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Jacob J. Walder and Ian J. S. Fairlamb *

Automation technologies and data science techniques have been successfully applied to optimisation and

discovery activities in the chemical sciences for decades. As the sophistication of these techniques and

technologies have evolved, so too has the ambition to expand their scope of application to problems of

significant synthetic difficulty. Of these applications, some of the most challenging involve investigation

of chemical mechanism in organometallic processes (with particular emphasis on air- and moisture-

sensitive processes), particularly with the reagent and/or catalyst used. We discuss herein the

development of enabling methodologies to allow the study of these challenging systems and highlight

some important applications of these technologies in problems of considerable interest to applied

synthetic chemists.
1 Introduction

In the last 30 years, the use of robotic platforms in both industry
and academia has increased greatly.1,2 Their use, in combina-
tion with traditional synthetic techniques,3,4 offers a range of
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benets, including the potential to improve laboratory effi-
ciency,5 output,6 and experimental reproducibility; a contem-
porary goal is to allow complete reproducibility between
different laboratories internationally.7,8 Automated systems are
prevalent in the pharmaceutical industry, and commonly
employ both ow9,10 and batch conditions11,12 for synthesis.
Additionally, different models have been developed via mining
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of the chemical literature, allowing for the prediction of reac-
tion yields and further optimisation of benchtop chemistry.13

Integration of automated approaches to synthetic chemistry
and investigations of chemical mechanisms is not a modern
idea. Magnetic stirrer hotplates that are used in nearly every
laboratory around the world have been in circulation since the
start of the 20th century and the rst fully-automated synthetic
platform for solid phase peptide synthesis was reported in 1966
by Merrield and Stewart.14 This work greatly accelerated and
simplied the process of peptide synthesis. Further innovations
followed this work throughout the 1970s, including the devel-
opment of a computer-controlled system for kinetic investiga-
tion of the reaction between a semi-carbazide and 2,6-
dichlorophenolindophenol15 and the introduction of a closed-
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loop chemical synthesis system by Berkoff and coworkers in
1978.16 Closed-loop systems oen consist of an experimental
set-up or “loop” in which the results from a previous experiment
directly inform inputs into subsequent experiments.17 In this
case, the system consisted of a stirred reactor connected to
reservoirs containing solutions of reagents that were added via
pumps. The vessel was attached to a reverse-phase liquid
chromatographic column for analysis and was controlled by
a computer-system employing a simplex algorithm that
changed conditions based on previous results in order to opti-
mise product formation.

In the early 1980s, a new method of reaction optimisation
was introduced by Furka – combinatorial chemistry.18 This
technique was initially developed as an efficient route to peptide
formation on a solid-support, achieved by splitting the resin
into equal portions (k) to which k building blocks are added.
The individual portions are then mixed, allowing for the elon-
gation of the peptide chain. Since then, combinatorial chem-
istry has been employed in different forms in the drug discovery
process.19 In recent years, employment of synthesis-based
combinatorial chemistry has decreased, with computational in
silico techniques being more widely utilised.20,21 The “Pool and
Split” method is a variation of traditional combinatorial
approaches which is capable of preparing millions of
compounds. Compounds are rst pooled and screened for
catalytic activity before hits are split into their active compo-
nents gradually making the combinations less complex. This
method, and traditional combinatorial chemistry in general,
was gradually phased out by the introduction of rational library
design, facilitated by High-Throughput Experimentation (HTE).
The combination of the “Pool and Split” method and HTE
allows multiple reactions to be performed and multiple
hypotheses evaluated, in parallel.22,23

High-Throughput Screening (HTS) was originally developed
during investigation of antibiotic production in different
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Streptomycete libraries under a variety of fermentation condi-
tions and involves automated screening of targets in a binding
assay, and allows for many compounds to be rapidly screened in
a cost-effective manner.24 HTS technology was later applied in
chemical contexts to perform reactions in parallel to optimise
a particular process, for example, optimising conditions for
a specic reaction.25 HTE involves performing a large number of
reactions simultaneously. One of the rst reported uses of HTE
was by Pzer in 1986, revolutionising their screening process –
increasing the output from 20–50 reactions that were performed
on a 1mL scale in separate reaction vessels to between 1000 and
10 000 by utilising apparatus such as 96-well plates, on 100–150
mL scale. Since its rst reported use, HTE has become increas-
ingly prevalent and was not limited to drug development. For
example, Burgess et al. employed HTE for catalyst screening for
a specic C–H insertion reaction.26 The researchers used
a microtiter plate (MTP) to screen 96 different reaction condi-
tions, on a 100 mL scale. Each reaction was ltered through
Celite and analysed via HPLC, allowing for the data to be
collected quickly and efficiently (in under a week), and hits were
investigated using benchtop techniques on a larger scale.
Cooper and colleagues demonstrated the signicance of HTE
approaches in reaction discovery involving photochemicals27 as
well as in the development of photocatalysts for hydrogen
peroxide production.28

By the turn of the millennium, HTE became more common
in all aspects of the chemical industry, including pharmaceu-
ticals and agrochemicals. Multiple commercial robotic systems
have since been developed that are able to perform synthesis,
purication, and characterisation.29 These developments
included the creation of bespoke systems for synthetic
Fig. 1 Timeline of some key advancements in laboratory automation.

© 2024 The Author(s). Published by the Royal Society of Chemistry
chemistry, with examples reported by Burke and co-workers.30–34

Cronin and co-workers developed robotic platforms for use in
advanced synthetic chemistry.35–43 Other researchers have
focused on the development of ow systems in the analysis of
organometallic catalysis including Bode,44–47 Lapkin,48 and
Burés, and Larossa.49

Apart from accelerating the execution of synthesis tasks,
automation and data science have the potential to fundamen-
tally change how we execute and understand chemistry. Some of
the best examples of this include a closed-loop optimisation
system applied to improvement of Suzuki–Miyaura cross-
coupling (SMCC) reaction conditions developed by Burke,34

the ‘chemputer’ by Cronin,36 ow chemical apparatus by Bourne
for kinetic analysis,50 and the application of evolutionary algo-
rithms by Jensen to de-novo drug design.51

These are but a few examples of what can be achieved, and
with the rate at which such systems are being developed, the
rest of the decade could show a huge shi in the way research in
advanced synthesis and catalysis is carried out (Fig. 1).

Catalysis is a cornerstone of the chemical industry, contrib-
uting to 35% of the world's GDP,52 with the bulk of these
processes employing organometallic compounds consisting of
precious platinum group metals. Since catalysis is crucial to the
synthesis of a range of feedstocks and products required by the
pharmaceutical, agrochemical, and petrochemical industrial
sectors, mechanistic understanding of different catalytic
systems is of paramount importance. In particular, research in
this area focuses on development of catalytic transformations
with reduced catalyst loading, high product selectivity,
a greener and more sustainable reaction outcome, and a lower
cost of nal puried product.
Digital Discovery, 2024, 3, 1467–1495 | 1469
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Fig. 2 Outline of the work discussed in this review.
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Recent advances in the elds of inorganic and organome-
tallic chemistry have included the incorporation of robotic
synthesis platforms, machine learning (ML) and sophisticated
data analysis for mechanistic studies. We note the examples of
this reported by Jensen and co-workers who incorporated de
novo-based drug design methods to facilitate the synthesis of
organometallic building blocks.51,53,54

Typical mechanistic studies in organometallic chemistry
involve stoichiometric experiments, kinetic analysis, and
intermediate trapping and characterisation. Recent research in
this area has focused on improving the reproducibility of these
studies via analysis of a large number of reaction outcomes and
decreasing the time required for these types of studies – tradi-
tional mechanistic studies are notoriously time-consuming,55 as
demonstrated in traditional mechanistic studies by Blackmond
et al. which utilised in situ IR spectroscopy and calorimetric
methods for kinetic investigations.56–59 Complementary auto-
mated approaches have been developed by Varela60 and Bourne,
who incorporated ow systems to measure the kinetics of
various reactions.61–64

ML methods have more recently been employed for the
optimisation of reaction conditions and prediction of prod-
ucts.65,66 One of the most important tools related to ML is
parameterisation which can give valuable insight into chemical
mechanisms. For example, Fey and co-workers have demon-
strated the application of computational descriptors of different
phosphorus-based ligands67–74 for catalysis and mechanistic
studies.75–82 Other notable work in ligand parameterisation
comes from the group of Sigman, in which the authors para-
meterised ligands in order to explain their reactivity.83–90 One of
the limitations of these methods is that they do not deal with
metal catalyst speciation, an important complication of Pd-
catalysed chemistry which is rarely accounted for in reaction
models.

