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Porous electrodes are performance-defining components in electrochemical devices, such as redox flow

batteries, as they govern the electrochemical performance and pumping demands of the reactor. Yet,

conventional porous electrodes used in redox flow batteries are not tailored to sustain convection-

enhanced electrochemical reactions. Thus, there is a need for electrode optimization to enhance the

system performance. In this work, we present an optimization framework to carry out the bottom-up

design of porous electrodes by coupling a genetic algorithm with a pore network modeling framework.

We introduce geometrical versatility by adding a pore merging and splitting function, study the impact of

various optimization parameters, geometrical definitions, and objective functions, and incorporate

conventional electrode and flow field designs. Moreover, we show the need for optimizing geometries

for specific reactor architectures and operating conditions to design next-generation electrodes, by

analyzing the genetic algorithm optimization for initial starting geometries with diverse morphologies

(cubic and a tomography-extracted commercial electrode), flow field designs (flow-through and

interdigitated), and redox chemistries (VO2+/VO2
+ and TEMPO/TEMPO+). We found that for kinetically

sluggish electrolytes with high ionic conductivity, electrodes with numerous small pores and high

internal surface area provide enhanced performance, whereas for kinetically facile electrolytes with low

ionic conductivity, low through-plane tortuosity and high hydraulic conductance are desired. The

computational tool developed in this work can further expanded to the design of high-performance

electrode materials for a broad range of operating conditions, electrolyte chemistries, reactor designs,

and electrochemical technologies.
1. Introduction

Porous electrodes are integral reactor components in redox ow
batteries (RFBs) and are essential to the battery performance,
durability, and costs.1,2 The porous electrode provides the active
surfaces for the electrochemical reactions, controls the distri-
bution of the liquid electrolyte throughout the reaction zones,
and conducts electrons and heat.3–6 Off-the-shelf porous elec-
trodes are carbon ber-based mats that are generally repur-
posed from more mature electrochemical technologies such as
low-temperature fuel cells and have not been tailored to sustain
liquid-phase electrochemistry.1,7 Thus, for RFBs to become
a cost-competitive energy storage technology, porous electrodes
tailored to specic ow battery chemistries and ow reactors
must be designed and manufactured.1,8,9 However, because of
the convection-enhanced nature of RFBs, the porous electrode
epartment of Chemical Engineering and
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design becomes challenging as contradictory requirements
must be satised, including low pumping power, high electro-
chemical surface area, and facile mass transport.2,5,10 Hence, to
solve the complex design requirements, advanced optimization
strategies could be applied to design porous electrodes from the
bottom-up.11–13

Genetic algorithms (GAs) are promising for exploring
a broad geometrical design space for the optimization of porous
electrodes. GAs are probabilistic global optimization tech-
niques inspired by the theory of evolution that enable heuristic
optimization of a given design space based on a tness
function.14–17 Therefore, GAs require only one objective func-
tion, can be parallelized, and have a large solution space. These
unique features have motivated the application of GAs to a wide
variety of research elds, including the integration of electro-
chemical numerical frameworks for the optimization of RFB
parameters and conditions18,19 and electrode structures.11–13 For
the optimization of the electrode geometry, a GA should be
coupled to pore-scale simulations to capture the relationship
between the battery performance and electrode microstructure
in a computationally light manner. To this end, pore network
models (PNMs) can be used as they capture microstructural
© 2024 The Author(s). Published by the Royal Society of Chemistry
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effects at the mesoscale whilst being computationally light, with
a limited loss in computational accuracy,20 owing to geometrical
simplications of the pore network.8,21–23 In PNMs, the pore
space is captured by a combination of pores and throats,
allowing the porous structure to be represented as a set of nite
discrete points, enabling the mapping of the pores into a pop-
ulation in the GA. The coupling of PNMs and GAs has been used
in other research elds including the extraction of pore
networks of porous rock samples for petroleum recovery.11,24–26

However, the coupling of GAs with PNMs for the bottom-up
design and optimization of electrode microstructures for
RFBs, without the requirement of large datasets for optimiza-
tion, remains largely unexplored.

The concept of combining a genetic algorithm with PNMs to
optimize three-dimensional microstructures for ow battery
electrodes was demonstrated in our previous work for cubic
networks with xed pore positions.13 The performance of the
individual networks was evaluated by a tness function that
maximizes the electrochemical power and minimizes the
pumping power of the networks. Here, we extend the optimi-
zation framework to include more design exibility by extend-
ing beyond xed pore positions through the integration of
merging and splitting of pores (Fig. 1). In addition, we evaluate
the optimization algorithm for structures with diverse
morphologies such as X-ray tomography-extracted networks of
Fig. 1 Schematic overview of the outline of this work, including a singl
(artificially generated cubic network and the X-ray tomography extracte
tated) used in this study, different chemistries (sluggish vanadium- and fa
on a pore diameter evolution and poremerging and splitting), to obtain an
lower pressure drop.

