapolation validation (EV) method can be viewed from
GitHub (https://github.com/fangyouyan). The 11 machine
learning (ML) algorithm models were developed using the
scikit-learn®* package version 1.3.0 in Python® 3.11 and the
xgboost™ package version 1.7.6. The models were accessed via
the joblib* package version 1.2.0. Random forest (RF) models
were visualized with Pydotplus package version 2.0.2.
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