The use of HTE in mechanistic studies can result in a large
amount of data being generated. Rigorous inferences can be
made from these datasets by incorporating methods of data
science and statistics into analytical workows. This can allow
for a greater understanding of a given catalytic system by
uncovering mechanistic effects that would not be noticeable via
traditional analyses. A technique that has been successful is
Principal Component Analysis (PCA), a dimensionality reduc-
tion method that aims to reduce the number of variables in
a dataset while still maintaining as much information as
possible. Further in-depth information on the implementation
of PCA has been reported by Hotelling91 and Sigman.92,93

Some key statistically-led chemical investigations have been
conducted by Hein et al., in which they employed techniques
such as non-linear regression to analyse reaction data.94–96 One
example of this was to take the UV absorptions of various
compounds and calculate their concentrations using non-linear
regression analysis in the absence of response factors (molar
absorption coefficient and path length of the Beer–Lambert
Law).97 Alongside this, Sigman and co-workers have employed
data-driven optimisation for various reactions and
conditions.98–103.
1470 | Digital Discovery, 2024, 3, 1467–1495
Despite the wealth of examples and innovations that have
been reported in the eld,104,105 it appears that many laborato-
ries are still hesitant to incorporate modern automation plat-
forms to complement their synthetic work. This is not
unsurprising – some of this technology, such as bespoke robotic
systems – require expensive maintenance and are priced beyond
what many academic laboratories can afford. However, we hope
that this review will demonstrate how these, and other tech-
nologies, can be readily applied to traditional and applied
organometallic chemistry, aligned with synthetic chemistry
applications (Fig. 2).
2 Organometallic reaction
automation – from simple to more
complex methodologies

The earliest modern standard robots emerged in the 1950s as
programmable manipulation arms. As computational power
and the sophistication of related technologies increased during
the 1970s, robotic systems became more widely adopted, before
their widespread implementation in commercial settings, e.g.
in the automotive industry and petrochemical industries.106–108

As these technologies have become cheaper and more acces-
sible, they have become rmly integrated into academic and
research institutions.109 The modern synthetic laboratory is
a complex web of computer-controlled devices including heat-
ing and stirring apparatus, liquid handling units, various
analytical techniques and, computer-controlled robotics. This
network of instrumentation offers a range of benets, including
improvements in experimental efficiency, reducing human
error, and improving overall experimental reproducibility.110

Gaining these benets is not without issue – robotic plat-
forms typically require large capital investments and dedicated
technical expertise to implement. Additionally, certain
processes can be problematic to automate e.g., accurate transfer
of electrostatic solids and viscous solutions. The development
of lower cost technologies has been a key concern in the eld in
recent years, and several platforms have been developed to this
end, including OpenTrons, Tecan Robots, Hamilton, and
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 General workflow diagram of modern approaches to mechanistic investigation of palladium catalysed cross-coupling reactions. The
process begins by generating a grid of experiments. Data points of each of these are then gathered before the data is analysed. From this, new
mechanistic insights can be gathered relating to the reaction under scrutiny.
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Mosquito robotics. These technologies are rapidly improving
and typically offer signicant potential for integration of diffi-
cult processes into standard workows. Even though there is
a substantial range of platforms available, it should be
emphasised that it is not necessary to automate every step in an
experimental campaign.

There are many ways to automate chemical reactions: simple
reaction condition control (heating and cooling, stirring or
substance transfer); the use of robotic platforms for solid and
liquid handling and process control; the application of
computer algorithms or the utilisation of optimisation soware
to the implementation of in situ analytical technologies.111 Each
of these approaches offers the potential to improve under-
standing of chemical reactions, or to increase the efficiency of
traditional synthetic methods (Fig. 3).
2.1 Automating benchtop or fume hood organometallic
reactions

Simple technologies, such as magnetic stirrer hotplates, offer
a simple method to increase the throughput of a synthetic
Fig. 4 Image of the chemputer developed by Cronin and coworkers. It
filtration and separator units, and a rotary evaporator.36

© 2024 The Author(s). Published by the Royal Society of Chemistry
process. Rudimentary, specialised syringe pumps have allowed
the addition of solutions at regular time intervals over long
periods. This represents only the rst portion of a synthetic
procedure, with other steps typically being completedmanually,
e.g., purging reaction vessels with inert gases, workup, and
purication.

2.1.1 Automation of organometallic reactions performed
using traditional techniques. Traditional laboratory apparatus
can be adapted to perform in an automated manner, through
the programmed addition of reagents using syringe pumps or
via analysis of reaction data from in situ spectroscopic or
spectrometric methods. The addition of this technology to
laboratory equipment permits the addition of reagents and
conditions to be tailored for unique reactions. These can
include off-line, at-line, in-line (in situ) or on-line measure-
ments.112 Such systems can be highly effective and do not typi-
cally require a large capital investment. A simple pump and
a sample switching device are oen necessary to implement
these technologies. The switching device can be used for addi-
tion of small amounts of reagents or to sample reactions
directly. It is typically useful for chemistry researchers to have
consists of a backbone of switches, valves and pumps, a reactor unit,

Digital Discovery, 2024, 3, 1467–1495 | 1471
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basic programming skills to support implementation of these
workows. Supporting development of these skills has been
a key focus in the development of many undergraduate chem-
istry curricula in recent years.

The Chemputer (Fig. 4), developed by Cronin et. al.36 adapts
traditional laboratory glassware by adding pumps, sensors, and
switches so that multiple reaction steps can occur consecutively
in an automated fashion, facilitated by an in-house developed
Chemical Description Language, XDL. This language permits
translation of discrete chemical tasks (reagent addition, reac-
tion, extractions etc.) into machine-executable operations (turn
on stirrer hot plate, increase ow rate of pump driver, heat
reaction vessel etc). Although this platform has largely been
used to synthesise and purify organic compounds, it has the
potential to be adapted (employing inert atmospheric condi-
tions) to create inorganic and organometallic compounds.

The chemputer has been used independently to enable
a fully automated synthesis of Ag nanoparticles (NPs),113 where
a change in Ag concentration could reliably and reproducibly
generate the correct size of NP; 2.2 nm± 1.0 nm (2.23 mgmL−1)
and 5.6 nm ± 3.8 nm (12.59 mg mL−1), and in reasonable yields
(30–35% and 41–53%, respectively).

This system shows the capability of new technologies to
adapt existing frameworks and modernise laboratories. Indeed,
this system could be applied to many routine laboratory trans-
formations in order to make them more efficient and repro-
ducible. However, not all reactions or workows may be
applicable to this form of reactor e.g., air sensitive reactions. It
is possible to use roaming robots to achieve what a chemist
Fig. 5 A simple flow system setup using two syringe pumps, a T-connecto
can easily flow into a sample device for on-line sampling, or manual sa
control to the system and temperature regulation will make this setup a

1472 | Digital Discovery, 2024, 3, 1467–1495
normally does around the lab, particularly if the robot can
access fume hoods, samples, and instrumentation. This has
mainly been utilised for materials chemistry research and the
development of organic photocatalysts.114

An adaption of the chemputer has been developed which
allows a fully automated approach to air-sensitive chemistry
while using standard lab glassware, which has been called the
Schlenkputer.115 This system makes use of a standard gas/
vacuum handling unit and a liquid handling unit alongside
other standard glassware. A number of motors, switches, and
valves were used to control the tap positions in the Schlenk line
and controlled by XDL commands to open the vacuum. A liquid
handling setup was also established and used in conjunction
with the Schlenk system to remotely execute challenging inor-
ganic batch transformations. Initial stages of this work led Bell
and coworkers to assess the ability of the platform to inert the
liquid handling system and the glassware employed. This was
facilitated by the titanocene species, [Cp2Ti

III(MeCN)2]
+,

a widely used colour-metric indicator which is highly sensitive
to O2 (which turns from blue to yellow upon O2 exposure). These
tests showed that their Schlenkputer was an inert system, but
also highlighted the requirement to pre-wash parts of the liquid
handling system which could not be connected to the Schlenk
system. Further successful tests allowed the authors to synthe-
sise titanocene from its constituent components and facilitated
the synthesis of highly air-sensitive Ce(N(SiMe3)2)3, highly
moisture sensitive Lewis acid tris(pentauorophenyl)borane,
and a MgI dimer (via Na0 reduction). This example illustrates
the signicant opportunities that emerging automation
r, a reactor coil, a pressure regulator, and a collection vial. The reaction
mples can be taken for at-line or off-line sampling. Adding computer
n automated flow system.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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technologies offer to facilitate challenging organometallic
chemistry.

2.1.2 Automation of organometallic reactions performed
in ow. Flow synthesis platforms are highly versatile and offer
a range of advantages to traditional batch chemistry. These
types of systems typically do not involve traditional glassware
and use either commercial reactors or “home-built” systems
(involving pumps, tubing, and ttings). A sample switching
device and joined analytical technique are both frequently
employed in these synthetic setups (Fig. 5).

Most reaction paradigms can be adapted for a ow process
and there are many examples making use of photochemical or
electrochemical methods. Continuous ow systems allow quick
and easy system cleaning between reactions with a solvent
ush. Additionally, reactors can be pressurised to allow solvents
to be used far above their boiling points and solids – which are
not easy to dissolve – can be supported on a column.

Highly exothermic reactions can be performedmore safely in
a ow system. This is mainly due to the small channel dimen-
sions which allow quick and efficient heat dissipation, reducing
the risk of a ‘runaway’ reaction. This method has been rigor-
ously evaluated with lithiation reactions,116–118 where typical
conditions in a batch necessitate temperatures of −78 °C and
slow addition of reagents. Lithiations have also been shown to
be possible in ow, at higher temperatures (∼25 °C), compared
to more traditional methods. This demonstrates that mixing
and heat transfer in a ow reactor allows much greater reaction
Fig. 6 Representation of the optimal conditions found for various comb

© 2024 The Author(s). Published by the Royal Society of Chemistry
control than in batch systems.118 The reactor setup required
three peristaltic pumps, two T-pieces and lengths of PTFE
tubing. The system employed was simplistic yet highly effective
and easy to adopt in any laboratory. Integration of reaction
analytical technologies and computer control (via a user inter-
face or algorithms) greatly improves ow processes, allowing
the creation of a closed-loop optimisation platform and signif-
icantly expanding the scope of application of ow systems.