© 2024 The Author(s). Published by the Royal Society of Chemistry
commercial electrodes translated into pore networks, which
have been proven to represent the microstructural properties of
the electrodes reasonably well.21 By optimizing a commercial
electrode, we show that we can obtain high-performing elec-
trodes with improved electrochemical performance and lower
pumping losses than benchmark materials. Furthermore, we
investigate the effect of operation conditions by evaluating two
redox chemistries, VO2+/VO2

+ and TEMPO/TEMPO+, and two
prevailing ow eld geometries, a ow-through ow eld (FTFF)
and an interdigitated ow eld (IDFF).

In this work, we rst describe the modeling framework
including the network generation, the coupling of the GA with
the electrochemical algorithm, the genetic operations included
in the GA, and the operating parameters investigated. Second,
we show the geometrical evolution for the addition of pore
merging and splitting as an additional mutation operation.
Third, we deliberate on the inuence of the network structure of
the initial population on the tness evolution and assess the
impact of the ow eld geometry on the structure evolution.
Fourth and last, we perform the electrode optimization for two
redox chemistries to investigate the importance of the starting
network and the specic reactor architectures and operating
conditions. This study, although applied to redox ow batteries
here, shows the potential of optimization by genetic algorithms
to design and optimize porous materials for a wide variety of
e-electrolyte flow cell, the starting networks used in the optimization
d paper electrode), the flow field designs (flow-through and interdigi-
cile nitroxyl-based electrolytes), and pore evolution approaches (based
electrodewith increased fitness by an enhanced current output and/or

Digital Discovery, 2024, 3, 1292–1307 | 1293
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convection-enhanced electrochemical applications. Further-
more, this work emphasizes the importance of co-designing
electrodes and ow elds and assesses the sensitivity of
genetic algorithms to optimization denitions.

2. Model development

Optimization by GAs can be applied to evolve a population of
candidate solutions to increasingly better sets of solutions for
the given design space. The principle is based on natural
diversity and selection by the recombination of good building
blocks. The concept of combining a GA with PNMs is described
in our previous work for cubic networks with xed pore posi-
tions,13 and extended upon in the present study. The pumping
and electrochemical power dening the selection criteria were
solved using a developed and validated PNM,21 that uses the
open-source framework OpenPNM.23 A PNM was employed
because of the low computational cost required to simulate
local transport within porous electrodes, where the void space is
approximated by spherical pores and cylindrical throats. The
bulk solution is assumed well-mixed in each pore and the
transport is dictated by the throats in the pore network. The
idealization of the void space allows a simplication of the
model equations while retaining microstructural information,23

thereby capturing the electrochemical performance in realistic
electrode structures.21,22,27,28 The PNM was developed for single-
electrolyte ow cell designs in discharge mode with the co-ow
operation of the anodic and cathodic half-cells and thus opti-
mizes the electrode in only one half-cell, assuming perfect
electrode wetting. The required computational time for the
reference system on a single Intel® Core™ i7-8700K CPU was
∼48 hours for 1000 generations based on 50 individuals and 10
parent networks (∼2 seconds per network), which can be
signicantly reduced when using multiple computing cores.
Aer parallelizing the tness function evaluation and running it
on a cluster with 50 cores, the required computational time was
reduced to ∼27 hours for the reference system.

The presented coupled optimization routine consists of nine
steps: the network generation, initialization, volume scaling,
the electrochemical PNM, parent selection, crossover, muta-
tion, merging and splitting, and termination (see Fig. 2 for the
schematic overview of the GA with the integrated PNM). In the
network generation stage, the type of network was selected
(cubic or extracted) of which a random set was generated in the
initialization step dening the rst population. In the rst step
of the iterative GA-PNM, volume scaling was performed to
ensure a meaningful comparison at constant electrode porosity
between the different individuals in a population and was
repeated for each generation. Thereaer, the networks were
evaluated based on the electrochemical PNM and a tness
function. Successively, the ttest individuals (i.e., parents) in
the population were selected and dened as the next population
by inheriting the information of two parent networks with
a crossover step. Aerward, stochastic changes were made in
the networks of the new population by pore mutation, aer
which the pores in the network had a chance to merge and split,
resulting in the next generation. The iterative GA-PNM was
1294 | Digital Discovery, 2024, 3, 1292–1307
repeated until the termination criterion was achieved based on
the total number of generations. The population size, number
of parents, mutation range and probability, and merging and
splitting probability and ratio were initially chosen arbitrarily or
inspired by the work of Grefenstette.29 The number of genera-
tions and network size strongly impact the required computa-
tional time, which was set to only 1000 generations and a small
network size (∼500 × 500 × 200 mm3) to showcase the principle
of the GA-PNM without being computationally intensive and
requiring high computing resources. Finally, the parameters
dening the evaluation criteria of the PNM were based on our
previous works.13,21 All reference parameters used in this work
for the GA can be found in Table 1.
2.1. Network generation

Cubic ordered lattices can be used as a rst step to assess the
impact of the GA on the electrode performance and to help
evaluate the inuence of optimization parameters on the
genetic evolution. To induce randomization and complexity in
the articial networks, networks created by Voronoi tessellation
of arbitrary base points could be used as starting geometries.
Nevertheless, these simplied structures do not capture the
permeability and electrochemical performance of ber-based
porous electrodes. To mimic the complex pore and throat
locations, connections, and hydrodynamic properties of real
porous electrodes, networks extracted from tomographic
imaging should be investigated.