Continuous ow systems equipped with in-line UV-Vis
spectroscopic analysis have been employed in the synthesis
and self-optimisation (maximising conversion) of AuNPs. This
system demonstrates how readily optimisation algorithms can
be applied to in-line gathered data to achieve impressive
conversions (of up to 95% in this case). Generated data was then
used to create kinetic models and was subsequently validated
using batch reactions.119

The effectiveness of an automated, droplet-ow device has
been demonstrated via exploration and optimisation of a Pd-
catalysed SMCC reaction.120 Droplet microuidic technologies
allow discrete variables to be added into optimisation proce-
dures and behave similarly to nano-scale batch reactors. The
ow system uses a droplet sample injector, in which the droplet
is transported by a ow of argon before injection of an aliquot of
base initiator into the reaction droplet. Droplet systems allow
increased throughput within many, small, individual reactors
with rapid mixing. This is achieved via chaotic advection and
provides increased reproducibility when compared with single
inations of aryl halides and boronic acid.120

Digital Discovery, 2024, 3, 1467–1495 | 1473
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reactions executed in continuous ow.121 The newly activated
droplet travels through a temperature-controlled tubular
reactor and is later quenched to allow sampling – individually
using refractive index sensors for accurate timing – before
HPLC analysis. Reaction conditions {substrate (4), boronic acid
(2), pre-catalysts (2), ligands (7), temperature (30–110 °C),
reaction time (1–10 min), and catalyst loading (0.5–2.5 mol%)}
were screened iteratively and the HPLC data interpreted by the
algorithm to generate the next iteration of reaction conditions.
Fig. 7 Flow reactor setup for the work performed by Perera et al.10 A t
conditions: 7 substrates, 4 coupling partners, 12 ligands, 8 bases, and 4 so
map diagram (re-created from the published raw data) shows a quarter

1474 | Digital Discovery, 2024, 3, 1467–1495
The range of conditions tested led to the identication of
optimal conditions (maximum reaction yield and turnover
number) for each substrate evaluated (Fig. 6). The breadth and
depth of data gathered from screening campaigns of this type
can help to nd relationships that are more difficult to nd
from manual one-variable-at-a-time (OVAT) methods. Key
mechanistic insights developed from this study included the
performance of ligands in the oxidative addition step with aryl
halides, and the global effect of the ligand on the overall
otal of 5760 reactions were performed to evaluate a host of reaction
lvent systems. Other reaction conditions were held constant. The heat
of the results (1536) for boronic acid 2a.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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reaction yield. Different ligands enabled decreased reaction
times, increased product yields, and reduced protodeborylation
side-reactions. The outcome can be explained by promotion of
faster oxidative addition and transmetallation steps, and
concomitant downregulation of side-product pathways. The
employment of pinacol boronates were shown to efficiently
allow coupling with aryl halides. However, some combinations
of catalyst and ligand led to the free organoboronic acid out-
competing rapid protodeborylation.

This combination of continuous ow methodology and HTE
permitted reactions to be performed under more intense reac-
tion conditions (elevated temperature and pressure), while
gathering many data points. Perera et al.10 used a ow platform,
integrated with UPLC-MS, to perform 5760 reactions at
nanomole-scale (Fig. 7) over several days (ca. 1500 reactions per
day), using two UPLC-MS instruments working synergistically. A
full prole of each reaction was gathered, allowing a prole of
substrate, internal standard, and reaction products to be
developed. The reactor itself was a simple tubular coil heated to
100 °C (pressurised at 100 bar) with methanol as a carrier
solvent. Subsequently, gathered data was analysed off-line (1500
datapoints h−1). Given the size of the dataset, it may have been
benecial to program analysis and visualisation of the dataset.
Of the substrates explored, 6-chloroquinoline was the worst
performing and least robust transformation (tolerating only
XPhos and SPhos as ligands). The indazole substrate gave the
highest density of high conversion conditions over the other
more electrophilic substrates. Triuoroborate salts were shown
to be the least efficient boronate partner, suggesting that the 1
minute residence time is insufficient. With such a wealth of
data, it is possible to determine other trends by clustering the
data in terms of yield (>85%) and outlining conditions which
work regardless of the substrate chosen (XPhos or SPhos, and
MeCN). Any conditions, or models gathered from large bodies
of work like this do need to be rigorously assessed (particularly
when applied to scaled-up processes). Technical experimental
replicates – which are facilitated by HTE approaches – are
therefore critical.

This system not only allowed screening of many combina-
tions of conditions at small scale (to nd optimum reaction
conditions) but provided key mechanistic insights into the
reaction for a variety of substrates. Performing ow reactions in
this way is highly valuable, despite the inability of ow plat-
forms to easily handle all reaction conditions or reagent states,
e.g., solid reagents, reactions which precipitate solids or dual
solvent biphasic systems. The broad range of approaches to
automated synthesis theoretically permits exploration of any
reaction space.
† (Hetero)aryl N-methyliminodiacetic acid.
2.2 Automation of organometallic reactions using robotic
platforms and multiplexed plates

High throughput platforms permit a range of conditions to be
trialled simultaneously. A large range of reaction plates sizes
have been developed (with some plates capable of housing
several thousand wells).122–126 Larger input spaces lead to greater
volumes of data, which can easily introduce a bottleneck to
© 2024 The Author(s). Published by the Royal Society of Chemistry
determining reaction outcomes. This can be solved by inte-
grating programs to manage data and assist with mass-data
interpretation.

Many reaction conditions can be screened using a high
throughput platform, including a variety of discrete and
continuous variables – including base, catalyst, ligand, solvent,
temperature, reaction time, and stoichiometries. Manual HTE
is possible using traditional lab approaches, in which solids
and solutions are prepared and subsequently transferred by
hand to each reaction well. This methodology has been used to
complete 384 SMCC reactions to create a useful map of many
combinations of conditions. This work highlighted optimal
operating conditions, as well as how each parameter affected
reaction yield.127 There are many other examples of HTE using
manual, streamlined approaches, e.g., the use of solid transfer
scoops or multi-necked micropipettes.8

Robotic platforms also make traditionally time-consuming
reactions (e.g. gathering kinetic data) signicantly easier and
less demanding.128Collecting kinetic data for reactions provides
key insights into mechanistic features. For example, it is
possible to use a liquid handling unit (e.g., Chemspeed Swing)
to transfer reaction aliquots to a sampling device to gather ex
situ data at regular time intervals to generate kinetic proles for
different pre-catalyst species (four) during a SMCC reaction.

An initiator was added to each stirred reaction solution and
samples were taken at set time points over a specic period (5/
20 min intervals, 400 per min reaction time). Each sample was
analysed immediately aer preparation. The comparison to off-
line sampling used the same samples le for 20 h before re-
sampling. The work highlights the dramatic difference in per-
forming sampling immediately aer analysis vs. delayed anal-
ysis aer sample aging/degradation. It also shows the ease with
which the robotic platform can gather kinetic data (over an 8
hours period) to provide accurate proles.

HTE approaches permit the development of simple work-
ows, but this methodology can also be applied to much larger
experimental design spaces to accelerate the discovery of
general reaction conditions. For example, the overall workow
methodology employed by Angello and coworkers34 involved
a data mining procedure to rst screen for appropriate
substrates from a catalogue of ca. 5400 (hetero)aryl halides. The
successful candidates were combined with 54 MIDA† boronates
to generate an initial design space of 2688 potential products.
Examining a space of this size was deemed unfeasible in this
case, however, algorithmic testing of each of these sets was
performed using solvent, base, pre-catalyst, ligand, and
temperature each with a range of associated values. Prior
reaction knowledge and human-led decisions led to a series of
eleven substrate pairs being chosen for further examination.34

The robotic system performed reactions using the eleven
substrate pairs, each under seven different reaction conditions,
using seven pre-catalysts. These were compared to a literature
procedure129 using common conditions: 5 : 1 dioxane/H2O, 60 °
C, K3PO4, and the Pd SPhos G4 pre-catalyst. These reactions
Digital Discovery, 2024, 3, 1467–1495 | 1475
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Fig. 8 Left: summary of reaction conditions performed using HTE during an SMCC reaction of arylboronic acids and heteroarylmethyl chlorides.
Right: performance of the top ML conditions compared to literature benchmark conditions.34
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were performed as “seeding” experiments to train the algorithm
and to help identify redundant conditions. Two ligands (PCy3
and dppf) and Pd2(dba)3 were removed as poor performing
conditions, leading to a reaction space of 528 reactions (Fig. 8).

Subsequently, a Bayesian algorithm used the “seed” data and
reaction conditions list to provide batches of experiments,
organised into an intelligent priority queue. These experiments
were executed on the robotic system and data was gathered via
LCMS. Analysis of this data led to algorithmic generation of the
next iteration of experimental conditions, and this process was
repeated for a total of ve rounds. The top three algorithmically
found general conditions, which were applied to twenty other
substrate pairs, chosen by another algorithm, and compared to
previously reported general conditions. All condition sets per-
formed well for nineteen substrate pairs (5–85%), with only one
pair having no detectable yield. The algorithm identied
conditions which performed better than the previously reported
conditions, with yields improving by two-fold. The procedural
selection of variables in this study could have been more reliant
on the algorithm rather than having human intervention. This
removes a reinforcement bias in which researchers rely on
inputting conditions which they consider – consciously or
subconsciously – more likely to work. This can potentially lead
to missed opportunities to uncover novel reactivity.

These technologies have allowed the number of reactions
performed to be vastly increased. The volume of data gathered
would be intractable without the introduction of supporting
analytical technologies. The use of analytical instrumentation
has been noted in many of the examples above and is oen fully
integrated into synthetic workows. This allows reactions and
analysis to be completed with minimal human intervention.

2.3 Automated analytical instrumentation: integration and
closed-loop generation

Analytical instrumentation can be easily integrated or adapted
into many workows to allow reaction data to be gathered
immediately or with little time delay and minimal sample
1476 | Digital Discovery, 2024, 3, 1467–1495
preparation. Automation has already been widely employed in
analytical applications where autosamplers are extensively
used. Additionally, powerful algorithms are routinely employed
during sample analysis, e.g., solvent suppression algorithms in
NMR spectrometry,130 and the wealth of sophisticated tech-
nology used in analytical instruments.

There are a multitude of analytical instruments to choose
from, each providing unique information about the chemical
system. When used in tandem, these technologies can assist in
compiling a picture of the mechanistic detail of a given trans-
formation. In combination with sampling devices and control
soware, it is possible to create a system which can run a reac-
tion, gather analytical data, and process or organise the data
into a useable format. Many mechanistic investigations have
made use of analytical instrumentation to analyse reaction
aliquots without signicant sample preparation or intervention
which can be termed either in-line, on-line, at-line, or off-line.131

In/on-line analysis ensures reaction mass balance is more
consistent and leads to increased accuracy and reproducibility
between replicates. At/off-line analysis (a change of sample
conditions i.e. dilution or quenching) can potentially inuence
the reaction aliquot. Dilution will only affect the reaction
concentration, while quenching may change the sample
conditions – such as catalyst speciation. In turn, this may
misrepresent details of the mechanism under investigation. In-
line, on-line, and oen at-line measurements give a more real-
istic look at the reaction being performed.

Reaction analysis measurements can also be performed
using specially designed miniaturised analytical instruments or
using traditional full-sized instruments which can be adapted
to monitor reactions. There are facilities in the United Kingdom
which can aid the monitoring of chemical reactions using
common analytical techniques, notably the DReaM facility132 at
the University of Bath and the ROAR facility133 at Imperial
College London. Many large facilities internationally also aide
the probing of reaction details by supplying more powerful
electromagnetic radiation techniques: RAL, in Oxfordshire,
© 2024 The Author(s). Published by the Royal Society of Chemistry
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UK;134,135 the ESRF in Grenoble, France;136 the SSRF in Shanghai,
China,137 and the KCSRN in Moscow, Russia.138

A recent example of spectroscopic reaction monitoring was
provided by Lynam and coworkers,139 who studied the speciation
and kinetics of a light activated manganese-catalysed C–H bond
functionalisation using Time Resolved Infrared spectroscopy
(TRIR). Picosecond species observation was demonstrated in this
work, executed at RAL, providing key insights into the mecha-
nistic pathway of the metal-catalyst. The study shows that
immediately aer sample irradiation and ligand dissociation,
a solvated complex is formed. This suggests that diffusion control
was critical to speciation and the formation of alkyne manganese
complexes. This is a powerful in situ technique to understand
photo-initiated chemical reactions, although very specialist and
expensive. Miniature instruments are cheaper, space efficient and
oen faster than their larger counterparts, although resolution
and sensitivity are more limited.

In/on-line analysis facilitates mechanistic understanding by
providing evidence of troublesome reaction species oen missed
when analysing reaction samples off-line. An organozinc-
catalysed Mannich reaction used in-line infrared spectroscopy
(ReactIR) to probe the specic pathway of the amine.140 Primary
amines were found to proceed through an imine intermediate
and could be signicantly enhanced by the addition of organozinc
reagent. The formation of secondary amines was shown to
proceed via a hemiaminal intermediate and organozinc reagents
were found to accelerate formation of the intermediate species.
In/on-line analysis provides rich data, but in-line analysis is oen
the quickest method for gathering data.

New analytical technologies are routinely being introduced to
allow rapid sample screening and reduce the likelihood of sample
contamination. Acoustic levitation techniques are becoming
increasingly popular and are capable of performing high-
throughput sample analysis to gather large datasets more
rapidly. Ultrasound at ca. 40 kHz suspends small and easily
manipulable liquid droplets which function as reaction vessels
and can be directly analysed. This aligns perfectly with HTEwhich
Fig. 9 Diagram of an ADE-OPI-MS rapid data gathering system. Acoustic
spectrometer, where reaction outputs can be measured. This technique

© 2024 The Author(s). Published by the Royal Society of Chemistry
are oen run on small scales. Acoustic Droplet Ejection – Open
Port Interface (ADE-OPI),141–144 allows nanolitres (1–20 nL) of
sample aliquots to be analysed rapidly using a variety of tech-
niques, e.g., mass spectrometry (MS). A 348-well plate can be
sampled in ca. 10 minutes, directly aer a HTE screen rapidly
providing a wealth of data (Fig. 9). Other similar methods which
include MS (MALDI,145,146 AMI147,148 or DESI149,150) are also appli-
cable in HTE workows, but require extra steps in sample
handling (lengthening the time between reaction and analysis).
Adding rapid in/on-line analysis vastly improves workows and
allows rapid generation of large datasets. However, this will add to
the bottleneck of having a backlog of data, unless subsequent
programs are integrated to manage data and assist with mass-
data interpretation.

Integration of in/on-line analysis is key in the development of
closed-loop synthetic workows. A closed loop is created by
integrating soware or an algorithm with a synthetic platform,
allowing reaction conditions to be regulated and monitored
easily. However, many still require the user to manually feed in
conditions which the robotic system can then cycle through,
needing to be updated by the operator every time or using
a manual termination procedure.6,151–154 Employing computer
algorithms to intelligently control, monitor, and change condi-
tions adds additional complexity and cannot only be achieved
algorithmically. Closed loop systems can be created from batch,
ow, and high-throughput systems. Alongside these, in silico
techniques are now becoming far more advanced and can aid
researchers in a variety of ways, including improving sampling
control and facilitating data analysis.
2.4 Summary

Choosing suitable technologies to facilitate execution of a given
synthetic route can seem challenging. Each approach offers
specic advantages and disadvantages which may align their
application more favourably with certain reaction spaces. The
inherent modularity of many of these approaches vastly
energy ejects a small droplet upwards which is transported to the mass
is capable of analysing ca. three samples per second.142
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increases the scope of reactions which can be automated. New
and simple engineering skills may need to be learned to keep
platforms in good operating condition. As many of these plat-
forms are still being developed, a typical workow may include
signicant manual handling of substances or manual data
handling. Generally, the eld aims to automate routine,
mundane or time-consuming tasks and to lower the risks
associated with highly hazardous materials.

Automating traditional bench methods can allow
researchers who do not have access to high capital funding to
integrate and modernise laboratories. This is also an effective
way of performing more specialist chemistries without human
intervention. If reaction intensication or algorithmic optimi-
sation methods are required, then continuous ow systems can
be employed. Flow chemistry lends itself to solution chemistry
or easily owable slurries and has the advantage over other
methods at being able to intensify reaction conditions due to
the ease of putting the system under pressure. Air-, moisture-,
and light-sensitive chemistries can be performed if the correct
reactors are chosen. However, many of these reactors cannot
handle solids anywhere in the reaction process due to the small
dimensions of reactor pathways. Specialist reactors can be
purchased, or current ones adapted, but either of these options
greatly increase the capital costs or require further expertise.
Furthermore, large liquid handling platforms or commercial
systems can be expensive but offer a wide range of reactors
capable of handling a variety of chemistries and which can be
adapted to function for specic reactions. Reactions which may
not be suitable for ow systems may be performed using liquid
handling platforms. These platforms are largely used for per-
forming high-throughput studies where many categorical
factors may have an effect on the reaction system.

Process analytical technology is fundamental in the setup of
an efficient workow. Although largely integrated already, in/
on-line analysis are invaluable in the analysis of organome-
tallic reactions. Rapid synthetic execution demands equally fast
analysis to prevent a bottleneck. In-line, on-line, or at-line
methods are all capable of facilitating organometallic
synthetic or mechanistic workows. Commercial soware
packages are available for most in/on-line analysis to prevent
the formation of a data analysis bottleneck.

Although these technologies have been used for many years
in application to organic chemistry, they are still in their infancy
for more specialist chemical reactions, particularly catalysis and
other reactions which are oxygen/moisture sensitive. New
methods specically developed for these means are becoming
increasingly prevalent and, we predict, will form the basis of
investigations in the eld of organometallic synthesis and
mechanistic investigation.
3 Rich data analysis and statistical in
mechanistic investigations

Traditional mechanistic investigations of organometallic cata-
lytic cycles typically involve use of a limited number of mecha-
nistic tools (including in situ/ex situ analysis, intermediate
1478 | Digital Discovery, 2024, 3, 1467–1495
trapping, and analysis of reaction kinetics) to make chemical
inferences. With the increasing availability of low-cost labora-
tory automation equipment, it is becoming feasible for more
laboratories to consider medium-to high-throughput synthesis
and mechanistic activities. This is attractive since it is now
possible to mechanistically probe systems rapidly and leverage
the statistical power associated with large datasets. In this
manner, it has been demonstrated that it is possible to extract
subtle mechanistic effects impacting a system in a more
rigorous and time-effective way than could be offered by
a traditional bench investigation.

To fully understand the mechanisms of catalytic processes for
organometallic compounds, it is important to analyse substantial
amounts of data. This necessitates employment of tools from
a range of elds including data science and statistics. Rich data
analysis (RDA) refers to the analysis of multiple data sources to
gain a comprehensive understanding of a particular system. In the
context of catalytic processes for organometallic compounds, RDA
can be applied to large datasets from multiple sources, including
spectroscopic data, reaction kinetics and thermodynamics data.
These data can be statistically analysed in ways which maximise
the insight that can be obtained. This section highlights several
key examples which exemplify applications of these tools to the
analysis of problems of signicant mechanistic interest.
3.1 Rich data analysis

Hein and coworkers have recently described three data cate-
gories which are key in elucidating mechanism and making
chemical inference – fundamental properties, reaction
outcomes and reaction mechanics.155 They emphasise the
importance of molecular descriptors of reactivity – including
substrate electronics for organic reactivity and physicochemical
properties such as lipophilicity for medicinal chemistry – and
how this can be linked to chemical outcomes. Solubility was
highlighted as a parameter which is critical for mechanistic
chemistry, but for which there is a dearth of reliable literature
data available.156 They then proceeded to describe the develop-
ment of in-house platforms to generate computational and
experimental solubility data via a closed-loop approach. The
interplay of fundamental molecular properties, reaction
outcomes and mechanics, and the statistical and automation
tools highlighted in this review are summarised in Fig. 10.

Fundamental property databases have been successfully
employed in a number of applications including
computationally-guided drug design157 and rational solvent
selection,158 as well as enabling ML studies. Structure- and
electronics-based QM databases, such as ANI-1 (ref. 159) and
GDB-17 (ref. 160) are frequently adopted to great advantage. It is
oen computationally expensive to calculate complex physical
parameters such as solubility using ab initio methods like
Density Functional Theory (DFT). This led the authors to
develop predictive models, including a quantitative structure–
activity relationship (QSAR) method. The utility of HTE
approaches was also highlighted in this work through the
development of a solubility screening workow to generate
large libraries of solubility data rapidly.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 10 Graphical representation of a workflow to gather large datasets in the push towards mechanistic understanding of organometallic
reactions driven by automation, optimisation, and data science. Each element works in combination with all others to funnel towards the end
goal of detailed insights into reactions involving organometallic species.
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While HTE approaches have enabled generation of large
datasets for reaction optimisation,161–163 the data input to these
is scope-limited and requires user-selection of input variables
based on expert chemical knowledge.164 This represents a clear
potential for experimentalist bias and the potential for over-
looking unexpected outcomes. Resources such as the Open
Reaction Database165 aim to further expand the quality and
breadth of data available through open access routes for
appropriate training models.