Aer the generation of the network structures with diverse
morphologies, geometrical properties were attributed to the
pores and throats in the network with geometry objects. The
geometry objects are a subclass within OpenPNM that can be
assigned to parts of the modeling domain. In this work, the
geometric StickAndBall approach was applied to all networks,
which handles pores as spheres and throats as cylinders in the
generated networks for which geometrical properties can be
calculated. A detailed description of the articial and extracted
network generation can be found in Section A1 in the
Appendix.†

The geometrical property worth mentioning here is the pore
internal surface area (Ap), described by the OpenPNM geometry
functions, dened by subtracting the throat cross-sectional area
(ST) of NT number of neighboring throats from the pore surface
area obtained with the pore diameter dp (eqn (1)). This deni-
tion, used for cubic networks unless stated otherwise, is
a simplication of the pore internal surface area as the curva-
ture of the intersection between the pore and throat was not
considered. To this end, this denition cannot be applied to the
extracted electrode as a negative internal surface area is ob-
tained (connectivity >6 resulting in a large throat cross-sectional
area subtraction, Section A4.1†) resulting in the optimization of
small pores. Hence, eqn (2) was used for the extracted elec-
trodes, which results in a underestimation of the internal
surface area in comparison with literature values (i.e., 2.2 × 104

m−1 using eqn (2) vs. 7.2 × 104 m−1 obtained in the literature
for the Freudenberg H23 electrode6,21). As the surface area of the
extracted electrode is in the same order of magnitude as
© 2024 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3dd00247k


Fig. 2 Schematic flowchart of the genetic algorithm used in this work, including a simplified flowchart of the integrated pore network model,
together with illustrations of the chemistries, flow fields, initial networks, network structures after each operation, and the merging and splitting,
crossover, and mutation operations.

Table 1 Reference parameters used for the optimization study

Parameter Value

Number of generations 1000
Number of offspring 50
Number of parents 10
Mutation range 0.1
Mutation probability 0.05
Merging and splitting probability 0.1
Merging and splitting ratio 0.5
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measured experimentally, we believe that for this computa-
tional work eqn (2) is a reasonable approximation of the surface
area for the extracted electrode. However, we must point out
that the simplied geometrical properties are a limitation of the
PNM when capturing the exact properties, such as the electro-
chemically active surface area, compared to practical systems.
© 2024 The Author(s). Published by the Royal Society of Chemistry
Nevertheless, the distinct electrode structures should mainly be
compared in terms of their optimization trends rather than
quantitatively. The reader is referred to Section A4.1† for
a detailed discussion of the surface area denition.

Ap ¼ p� dp
2 �

XNT

j¼1

ST (1)

Ap = p × dp
2 (2)

The geometrical denitions used strongly affect the optimi-
zation as they directly impact the electrochemical and pumping
power. Therefore, in Section A4,† the sensitivity of the optimi-
zation depending on the denitions of the internal surface area,
throat diameter, and electrode size were analyzed. Changing the
denitions affected the electrode optimization, showing the
importance of selecting the appropriate geometrical denitions
for the optimization. However, all studies did result in
Digital Discovery, 2024, 3, 1292–1307 | 1295
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optimized structures with a bimodal pore size distribution with
longitudinal transport pathways in the ow direction that
reduced the pumping power. As simplied descriptions can
strongly over/underestimate the performance as well as alter the
optimization, geometry denitions need to be identied that
consider the manufacturing method of the nal electrodes. For
example, when optimizing structures that will be 3D printed,
the surface area denition could consider all pore and throat
walls as internal surface area, but this is beyond the scope of
this work.

The network properties of the cubic and extracted structures
are given in Table 2, where, in this work, small three-dimensional
electrode structures were optimized with electrode geometrical
areas of approximately 500 × 500 mm2. To allow comparison
between the two network structures, the network shape and
spacing of the cubic structure were based on the microstructural
properties of the off-the-shelf Freudenberg H23 paper electrode
(Fuel Cell Store, 80% porosity) with a median pore size of 20 mm
and a measured thickness of 210 mm.6,10,13,21
2.2. Initialization

The initial population was created based on the network prop-
erties (Table 2) and the number of offspring networks (Table 1).
For the cubic network, the diversity of the offspring comes from
the randomization created by the pore seed, whereas for the
extracted networks it is introduced by a mutation of the original
extracted network, depending on a mutation factor and range,
see Section 2.7.
2.3. Network scaling

To enable meaningful comparison between individuals in each
generation and between generations, a network scaling step was
performed where the pore diameters were uniformly scaled to
a reference network. The network scaling was based on the total
pore and throat volume, maintaining a constant network
porosity during the evolution. The reference networks used for
this scaling step depended on the network type. For cubic
networks, the reference network was based on the pore-to-
throat ratio described by Sadeghi et al. where they translated
a commercial porous electrode to a pore network consisting of
pores with a diameter of 15.6 mm and throats with a diameter of
20 mm.22 For the extracted networks we used the initial extracted
structure, scaled with the denitions described in Section A1.†
Table 2 Network properties used for the optimization study for the
cubic and extracted network for the FTFF. The networks were twice as
wide for the IDFF