Reaction outcomes are variable and oen hinge on the
interplay of complex and subtle interactions in high-
dimensional input space. It is oen difficult, therefore, to
generate multivariate ML models due to the lack of availability
of sufficiently complex and massive datasets. This problem
oen leads to the combination of several datasets frommultiple
literature sources and HTE to allow the development of
predictive models for optimisation. Regression analysis has
been employed successfully in a number of optimisation
applications (including prediction of optimal catalyst, ligand,
and substrates in specic systems).166–168

A key drawback of regression analysis, however, is that it
oen requires prior mechanistic knowledge about the reaction
to select relevant descriptors. Doyle and coworkers have
demonstrated the power of ML algorithms in the absence of
such prior knowledge with a sufficiently large dataset. They
examined a Pd-catalysed Buchwald–Hartwig cross-coupling of
4-methylaniline with aryl halides using several potential
inhibitors (Scheme 1).
© 2024 The Author(s). Published by the Royal Society of Chemistry
Of the 4608 experiments conducted in 1536-well plates, 30%
failed to produce any product, yet, a spread of yields were
observed across the remaining plates. This allowed Doyle to
begin parameterising this dataset via extraction of mechanisti-
cally relevant descriptors – atomic, molecular, and vibrational –
before beginning training a machine-learning model. They
showed that a random forest model – a number of independent
decision trees whose aggregate classication on regression and
prediction problems are more accurate than any single tree in
isolation – trained on an ultra-HTE dataset could successfully
predict the inuence of additives in synthesis without the need
to pre-select descriptors. This work required development of
a dataset of over 4000 entries, and highlights some of the key
challenges of research in this area. The challenges associated
with management of a dataset of this size was highlighted by
Frey and Willoughby in 2022.170 The model resulting from this
database cannot be extrapolated to other types of chemistry,
which would require bespoke investigations of their own. Each
new system under investigation requires bespoke experimental
generation of a suitable dataset, appropriate analysis, and data
management processes (which is an oen overlooked and non-
trivial aspect of this class of investigation).

Basic data on the formation and consumption of reaction
components over time provides key mechanistic insight into
reaction kinetics and thermodynamics. For example, such data
has allowed the development of ML kinetic models built to
study simple mechanisms such as cycloadditions,171 SN2
substitutions,172 and E2 eliminations.173 More complex systems
require increasingly complex mechanistic investigations. In situ
Digital Discovery, 2024, 3, 1467–1495 | 1479
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Scheme 1 A summary of the input space examined by Doyle and coworkers.169
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analytical technologies allow quantitative resolution of many
reaction components over a wide dynamic range, providing
mechanistic insight. Analysis of this type represents the ideal in
mechanistic studies: however, most systems are not amenable
to current in situ technology. Many challenges prevent the
common usage of these technologies as primary tools of
investigation, including air/moisture sensitivity, extreme
conditions, and heterogeneity issues. In response, researchers
oen develop and employ model reactions as facsimiles of their
system which are amenable to in situ analysis. It is oen difficult
to quantify the degree to which the use of such model systems
impacts the conclusions of a mechanistic investigation. It is
imperative, therefore, for the eld to focus on the development
of new analytical technologies for the investigation of complex
chemical systems in real-time (vide supra).
3.2 Design of experiments

Chemical space, referring to the total property space spanned by
all theoretically possible compounds and molecules, is vast. In
order to explore this space efficiently to nd new compounds and
Fig. 11 A comparison of OVAT and DOE approaches. (a) OVAT design
optimum is found in the first dimension, which is then taken as fixed in
experimental input space with extreme values between which statist
a maximum at any point within the design space. A factor screen is use
detailed designs. (c) Response surface optimisations allow rigorous optim
quadratic terms. Red indicates a high level of the response variable, and

1480 | Digital Discovery, 2024, 3, 1467–1495
novel reactivity, as well as to avoid convergence on local minima
during optimisation campaigns, it is necessary to employ statis-
tical tools. Design of Experiments, DOE, is a statistical approach
to the design of chemical investigations which aims to explore
a broad chemical input space parsimoniously, by formulating
statistically rigorous models of an output variable observed at the
extremities of an input space and interpolating to allow predic-
tions to be made about the space in general (Fig. 11). In his
seminal work in this area, “The Design of Experiments”,174 Fisher
emphasised the importance of controls, randomisation, replica-
tion, and the use of multifactorial experiments. The opportunity
to interrogate a chemical system by simultaneously varying
a number of input factors and to use statistically rigorous models
to derive chemical inference is attractive. It results in reduction of
the number of experiments necessary to assay a complex chemical
space, as well as reducing the likelihood of converging on false
optima (e.g., a local rather than a global energeticminimum), and
provides the opportunity to resolve factor interactions. Even in
low-resolution factor screening designs, with the potential for
multiple-factor confounding, DOE aids in decision-making and in
involving sequential optimisations in different input dimensions. An
other input dimensions. (b) DOE approaches involve definition of an

ically rigorous interpolation is possible. This allows identification of
d to determine which input variables are worth investigating in more
isation of an output variable and are suitable for producingmodels with
blue represents a low level.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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the planning of further optimisation studies. As DOE data is
analysed statistically across a whole study, using multiple linear
regressions, the error throughout the regression model can be
estimated without the need for the many replicate experiments
required of traditional OVAT approaches. These benets are
summarised in Fig. 11.

In 2019, Maurer and coworkers described the application of
DOE approaches to the optimisation of copper-mediated 18F-
uorination reactions of arylstannanes.176 This chemistry is of
signicant interest in the development of medical devices,
where copper-mediated radiouorination reactivity has
provided access to Positron Emission Tomography (PET)
probes. 18F is highly suitable for these applications due to its
decay mode (97% positron emission with low tissue penetra-
tion), high specic activity and short half-life. Physical proper-
ties of uoride, however, render radiouorination
challenging.177,178 By sequential application of DOE approaches,
Maurer was able to successfully develop reactions to synthesise
novel PET probes via radiouorination, and gain signicant
mechanistic insight into these processes. Fig. 12 summarises
the chemical problems and the key experimental designs
employed by Maurer and coworkers in this study.

A main factor screening with a Resolution V + fractional
factor design (FFD) was employed to determine the most
important factors in the input space of 18F-uorination of 4-
tributyl stannylbiphenyl. This design took loading of Cu(OTf)2
(1–4 eq.), pyridine loading (4–30 eq.), DMA loading (400–1000
mL), temperature (100–140 °C) and atmosphere (argon vs. air) as
its input space. This design can resolve main effects, two-factor
interactions and indicates whether there is model curvature
present. The factors in the input space are summarised in
Fig. 12 Summary of the radiofluorination input space explored in this d

© 2024 The Author(s). Published by the Royal Society of Chemistry
Fig. 13, with radiochemical conversion of the reaction (%RCC)
as determined by radioTLC taken as the response variable.

Following reaction data collection, the response dataset was
tted using multiple linear regressions (MLR) and checked for
outliers and model quality to obtain a normal distribution of
data. Factor signicance was estimated by the normal coeffi-
cient of the corresponding model term. Only Cu(OTf)2 and
pyridine loading were found to be signicant, and model
curvature was observed. It was determined that a Response
Surface Optimisation (RSO) would be required to determine
which quadratic terms would be required to improve model t.

Analysis of the model obtained from this factor screening
DOE suggested that, when using stoichiometric quantities of
copper(II) triate, the choice of atmosphere was insignicant. It
was experimentally conrmed that when catalytic quantities of
copper(II) triate were used, oxidative atmospheres are required
to promote complex oxidation to Cu(III) and to regenerate the
catalyst. When stoichiometric quantities of copper(II) triate are
used, the reaction can be performed under argon as the
oxidation of the inactive Cu(II) complex to the active Cu(III)
complex is mediated by non-ligated Cu(II) through a single
electron transfer.

Having identied important factors in the DOE screening
(Fig. 13), the authors proceeded to construct a more detailed
orthogonal central composite design RSO study to optimise this
radiosynthesis. Cu(OTf)2 loading (1–4 eq.), pyridine loading
(10–40 eq.), and substrate loading (10–30 mmol) were chosen as
the input space to this model based on factor screen (with
solvent volume, reaction temperature, atmosphere, and
random variables having been discarded as unimportant).

All three main factors were found to be signicant, and the
experiment also resolved quadratic behaviours for both catalyst
esign.176

Digital Discovery, 2024, 3, 1467–1495 | 1481
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Fig. 13 Contour plot summaries of Maurer and coworkers' main findings. Catalyst load, ligand load and substrate load were investigated for both
the FFD and the CCD investigations. Red indicates a high level of the response variable, and blue represents a low level. This figure has been
recreated and modified from Sci. Rep., 2019, 9, 11 370 – copyright Nature [ref. 175]. Licensed under a Creative Commons CC BY licence.
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and pyridine loading factors. A factor interaction between
pyridine and substrate loading was also resolved and included
in the model. Strong quadratic behaviours were found for both
copper(II) triate and pyridine loading, and a strong negative
factor interaction was detected between the equivalents of
pyridine and the amount of substrate used. Fig. 13 shows the
response surface across the investigated ranges, providing an
optimal set of conditions: 3.5 equivalents of catalyst, 25 equiv-
alents of pyridine, and 10 mmol substrate. Three validation runs
were executed under the optimised conditions, affording high
yields and reproducible results.

The ndings of this investigation were applied to the
synthesis of [18F]pFBnOH [18F]6, an important radiochemical
building block. A RSO was constructed to optimise its synthesis
using a Box Behnken Design (BBD), with substrate loading,
catalyst loading, and pyridine loading taken as the input space.
Catalyst loading and pyridine loading were found to be signif-
icant factors and pyridine behaved quadratically in the model,
while precursor loading was found to be insignicant. The RSO
showed the greatest response at high catalyst and low pyridine
loadings and these ndings were veried in additional valida-
tion experiments which afforded [18F]6 with a %RCC of 58 ±
1482 | Digital Discovery, 2024, 3, 1467–1495
5.3% in a single step – representing a signicant improvement
on previously published attempts at this synthesis.