Parameter Cubic Extracted Unit

Porosity 54 51 %
Network shape [13, 13, 4] — —
Number of pores 676 3348 —
Number of throats 1755 10 171 —
Network size 580 × 580 × 220 500 × 500 × 198 mm3

1296 | Digital Discovery, 2024, 3, 1292–1307
2.4. Electrochemical algorithm

The electrochemical algorithm developed and validated in our
previous work21 was integrated into the GA (Fig. 2) to evaluate the
performance of the individuals in every generation, with the
electrochemical power and pumping power as outputs. The PNM
was designed for single-electrolyte ow congurations with
a constant state-of-charge of 50% and an open circuit voltage of
0 V to study electrode overpotentials in isolation without
secondary effects including membrane crossover and changing
state-of-charge.1,5 The model solved the local uid transport and
the coupled mass and charge transport within both half-cells
using an iterative approach, where the locations of the ow eld
channels, ribs, current collectors, and membrane were dened
by boundary conditions, see Fig. A2.† In this work, two ow eld
congurations were studied, an FTFF and an IDFF. The FTFF was
previously validated for two electrode structures and two elec-
trolytes and showed a near-unidirectional velocity distribution
from the inlet to the outlet channel over the entire electrode
length.21 The IDFF on the other hand was validated in our other
work and features a unique velocity prole from the inlet to the
outlet channel through the electrode over a rib.30 More infor-
mation regarding the iterative PNM can be found in Section A2†
and in our previous works.13,21,30

2.5. Parent selection

The electrochemical performance and pressure drop of the
individual network structures were analyzed in the GA-PNM
with a tness function (x) to select the best-performing
networks for reproduction. The tness function considers the
maximum thermodynamic electrochemical power (Pmax), elec-
trochemical power loss (Pel), and pumping power (Ppump), where
the maximum tness is achieved when the pumping losses are
zero. In this work, the electrochemical losses were evaluated at
a xed overpotential (Elosses) of 0.5 V, corresponding to 40% of
heat loss during cell discharge, and dene the combined over-
potential (activation, ohmic, and mass transfer) present in the
single-electrolyte cell. By xing the overpotential, we aim to
increase the maximum electrochemical power by achieving
a higher total current (I). Moreover, the open circuit cell
potential (Ecell) was considered 1.26 V for the reference system,31

resulting in a maximum achievable tness value of 0.603.
Further, as we optimized electrode structures for single-
electrolyte cell designs, we assumed that the overpotentials
resulting from the other redox pair were identical in this theo-
retical exercise. The pumping power required to pump the
liquid electrolyte through the pore network depends on the
electrolyte ow rate (Q), which was set at 1.5 cm s−1, the pres-
sure drop (DP), and a pumping efficiency (hp), set to 0.9.32

Hence, the tness function was dened by eqn (3) by dividing
the electrochemically generated power by the summation of the
maximum electrochemically generated power and pumping
requirements,13,32,33

x ¼ Pmax � Pel

Pmax þ Ppump

¼ I � ðEcell � ElossesÞ
I � Ecell þ Q� DP

hp

: (3)
© 2024 The Author(s). Published by the Royal Society of Chemistry
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The individuals with the highest tness value (x / 0.603)
were selected as parent networks and were subjected to cross-
over in the next step. Finally, the total percentual tness
increase over the generations can be calculated according to
(xn−x1)/x1 × 100%, with xn the tness of the best-performing
network in the last evaluated generation, and x1 the tness of
the best network of the rst generation.

Because the objective of the GA is to optimize electrode
structures based on a dened tness function, a suitable de-
nition needs to be determined that considers the objective of
the optimization. In Section A4.4† the effect of the tness
function on the optimization was investigated by performing
optimization studies with only the pumping power or only the
electrochemical power considered. From this study, we found
that when only optimizing for the electrochemical power, the
pumping power remained unoptimized. On the contrary, when
optimized for the pumping power alone, the optimization was
comparable to that with eqn (3), suggesting that this tness
denition steers towards the optimization of the pumping
power over the electrochemical power. Furthermore, future
work could investigate alternative optimization parameters,
such as the overpotential and ow rate, or the pumping-
corrected voltage efficiency and areal power density, instead
of the current density and the pumping power. To change the
objective of the optimization, only the electrochemical PNM
must be adapted to solve for the desired parameters, which
thereaer should be incorporated in the tness function de-
nition. Finally, the form of the tness function could be
reconsidered, for example by dening the tness function
based on the difference in performance between the new and
initial generation.
2.6. Crossover

The crossover operator was responsible for the recombination
of the parent networks into new offspring networks, dening
the next generation. These new offspring networks were
stochastically generated as the parent networks were arbitrarily
selected from the mating pool and the crossover point or
coordinate was randomly selected. The crossover was per-
formed by two different methods in this work: by single-point or
coordinate-based crossover. The single-point crossover was
used for networks with xed pore coordinates by selecting
a random pore between the rst and nal locus of the pore
diameter array, dening the crossover point.34 Thereaer, the
new offspring networks were created by inheriting the
geometrical information, including pore and throat diameters,
of the rst parent between the rst pore and the crossover point,
and that of the second parent between the crossover point and
nal pore. Alternatively, the coordinate-based crossover was
used to handle pore networks with a varying number of pores
and pore coordinates and can thus be applied to networks that
underwent pore merging and splitting. In this crossover
approach, a plane at half the electrode width was selected as the
crossover plane, which splits the le and right parts of two
parent networks. Then, the le part of one parent and the right
part of another parent were stitched together to form the new
© 2024 The Author(s). Published by the Royal Society of Chemistry
offspring networks. The old throats at the plane boundary were
deleted and new throats were reestablished between the two
parent networks at the plane boundary, where the nearest pores
were connected and the number of original connections
remained constant.
2.7. Mutation

The mutation operator is a fundamental instrument to ensure
population diversity. In this work, the mutation was based on
randomly altering the pore diameters of the offspring networks.
To control the mutation, a mutation probability and range were
introduced. The mutation probability dened the probability of
mutation for each pore and the mutation range (sM) controlled
the severity of the mutation. When a pore was selected for
mutation, a random mutation value (cM) was stochastically
assigned to the pore within the boundaries dened by the
mutation range: (1 − sM) # cM # (1 + sM). Thereaer, the pore
diameter was mutated to a new value (dMp ) by multiplying the
mutation value with the old pore diameter (dop):

dMp = cM × dop. (4)
2.8. Merging and splitting

In our previous work,13 the pore locations and the network
connectivity were xed, restricting the networks from evolving
into more geometrically detailed structures. Therefore, we
incorporated merging and splitting of pores in the GA to
broaden the design space for evolution by allowing pore
mobility. The merging and splitting of pores were dened by
a merging and splitting probability and ratio. When the ratio is
0.5, there is an equal chance for pore merging as for pore
splitting, and the number of pores and throats is kept nearly
constant over the evolution.

Pore merging was performed based on an built-in OpenPNM
function in which two or more pores can be combined at the
center of the selected pores. In this GA, only two neighboring
pores were allowed to merge, where the neighbor of the selected
pore with the smallest pore diameter was chosen for merging.
Furthermore, the pore volume was dened as the summation of
the two pores, ensuring a constant total pore volume. There-
aer, the throat connections were reestablished between the
neighbors of the merged pores and the new pore, decreasing the
number of throats by one.

With pore splitting, on the other hand, the selected pore was
split into two pores with equal pore volume. The new pore
locations were stochastically determined within half
a maximum pore diameter distance in each direction and a new
throat was formed between the two new pores. The old throat
connections with the neighboring pores of the split pore were
reestablished to the closest of the two new pores, increasing the
total number of throats in the network by one. Finally, it must
be noted that for both pore merging and splitting, the new pore
locations must be checked for pore overlap with nearby pores
and if the new pores are within the specied network
Digital Discovery, 2024, 3, 1292–1307 | 1297
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dimensions. In case of pore overlap, the pore locations were
updated by stochastically altering their coordinates.

2.9. Termination

The iterative GA-PNM was repeated according to the scheme
presented in Fig. 2 and was only terminated when the
maximum number of generations was achieved. We elected this
termination criterion to enable a meaningful comparison13

between networks generated at different operating conditions,
evolutionary parameters, electrolyte properties, ow eld
architectures, and network geometries.

2.10. Operating parameters

In this study, two distinct redox chemistries were analyzed: the
vanadium chemistry based on the vanadyl and pervanadyl ions
(VO2+/VO2

+) and an organic electrolyte with the 2,2,6,6-
tetramethylpiperidine-1-yl)oxyl radical and 2,2,6,6-tetramethyl-
1-piperidinyloxy-oxo ion (TEMPO/TEMPO+). The electrolyte
and electro-kinetic properties of the distinct redox couples for
a single-electrolyte cell design are given in Table 3, obtained in
our previous works.13,21 The open circuit cell potentials corre-
sponding to each redox pair were based on full battery systems:
the all-vanadium,31 or the 4-hydroxy-2,2,6,6-
tetramethylpiperidine-1-oxyl (TEMPO-OH) and methyl viol-
ogen system.35 To comply with the dilute electrolyte assumption
used in the PNM (i.e., migration was not considered36), we
selected relatively low inlet concentrations of 100 mol m−3 per
species in an excess supporting electrolyte solution of 1000 mol
m−3 for the investigated electrolytes. We elected the vanadium
electrolyte as our reference system which was used in the opti-
mization unless stated otherwise. This system was selected as it
is state-of-the-art37 and features a kinetically sluggish redox
couple,5,38 which allowed the optimization of both the electro-
chemical performance (i.e., available surface area and mass
transfer) and parasitic pumping losses.39 Even though single-
electrolyte ow cell designs were used in this study, the over-
arching trends obtained can guide the design of next-generation
porous electrode designs, depending on the system
Table 3 Electrolyte and electro-kinetic properties for the VO2+/VO2
+ a

from,13,21 where 1 and 2 refer to the distinct species

Parameter Vanadium

Density of the electrolyte, r 992
Viscosity of the electrolyte, m 8.9 × 10−4

Diffusion coefficient, D1 2.11 × 10−10

Diffusion coefficient, D2 2.11 × 10−10

Inlet concentration, c1,in 100
Inlet concentration, c2,in 100
Supporting electrolyte concentration 1.0 M H2SO4

Bulk electrolyte conductivity, s 28
Cathodic transfer coefficient, ac 0.42
Anodic transfer coefficient, aa 0.42
Exchange current density, j0 0.39
Electrolyte velocity, u 1.5
Cell potential, Ecell 1.26
Overpotential, Elosses 0.5

1298 | Digital Discovery, 2024, 3, 1292–1307
conguration (ow eld design and operating conditions) and
electrolyte properties.