This investigation represents an excellent application of the
tools of DOE methodology to a problem of signicant chemical
interest. The combination of an initial factor screening in
combination with several iterations of various DOE designs
allowed rapid convergence on signicant mechanistic under-
standing and synthetic improvements in an efficient manner.176
3.3 Data dimensionality reduction and its application in
catalytic processes

Data dimensionality reduction is a technique used to reduce the
number of variables in a dataset to those most responsible for
observed variation in a chosen output variable. This process
makes large datasets easier to analyse and interpret. In the
context of catalytic processes, data dimensionality reduction
techniques such as Principal Component Analysis (PCA) are
commonly used to identify important variables and simplify the
data. Projection techniques like PCA involve creating Principal
Component axes which are linear combinations of several
mechanistically relevant descriptors in a way which maximises
the total variation which can be described using the minimum
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 14 Visual representation of the process of data dimensionality reduction on the native R dataset, iris. The plot shown is generated via the
process of Principal Components Analysis. (i) Data standardisation. (ii) Calculation of covariance matrix to obtain eigenvectors descriptive of the
data. (iii) Eigenvector sorting to allow choice of k eigenvectors corresponding to largest k eigenvalues (where k is the number of dimensions of
the new subspace). (iv) Construction of projectionmatrixW from selected k eigenvectors. (v) Transformation of original dataset via W to obtain k-
dimensional feature subspace. The arrow represents loading extraction from principal components to generate mathematical models of
subspace with mechanistically relevant descriptors.
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number of mutually orthogonal PC axes. In this way, the phys-
icochemical factors which are responsible for variation in an
output variable (e.g., selectivity, purity, and yield) can be readily
identied. Fig. 14 summarises the process of PCA for the iris
native-R dataset.

Durand and Fey have recently described how databases of
DFT-calculated steric and electronic descriptors can be built for
organometallic catalysts and have demonstrated how these can
be used in the mapping, interpretation, and predication of
catalyst properties and reactivities.76 Structural and computa-
tional chemistry is oen employed to elucidate the coordination
and reactivity of organometallic catalysts. The Ligand Knowl-
edge Base (LKB) examines novel ligands and provides relevant
mechanistic insights in this space. Fey and coworkers have
published extensively on the application of such databases to
the analysis of ligand effects and development of predictive
statistical models.69–76,179–181 A key challenge highlighted in this
work lies in the visualisation of chemical space dened by
a multivariate database. PCA was the main statistical projection
approach employed in this study to help determine key
descriptors impacting the prediction of ligand and catalyst
effects in organometallic catalysis. Statistical robustness is
highly variable in projection techniques such as PCA. Small
changes in the input dataset typically change the generated
model. Fey and coworkers assumed a random and representa-
tive sample in their LKB, whichmay be difficult to justify. Where
outliers are observed, it is difficult to know whether they reect
meaningful chemical information or not. Despite the chal-
lenges associated with interpretation of such outliers the LKB
has been shown to have signicant predictive power.

The ligand knowledge base for phosphines (LKB-P)182

explored descriptors from representative complex/ligand
adducts and used free ligand optimisation calculations to
produce a variety of mechanistically relevant descriptors.
Following geometry optimisations via computational
approaches (vide infra), twenty-eight descriptors were dened
which were ligand responsive and computationally inexpensive.
© 2024 The Author(s). Published by the Royal Society of Chemistry
These descriptors were also shown to be highly correlated,
making PCA useful for visualisation of the datasets. Although
the orientation and compositions of the PCs are variable with
input, chemically-intuitive clustering of ligands is observed and
sustained when the map is expanded to include new ligands.
The maps show relationships between ligand structure and
catalyst properties, allowing researchers to choose ligands as
appropriate to their catalytic application. The upper panel of
Fig. 15 shows the principal component score plot for ligands in
LKB-P. The lower panel shows the PCA analysis of the expanded
LKB for chelating bisphosphines.

The LKB has been successfully applied to problems of cata-
lytic interest, including to hydroformylation of 1-heptene (for
which the ubiquitous PPh3 was identied as the best ligand)
and hydrocyanation of 3-pentenenitrile (for which P(O-o-Tol)3
was identied as optimal). It has therefore been demonstrated
that this map can suggest regions of ligand space which are
active for a given catalytic application.
3.4 Summary

The use of RDA, statistics, and data dimensionality reduction is
critical in investigating the mechanism of catalytic processes for
organometallic compounds. By analysing data from multiple
sources and reducing the dimensionality of the data,
researchers can gain a deeper understanding of reaction
mechanism and improve the efficiency and efficacy of catalytic
processes. We suffer signicantly from current limitations of
analytical technologies, which are oen incompatible with
systems of signicant chemical interest (e.g. systems which are
heterogeneous, air-sensitive, and moisture-sensitive). It is
imperative, therefore, that the eld continues to concentrate
intellectual resource in the development and improvement of
accessible in situ analytical techniques to facilitate time-
resolved observation of fundamental mechanistic processes.

DOE approaches have been demonstrated in a variety of
academic and industrial settings to signicantly accelerate
reaction optimisation. This technique of experimental design is
Digital Discovery, 2024, 3, 1467–1495 | 1483
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Fig. 15 Results of PCA analysis of the initial LKB (upper panel), and the expanded LKB containing chelating bisphosphines.182 The legends of each
plot indicate the general substituent of each phosphine. PC axes were oriented to capture the most variation possible in each dataset. This figure
has been recreated and modified from Fey and coworkers.
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particularly powerful when used in conjunction with high-
throughput experimentation approaches. The possibility of
parsing larger volumes of chemical space in reduced time-
frames not only signicantly accelerates convergence on local
minima in a thermodynamic landscape, but also offers the
possibility, when used in an unbiasedmanner, of converging on
true global minima outside of previously dened input spaces.
It is advisable, therefore, to cast the net wide during optimisa-
tion activities involving DOE approaches.

Data dimensionality reduction is absolutely crucial in the
majority of complex chemical applications, which have large
and multidimensional input space and oen produce a high
volume of rich-data. Tools such as PCA offer the opportunity to
make sense of complex datasets. This is usually an essential pre-
processing component prior to the implementation of ML
methods and allows suitable attenuation of noise from vari-
ables of limited predictive and interpolative value. The
1484 | Digital Discovery, 2024, 3, 1467–1495
statistical tools discussed in this section are at their most
powerful when they are used in conjunction with one another,
leading to the commonly implemented “closed-loop” model of
automated iterative self-optimisation routines.

4 Parameterisation in mechanistic
studies
4.1 Parameter denition and selection

Parameterisation of chemical species provides quantitative
numeric descriptors for use in data analysis. This parameter-
isation is required due to RDA techniques requiring quantita-
tive input data. The parameters discussed in this section serve
as methods to represent chemical structure and characteristics
as discrete quantities, for use in these analytical methods.

There are, of course, a range of techniques to describe
chemical species, and they are too numerous to be discussed
© 2024 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3dd00249g


Fig. 16 Representation of steric calculation methods for a phosphine
ligand PR3 by (A) Tolman cone angle, (B) percentage buried volume,
(C) He8 steric and (D) sterimol parameters.
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here. This section focuses on the generation of parameters to
describe phosphine ligands used in common metal-mediated
reactions. Phosphine ligands are ubiquitous across many
areas of chemistry, so a set of parameters describing them is
broadly applicable. Furthermore, ligand variation scopes can
give valuable mechanistic insight, and parameterisation of the
ligands allows for more sophisticated RDA-type approaches to
mechanistic investigations.

Selection of suitable parameters for the system in question is
key when conducting a parameter-based study. Poorly chosen
parameters may have no meaningful correlation with observed
experimental results. At best, such parameters provide no
benet to the analysis and at worst, they actively obfuscate
important relationships.

Historically, the rst methods of parameterisation were
gathered from direct relationships of chemical substructure to
reaction outcome. Perhaps the most famous of these are the
Hammett parameters.183–185 In these landmark works, Hammett
explored the effects of the variation of functional groups on the
rate of reactions, and equilibrium constants, of various benzoic
acid derivatives. These comparisons led to a parameter being
assigned to each substituent, expressing a parameter (q) as the
logarithm of the ratio between the equilibrium constants of
substituted and non-substituted benzoic acids. The parameter
quanties the effect on rate for each substituent, and therefore
the activating or deactivating character of the substituent for
the reaction in question. This Hammett parameter (s) acts as an
electronic descriptor for each substituent.

While this style of descriptor is more oen considered in
relation to physical organic chemistry, as opposed to the
mechanistic organometallic chemistry covered in this review,
the Hammett parameter has been used to great effect within the
latter eld. Perhaps the highest prole of these examples is
Jacobsen's work in identifying the causes of enantioselectivity
in the epoxidation of alkenes using MnIII(Salen) catalysts.
Jacobsen and co-workers were able to correlate the logarithm of
the enantiomeric ratio with the Hammett spara parameter of
substituents on the Salen ligand backbone, thereby conrming
that substituent electronic effects were highly inuential in
determining product stereochemistry.186 This approach is
a good example of how ligand functionalisation can be used to
build sub-parameters.

Importantly, Hammett's parameters were derived purely on
a group-by-group basis from measured reaction outcomes.
Thus, any new functional group of interest would have to be
experimentally veried relative to the unsubstituted benzoic
acid to generate the s parameter for the group. This approach,
while providing experimentally veried parameter results, is
also not as efficient as the more modern methods of deriving
parameters from crystallographic or calculated structures.