3. Results and discussion
3.1. Beyond xed lattice positions

In our previous work,13 the pore positions were xed on a cubic
lattice with a connectivity of 6, restricting the evolutionary
freedom of the optimization. To this end, we included pore
merging and splitting, allowing for a change in the number of
pores and their location. This additional network mutation step
results inmore evolutionary freedom but comes at the cost of an
increased optimization complexity. As there is another
randomization step involved, the algorithm requires more
generations to achieve the same tness increase but allows for
more realistic network structures (i.e., closer to commercial
brous electrodes employed in RFBs). The results of the opti-
mization with merging and splitting are shown in Section A5.†
We compare the performance of the GA-PNM with only muta-
tion, only merging and splitting, and a combination, showing
the impact of both mutation operators on the optimization of
the networks. Moreover, the GA-PNM was run without any
mutation operator (no mutation and no merging and splitting,
i.e., only crossover), which resulted in minimal structure opti-
mization, showing that a mutation operator is key for structure
optimization.

The results in Section A5.1† show that the mutation step
results in the main tness improvement by allowing the
formation of the electrolyte transport pathways in the ow
direction consisting of large pores (36–40 mm), connected by
large throats (29–32 mm, Fig. 3a), enhancing both the electrical
and pumping power. Merging and splitting alone, on the other
hand, results in a tness improvement (21%), but the pores do
not form well-dened transport pathways because of the
randomized locations of merging and splitting and due to the
absence of mutation. When combined, transport pathways13 are
formed (visualized in Fig. A4 in Section A3†), decreasing the
pumping power and increasing the electrical performance.
However, the total tness improvement is lower (31% vs. 42%)
nd TEMPO/TEMPO+ chemistries in both half-cells based on the data

TEMPO Unit

852 kg m−3

3.4 × 10−4 Pa s
1.3 × 10−9 m2 s−1

1.3 × 10−9 m2 s−1

100 mol m−3

100 mol m−3

1.0 M TBAPF6
1.99 S m−1

0.5 —
0.5 —
460 A m−2

1.5 cm s−1

1.25 V
0.5 V

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 The geometrical evolution of cubic networks with only a mutation operator, and a combination of a mutation and a merging and splitting
operator. The networks of the first and final (1000th) generations are shown, displaying the: (a) pore diameter evolution, (b) the throat absolute
velocity, (c) the reactant pore concentration, and (d) the absolute pore current. With the flow in the y-direction and the thickness in the z-
direction with the membrane facing to the top.
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compared to the case with only mutation. To this end, the effect
of the merging and splitting ratio is investigated in Section
A5.2† where we found that the ratio between merging and
splitting is an important parameter that can steer the electrode
optimization toward the formation of networks with more or
fewer pores than the starting network.

The network properties of the cases with mutation and
combined with merging and splitting are compared in Fig. 3. In
Fig. 3a the pore diameter evolution is visualized, presenting the
randomization of the merging and splitting operator and the
formation of the longitudinal transport pathways for both
cases.13 These transport paths consist of interconnected large
pores, which, by geometrical denition, have throats with
a large diameter connecting the pores. The large throats feature
a high absolute velocity (Fig. 3b) and are driving the transport of
the electrolyte through the electrode, decreasing the pressure
drop. Alongside the electrolyte transport pathways, isolated
large pores are present with a large surface area (eqn (1)) that
allow more redox reactions to take place, decreasing the
concentration locally (Fig. 3c) and resulting in a high current
output (Fig. 3d). The outlet concentration of the reactant in
Fig. 3c is high because of the small network sizes (∼500 mm). If
we run a network-in-series approach on the networks to simu-
late a larger electrode size (>10 cm2), the species outlet
concentration is much lower as discussed in our previous
© 2024 The Author(s). Published by the Royal Society of Chemistry
work.21 When comparing Fig. 3 for the two cases, the main
difference is in the randomization of the structures as the
overall optimization trends remain comparable, such as the
formation of transport pathways and higher reaction rates near
the membrane interface. To conclude from this comparison, we
nd that mutation is necessary to speed up the optimization of
the networks, whereas merging and splitting adds an additional
mode of randomization, allowing for more realistic networks to
be formed, but at the cost of a slower tness optimization.
3.2. Impact of the ow eld design

Besides the addition of merging and splitting to allow for more
realistic networks, we investigate the approach of starting the
optimization from morphologically distinct electrode struc-
tures. To this end, we study the commercial Freudenberg H23
carbon paper, extracted using X-ray computed tomography and
translated to a pore network. In our previous work, we have
shown that extracted pore networks represent the microstruc-
tural properties of the electrodes reasonably well.21 By opti-
mizing benchmark materials we aim to demonstrate that
optimization algorithms can enhance realistic electrode struc-
tures beyond carbon brous electrodes to provide new insights
on high-performing electrodes.

The initial network structure strongly impacts the structure
optimization in terms of the starting performance (tness value
Digital Discovery, 2024, 3, 1292–1307 | 1299
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and electrochemical and pumping power) and structure opti-
mization exibility (number of pores, pore locations, and
maximum pore diameter), especially when bound to xed
lattice positions. Therefore, we compare the networks without
merging and splitting to identify how distinct xed lattice
positions impact the electrode optimization. Furthermore, to
show the system dependency of the optimization framework
and thus the need to engineer electrodes depending on their
application requirements, we incorporated another ow eld
design into the framework, i.e., the interdigitated design. In our
previous works,30,40 as well as in other literature,41,42 the inter-
play between the electrode and ow eld was proven to be
imperative to the RFB performance. For example, Muñoz-
Perales et al. found that for Fe2+/Fe3+ single-electrolyte ow
cells in combination with an FTFF, woven bimodal electrodes
are favorable. Whereas when using IDFFs, unimodal paper
electrodes result in enhanced ow cell performance.41 Hence, in
this work, we elect to investigate the GA-PNM structure opti-
mization with the FTFF and IDFF in combination with cubic
and extracted networks. The optimized structures are shown in
Fig. 4 and the structure evolution and optimization values are
presented in Sections A6 and A7.†

For the FTFF, both the cubic and extracted networks show an
improvement in tness over the generations, starting from
different tness values, where the tness evolution is unique for
each optimization case with diminishing returns aer 100 and
400 generations, respectively. Moreover, both networks evolve
towards a bimodal structure with large interconnected pores in
addition to small pores (Fig. 4a and A21†). The bimodal struc-
tures consist of large connected pores in the ow direction,
linked by throats of a large diameter and a high absolute
velocity (Fig. 4b), responsible for the electrolyte transport and
thus the decrease in pumping power. The decrease in pumping
power is the most prominent for the extracted network (65%
compared to 54% for the cubic network) related to the higher
absolute pumping power required because of the less ordered
throats (in-plane) compared to the cubic network. Moreover, the
extracted network has the highest increase in electrical power
upon comparison with the same surface area denition (22% vs.
3.6% for the cubic network).

Furthermore, with the FTFF the extracted network shows
a higher species conversion in the smaller pore segments
(Fig. 4c) compared to the cubic network. Especially for electro-
lytes with sluggish kinetics but high ionic conductivity, the large
number of small pores in the extracted network is benecial. In
the electrochemical PNM used, the mass transfer coefficient is
a function of the diffusion coefficient and the pore radius and is
thus velocity-independent. Hence, smaller pores have a higher
mass transfer coefficient and thus a higher species conversion
per unit volume (Fig. 4c). Even though small pores have a lower
surface area, the extracted network has the same total surface
area compared to the cubic network (1.4 × 10−6 m2 vs. 1.5 ×

10−6 m2) because of the large number of small pores, resulting
in enhanced mass transfer in the extracted network. The high
number of small pores results in a signicantly higher limiting
current density, as seen in Fig. 4d. Moreover, as a result of the
structure optimization by the formation of a bimodal pore size
1300 | Digital Discovery, 2024, 3, 1292–1307
distribution with small (2–20 mm) and large pores (40–60 mm)
and large throats (20–40 mm), there is a strong reduction in the
activation (7% at ∼60 mA cm−2, due to the increase in internal
surface area of 31%), concentration (24% at ∼60 mA cm−2), and
ohmic overpotentials (41% at ∼60 mA cm−2). For the cubic
network, the increase in performance is caused by the reduction
in the activation and concentration overpotentials (at ∼20 mA
cm−2 a 4% reduction in activation overpotential and a 41%
reduction in concentration overpotential) as a result of the
increase in internal surface area (34%), yet the ohmic over-
potential is not signicantly reduced. The optimization of the
ohmic overpotential in the extracted network is expected to
come from an increased ionic ux towards the membrane due
to the formation of large throat segments (20–40 mm) with
higher electrolyte velocity in the through-plane direction
(Fig. 4b). The larger throats result in a greater penetration of the
reaction front into the electrode for reactions, corroborated by
the high hydraulic conductance of these larger throats through
the network in the last generation21 (Section A6†). Combined
with the high conductivity of the electrolyte, this provides the
optimized extracted network with the largest current output at
1 V. Thus, it is anticipated that due to a large number of pores
and their random orientation, the extracted network has
a greater optimization chance for both the electrical power and
pumping power compared to the cubic network with xed
lattice positions.