The Tolman cone angle is a method of describing the steric
bulk of a phosphine ligand using the angle (q) at the tip of
a cone drawn from the metal centre which encompasses the
entire phosphine group (Fig. 16A).187,188 This has the advantage
of describing the steric effect from the perspective of the metal
centre, where steric effects are most likely to affect mechanistic
processes. Less advantageously, this one-dimensional
© 2024 The Author(s). Published by the Royal Society of Chemistry
parameter does not account well for ligands which deviate from
the standard PR3 model. For instance, bidentate phosphines
cannot be easily described using a standard Tolman cone angle.
Furthermore, there has been discussion into how certain
assumptions built into Tolman's model have led to inaccuracies
in its handling of even relatively structurally simple
phosphines.189

More recently, ligands have been described sterically using
percentage buried volume (%Vbur).190 This parameter is dened
as the proportion of the volume of a sphere of a set radius
occupied by the ligand, with the centre of the sphere located on
the metal centre (Fig. 16B). While initially developed for N-
heterocyclic carbenes (NHCs), this method can also be
applied to phosphines.191,192 The key advantage of this approach
is that more structurally complex phosphines are able to be
described. Clavier and Nolan use this technique to provide the
rst steric parameterisation of the Buchwald-type biaryldialkyl
phosphines.193 Wu and Doyle191 showed that the best model to
describe reactivity for a range of phosphine ligands of varying
complexity is a mixed-parameter approach combining q and %
Vbur in a multicomponent linear regression model. q is
competent to describe ligand size far from the metal centre.
Conversely, %Vbur is more heavily weighted towards steric bulk
close to themetal centre, and so does not always take ligand size
far away from the metal into account. The authors note that this
leads to %Vbur not representing ligands which display remote
steric hindrance, an effect which can have important impacts
on mechanism. By using a mixed model, Wu and Doyle were
able to combine the strengths of both parameters, providing
a rounded picture of the ligands' steric properties.

Fey and co-workers proposed a new steric parameter, He8,
which calculates the energy of the phosphine a set distance
Digital Discovery, 2024, 3, 1467–1495 | 1485
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Fig. 17 The A1 symmetric CO stretching mode of Ni(CO)3L
complexes, used to determine the Tolman Electronic Parameter (TEP).
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away from a ring of eight helium atoms constrained on a plane
(Fig. 16C). They described that this approach minimises the
contribution from the van der Waals effects of the phosphorus
atom and focuses on contributions from the substituents. This
approach can be adapted to create conformations of helium
atoms tailored to the bulk shapes of certain substituents. For
instance, Fey later described the steric characteristics of
bidentate ligands using a wedge of helium atoms, rather than
a ring.194

When considering ligands which deviate strongly from the
standard symmetric PR3 model, accounting for structural
anisotropy is desirable. To this end, the Sterimol parameters
were developed. These parameters describe the steric character
of a ligand in the form of multiple dimensional parameters,
describing the ligand separately by length L, minimumwidth B1
and maximum width B5 (Fig. 16D). These multidimensional
parameter sets have been used to analyse asymmetric mecha-
nisms, providing insight that other mono-dimensional param-
eters could not.195–197

These metrics are sensitive to the conformation of the input
structure used to calculate them. It is not always guaranteed
that the conformation of the ligand obtained from crystallo-
graphic or computational geometries is the same as during the
reaction pathway. More recently, work has been undertaken by
Paton and co-workers to obtain a range of Sterimol values across
conformer space for a given ligand.198

In addition to steric information, the electronic parameters of
ligands in electronic systems play a pivotal role in determining
activity and mechanism. The earliest methods of quantifying
electronic effects of ligands in inorganic systems were derived
from spectroscopic data collected from model complexes. The
Tolman Electronic Parameter (TEP)187 uses the energy of the A1
stretching mode of Ni(CO)3L in dichloromethane as a method of
determining the electronic contribution of the ligand to the
complex (Fig. 17). Similarly to Hammett parameters, this
approach requires the collection of physical spectroscopic data
for each ligand, making the screening of large ligand libraries
inefficient. More recently, there has been discussion on the utility
of the TEP, and its ability to adequately describe metal–ligand
bonding strength. Work has been undertaken to compare the
donation strengths and properties of a wide range of 2-electron
donor ligands by Gusev, where the standard Ni–CO frequencies
of the original TEP are compared with other ligand properties,
including iridium cyclopentadienyl carbonyl analogues.199 Gusev
demonstrated that DFT-derived Ni–CO stretching frequencies
correlate extremely well with experimentally derived values,
allowing for accurate and precise parameter determination of
new phosphine examples using purely theoretical methods. More
importantly, however, Gusev compared the observed CO
stretching frequencies of a range of ligand types (including
NHCs, trialkyl phosphines and water) bound to iridium and
osmium metal complex environments. It was shown that while
the TEP is a descriptive parameter for phosphine ligands, it is not
as adept at comparing ligands across classes, i.e., comparing
many phosphines and NHC ligands.

This highlights an important consideration when selecting
appropriate parameters. While a parameter may be reliable
1486 | Digital Discovery, 2024, 3, 1467–1495
within a certain region of chemical space, it may not provide
good comparisons between diverse examples. In this case, due
to the complexities of metal–ligand bonding, the TEP can only
provide a full description of themetal electronic environment in
a small subset of cases. This point is explored in depth by
Cremer and co-workers, who suggest a computationally-derived
parameter, the metal–ligand electronic parameter (MLEP), to
overcome these issues and provide a metric for metal–ligand
interaction strength across a broad region of chemical space.200

With modern access to a high level of theoretical quantum
chemistry techniques, the calculation of electronic parameters
from crystallographically-derived or computationally optimised
structures is more achievable than ever. This enables the
calculation of parameters for large databases of ligands, which
can be subsequently employed in optimisation routines and
downstream data analysis.

Fey and co-workers demonstrated the power of this approach
with their LKB (vide supra).69–76,179–181,201,202 The aim of the work
was to map ligand space, providing a set of descriptors for
chemically relevant phosphine ligands which can provide
parametric data for use in data analysis. Importantly, the use of
solely theoretically-derived parameters allows for a far wider
range of ligands than can be realistically obtained in traditional
physical studies.

This study emphasised the scalability of parameterisation,
with chosen parameters able to be synthesised at relatively low
computational costs. Results of calculations which require
greater computational resources, such as frequency analysis,
were not used as parameters for this reason.

The frontier molecular orbitals (HOMO and LUMO) of the
unbound phosphine species can be calculated, giving an
intrinsic electronic parameter. Frontier molecular orbitals
provide insight into the reactivity of species. A high-energy
HOMO increases the electron-donating power of a species.
Similarly, a low-lying LUMO is better able to accept electrons. By
quantifying these abilities, the electronic contributions of the
coordinated ligand can be modelled. Frontier molecular orbital
analysis has been used as a tool to investigate the reactive
behaviour of several catalytically-relevant ligands.203,204

By calculating and comparing the relative energies of the
protonated and deprotonated ligand, ([LH]+ and [L] respec-
tively), the proton affinity of the ligand can be established.
These proton affinities have been used to describe the binding
behaviour of ligands to metal centres.205,206 In a related param-
eter, the lone pair energy of the phosphine has also been used as
a metric of electronic donation strength from the ligand to the
metal centre.207

The electronic character of a molecule can be expressed by
considering the charge localised on each atom. These charges are
calculated by distributing the electron density of a molecule into
© 2024 The Author(s). Published by the Royal Society of Chemistry
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discrete atomic contributions.208 Calculation of point charges of
atoms can be achieved through several methods. Mulliken
charges are the earliest example of such a calculation.209 This
method of population analysis is oen computed as standard in
computational packages such as Gaussian, but Mulliken's
method can oen return nonsensical orbital occupations that are
greater than two, or less than zero.210,211 This, coupled with the
sensitivity of the resulting calculated charges to basis set and
functional selection212,213 has led to other metrics of charge
assignment being developed. The natural population analysis
(NPA) method, developed as an alternative to Mulliken charges,
seeks to address some of the issues found with the method.214,215

By introducing weighting that reduces the contribution of low-
occupancy orbitals (which are more sensitive to basis set varia-
tion), the resulting analysis is more reliable and standardised
across methods. Similarly, and at around the same time, the
natural hybrid orbitals approachwas developed.216Bymaking use
of orbital hybridisation theory, this approach can return more
chemically relevant results. Over time, this methodology was
rened into the natural bond orbital (NBO) analysis
program.217,218 The NBO analysis suite is able to provide several
useful electronic metrics, including atom charges, bond indexes
and orbital energies.219 These have been used as descriptors for
statistical modelling in different elds.220–224

Finally, empirical parameterisation techniques have enjoyed
considerable success when applied to solvent optimisation
activities in organometallic catalytic contexts.225,226 These
approaches typically involve empirical measurements of
fundamental properties of the solvent related to polarity, e.g.
the solvatochromic properties associated with Kamlet–Abboud–
Ta parameterisation: p*, a measure of solvent polarisability; a,
a measure of solvent Hydrogen Bond Donors (HBD) acidities;
and b, a measure of Hydrogen Bond Acceptors (HBA) basic-
ities.227 These parameters can then be used to either map out
chemical space of solvents to identify greener alternatives,228 or
applied as descriptors in ML studies.229
4.2 Machine learning in mechanistic understanding

More recently, advances in ML techniques and their increased
ease of use and accessibility have led to their increased
employment in many new areas. The most recognised challenge
to the implementation of ML in chemistry is that to develop
a system capable of producing meaningful and insightful
output, a large amount of high-quality and broad-scope training
data is required. As chemical experimental data is, relatively
speaking, slow to collect and oen discontinuous in procedure
across different research groups and environments, it can be
challenging to construct such a training set for synthetic
chemistry. Similarly, ML algorithms in chemistry can be highly
chemical-space dependent; an algorithm may experience
a noted loss in accuracy when attempting to predict outcomes
based on inputs dissimilar to its training dataset.230

Furthermore, while a well-trained ML model can possess
powerful predictive capabilities, it will not necessarily provide
insight as to why these predictions are being made. When
attempting to elucidate the mechanisms of chemical processes,
© 2024 The Author(s). Published by the Royal Society of Chemistry
this can be a problematic tendency, as without this information
it can be difficult to draw mechanistic conclusions from the
model output.

A full treatment of the current state of the art of ML in
chemistry at large is beyond the scope of this review and has
been covered recently in other publications.231,232 Instead this
section will focus on recent implementation of ML techniques
to applications in organometallic chemistry.

There have been several notable advances in the application
of ML techniques to organometallic catalysis. For example,
Cronin and coworkers developed a ML approach to predict
reactivity, and then applied it to the Suzuki–Miyaura cross-
coupling reaction.233 By considering the ndings of Perera and
co-workers’ high-throughput screening,10 it was shown that
a model trained on just 10% of the available reaction data was
able to accurately predict reactivity for the remaining 90%.

Hartwig and co-workers reported amethod for the prediction
of site selectivity of borylation reactions.234 The method
employed here is described as a “hybrid ML approach”, where
a combination of linear and nonlinear regression models are
used alongside ML to build a robust predictive system. This
approach uses new tools to provide in-depth parameters and
statistics for unseen examples. By calculating semi-empirical
quantum mechanical transition state energy approximations,
then rening the approximated energies using linear regres-
sion, a site-selectivity prediction can be made. Importantly, the
Rogers–Tanimoto similarity ratings were used to compare
unseen inputs to the training set, and dynamically mix the
regression function corrections in an attempt to provide the
best combined model possible for each supplied structure.
When an input structure was similar to the training set,
a primarily ML based model could be applied, with little linear
regression correction. When a dissimilar input structure is
supplied, which lies outside of the chemical space envelope of
the training dataset, linear regression is emphasised in the
predictive method instead. It was noted that this approach
moves to address the chemical space extrapolation issues
commonly found when applying ML approaches to chemical
problems.

From a mechanistic perspective, there have been examples
of ML capabilities applied to existing mechanistic under-
standing to enhance the gathering of insights. Bures and Lar-
ossa described a new system for handling measured kinetic
data for reactions.49 They remark that although the technolog-
ical capabilities for measuring kinetics have advanced quickly,
the analysis techniques for handling these measured data have
not been able to keep pace at quite the same rate. This work
details a method of abstracting the handling of kinetic infor-
mation away from the system of rate law derivations and orders
in reagents, and instead embracing a machine-learning based
classication approach. By classifying a range of organic
mechanisms and generating sample data for training, the
authors built a deep learning model which was able to auton-
omously classify new kinetic data into one of the predetermined
mechanisms. A series of case studies for various reactions
showed that these mechanistic assignments were reliable when
compared to previous mechanistic investigations. Importantly,
Digital Discovery, 2024, 3, 1467–1495 | 1487
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the methods by which the ML process determines the mecha-
nism is decoupled from traditional kinetic modelling
approaches, instead using a holistic and integrated approach
which connects directly from input data to output mechanism.

It has been convincingly demonstrated that ML representa-
tions are applicable to property predictions of transition metal
complexes. Corminboeuf and von Lilienfeld have reported
signicant acceleration of descriptor screening of 18 602
homogeneous catalysts – a large library based on Pt, Pd, Ni, Cu,
Ag, and Au, combined with 91 ligands – for SMCC reactions.235

This screening was conducted on the basis of identication of
thermodynamically plausible systems via analysis of molecular
volcano plots – graphs of signicance vs. fold-change – with
respect to computationally inexpensive energetic descriptors.
The representations examined in this study were a variant of the
sorted Coulomb Matrix,236 the Bag of Bonds,237 and the Spec-
trum of London and Axilrod–Teller–Muto potential.238 These
representations were employed to generate a description of the
oxidative step directly from the SMILES structure (without the
need to provide accurate molecular geometry as model input).
Following conversion from SMILES to coordinates, the authors
mapped their input representation to a corresponding contin-
uous label value using kernel ridge regression (which uses the
kernel trick to compress multidimensional data into a linear
feature space). The quality of generated models was evaluated
by separating the data into training and test sets and calculating
the mean absolute error of prediction on the out-of-sample test
set (with appropriately randomised cross-validation) The input
space was narrowed to a set of 37 interesting and low-cost (<10
USD mol−1) complexes featuring palladium and copper with
a variety of ligands. This work represents an exciting application
of ML representations and molecular volcano plots to the
discovery of novel chemical reactivity in a computationally-
inexpensive manner.

Molecular volcano plots have enjoyed additional application
in the assessment and prediction of catalytic efficiency in
organometallic systems. Turnover frequency (TOF) and turn-
over number (TON) are commonly reported as indicators of
catalytic efficiency. Most computational studies of catalytic free-
energy landscapes only indicate the relative stabilisation of
intermediates, and associated barriers to transition states.
Corminboeuf and coworkers239 have demonstrated the dual
application of linear scaling relationships with the energy span
model – a theoretical model connecting steady-state kinetics240

with Eyring transition state theory241 – to create volcano plots.
These plots have been shown to rapidly correlate the free energy
associated with a given step in a given catalytic cycle with
a computationally-inexpensive descriptor variable. This infor-
mation, when fed into the AUTOF soware package developed
by Uhe, Kozuch, and Shaik242–244 could be used to estimate the
TOF of a given catalyst. Plotting TOF values over a range of
descriptors led to the generation of a TOF volcano plot, which
could be used to rapidly screen catalysts on the basis of pre-
dicted activity. The authors exemplied their developed work-
ow by rapid identication of novel metal/pincer-ligand
catalytic systems for CO2 hydrogenation to formate. Several
systems – Os(PONOP/–CO), Co(PONOP/–Cl), Ir(NNN–Cl), and
1488 | Digital Discovery, 2024, 3, 1467–1495
Rh(PONOP/–Cl) – were identied as theoretically competent of
altering the energetics of the catalytic cycle via the equatorial
Cl– or CO– ligands and through the connecting atoms of the
pincer ligand. In turn, these systems were predicted to be highly
active in CO2 reductions. Jung and coworkers have additionally
demonstrated the application of neural network and kernel
ridge regression methods to the prediction of CO adsorption
energies on the surface of CO2 reduction alloy catalysts.245 By
application of an active learning approach, the authors were
able to produce a model with a mean error of 0.05 eV and
identied Cu3Y@Cu* and Cu3Sc@Cu* as highly active and low-
cost electrochemical CO2 reduction catalysts (which were
competent to produce CO with an overpotential approximately
1 V lower than a typical Au catalyst).
4.3 Summary

Selection of suitable parameters is essential to building models
which can provide realistic descriptions of chemical systems.
The parameters must be chemically relevant to the system.
There are additional concerns which should also be considered
when selecting parameters. Sigman and co-workers discuss
these concerns in more detail in building multivariate linear
regression models.246

Some parameters, for a given set of ligands, may display small
differences across the set.When this range of values is very small,
the parameter will not be greatly affected by variation of the
ligand. Furthermore, if this parameter is used in a scaled model,
it will be much more sensitive to random noise arising from
calculation methods. The amplication of this noise can lead to
the model quality being negatively impacted. Generally, if
a parameter has a proportionally small range of values across the
sample population, it should be excluded from the model.

It may be attractive to t as many parameters as possible to
the data, to provide the model with as much information as
possible. This can lead to overtting, which can cause the
model to become specialised to the random noise in the data,
leading to good predictions for the training set, but poor
transferability to unseen examples.247 While this can be over-
come with more sophisticated validation techniques,248 the
problem is best avoided by selecting only parameters which are
necessary to build a complete and descriptive model.

Another argument against the selection of too many
parameters is the effect of inter-correlated parameters onmodel
outputs. The regression coefficients of models supplied corre-
lated parameters can be skewed by the correlation between the
factors.249 To avoid this issue, it is advisable to perform cross-
correlation analysis on the proposed descriptor set prior to
model building. Any parameters which are found by this effect
to be strongly correlated should be re-evaluated. The parame-
ters may be able to be condensed into a combined parameter, or
one might be discarded in favour of the other.
5 Conclusions

The use of rich data analysis, statistical analysis, and data
dimensionality reduction is critical in investigating the
© 2024 The Author(s). Published by the Royal Society of Chemistry
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mechanisms of catalytic processes for organometallic
compounds. By analysing data from multiple sources and
reducing the dimensionality of the data, researchers can gain
a deeper understanding of the reaction mechanisms and
improve the efficiency and efficacy of catalytic processes. We
suffer signicantly from the current limitations of common
analytical techniques, which are oen incompatible with
systems of signicant chemical interest (e.g. systems which are
heterogeneous, air-sensitive and/or moisture-sensitive). It is
imperative, therefore, that the eld continues to concentrate
intellectual resources on the development and improvement of
accessible in situ analytical techniques to facilitate time-
resolved observation of fundamental mechanistic processes.

DOE approaches have been demonstrated in both academic
and industrial settings to signicantly accelerate reaction opti-
misation. This technique of experimental design is particularly
powerful when utilised in conjunction with HTE approaches.
The possibility of parsing larger volumes of chemical space in
reduced timeframes not only signicantly accelerates conver-
gence on local minima in a thermodynamic landscape, but also
offers the possibility, when used in an unbiased manner, of
converging on true global minima outside of previously dened
input spaces. It is advisable, therefore, to cast the net wide
during reaction optimisation activities involving DOE
approaches.

Data dimensionality reduction is broadly helpful in the
majority of complex chemical applications with large and
multidimensional input space, oen producing a high volume
of rich data. Tools such as PCA offer the opportunity to make
sense of seemingly incomprehensible datasets.250 Parameter-
isation offers quantitative ways to describe chemical variation
to form input for these statistical tools. This is a critical part of
data workows prior to the implementation of MLmethods and
allows distinction of noise from variables of predictive and
interpolative value.

The evolving interdisciplinarity of the chemistry community
means that it is getting easier for mechanistic organometallic
researchers to take full advantage of statistical methods.
Perhaps of greater challenge, however, is the need to convince
the chemistry community at large of the applicability, versa-
tility, and signicance of automated systems, routines, and
associated data science tools to organometallic chemistry. We
believe that, by providing additional demonstration of their
application in the solution of problems of signicant chemical
interest, researchers employing these techniques are both
laying strong foundations for future studies and helping to
inspire condence in the eld at large.
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