The tness, electrical, and pumping power evolutions with
the IDFF portray similar trends compared to those with the
FTFF, as well as the percentual increases over the generations.
When comparing the networks, the electrical power and surface
area of the networks are about 2x greater with the IDFF because
of the twice as wide network size. Moreover, noteworthy
dissimilarities can be observed in the absolute pumping power
required. For both the cubic and extracted networks, the
pumping power increases when utilizing IDFFs because of the
twice-as-wide electrode. The required pumping power for
a larger electrode (>10 cm2) however would result in a much
higher pressure drop for the FTFF because of the longer elec-
trolyte pathway through the electrode compared to that for the
IDFF. Where the cubic structure has a lower pumping power
compared to the extracted network combined with an FTFF (5.2
mW vs. 7.8 mW), the extracted structure shows a reduced
pumping power aer optimization with the interdigitated
design (9.0 mW vs. 6.0 mW). In our previous works, we observed
that the pressure drop through carbon paper electrodes is
strongly reduced when using an IDFF,30 whereas the pressure
drop was even increased through 3D-printed model grid elec-
trodes compared to FTFFs.40 The ndings in this work are in
line with our previous works as the optimized cubic structure
with in-plane high-velocity pathways is favorable with FTFFs,
whereas the (optimized) paper electrode results in a lower
pressure drop combined with IDFFs because of the combined
in-plane and through-plane uid ow over the rib.

Furthermore, because of the distinct ow distributions of
the ow elds, the GA-PNM optimizes the electrodes to signif-
icantly different structures (Fig. 4a). For both the cubic and
extracted networks, large pores connected by throats with
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 The geometrical evolution of cubic and extracted networks for the flow-through and interdigitated flow fields with a mutation operator
and the vanadium electrolyte. The networks of the last (1000th or 200th) generation are shown, displaying the: (a) pore diameter, (b) the throat
absolute velocity, (c) the reactant pore concentration, and (d) the polarization curve of the first and last generation. With the flow in the y-
direction and the thickness in the z-direction with the membrane facing to the top.

Paper Digital Discovery

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

5 
A

pr
il 

20
24

. D
ow

nl
oa

de
d 

on
 2

/1
4/

20
26

 1
1:

16
:4

2 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
a large diameter are formed in the ow direction (i.e., from the
inlet to the outlet channel over a rib). These electrolyte transport
pathways result in throats with a high velocity from the inlet to
the outlet (Fig. 4b), decreasing the pressure drop. In addition to
the electrolyte transport pathways, with the IDFF stagnant
zones are formed near the membrane under the inlet and outlet
channels with low electrolyte velocities (Fig. 4b) and high
species conversion (Fig. 4c).30 It must be noted that the species
conversion is higher for the IDFF compared to the FTFF because
of the electrode width and electrolyte pathway and because the
results are shown without the network-in-series approach for
the FTFF.21 Moreover, as shown in the polarization curves
(Fig. 4d), the ohmic overpotential is again reduced for the
extracted network as the ionic conductance in the ow direction
is improved for the optimized structure because of the forma-
tion of large throats (Section A6†), enhancing the ionic ux
towards the membrane. When comparing the polarization
curves in Fig. 4d, we nd that the cubic structure shows similar
performance in terms of the current output with both ow elds
(29 mA cm−2 at 1 V), whereas the extracted structure shows a 2.5
© 2024 The Author(s). Published by the Royal Society of Chemistry
times lower performance with the interdigitated design (∼58
mA cm−2 vs. ∼145 mA cm−2 at 1 V). The formation of the
stagnant zones under the inlet and outlet channels with high
species conversion, for both the initial and nal networks, is
anticipated to cause increased activation overpotential with the
IDFF compared to the FTFF. These regions occupy a signicant
part of the internal surface area but feature a low electrolyte
velocity (Fig. 4b) which could lead to inferior electrolyte
replenishment.

In conclusion, when comparing the electrode optimization
for FTFFs and IDFFs, similar trends can be observed. The
optimization with both ow elds results in structures with
a bimodal pore size distribution with large pores connected by
throats with a large diameter, responsible for the electrolyte
transport and causing a reduction in the pumping require-
ments of 55–77% for all investigated systems. Moreover, the
electrical power is improved by 22–39% caused by an increase in
the internal surface area and improved ionic conductance. In
practice, utilizing IDFFs is expected to reduce the pressure drop
through larger electrodes (>10 cm2), especially for structures
Digital Discovery, 2024, 3, 1292–1307 | 1301
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with small pores. On the other hand, the current output
depends on the electrode length, as for FTFFs the species outlet
concentration is strongly correlated to the electrode length,
which is not the case for the IDFF. Therefore, when translating
the optimization results to larger electrode sizes, it must be kept
in mind that the tradeoff between the pumping power and
electrochemical power will shi, as especially the pumping
power will have a larger contribution when using an FTFF. We
nd that, when optimizing for only the pumping power (Section
A4.4†), the optimization results in similar structures and we
thus expect this electrode design also to be favorable for RFBs
with larger electrode sizes. Finally, the distinct ow elds
introduce unique electrolyte ow proles through the electrode
with an in-plane ow in the length direction for the FTFF and
combined in- and through-plane ow in the width and thick-
ness direction for the IDFF. Thus, the coupling of electrode
design with specic ow eld architectures is crucial and
should be considered in future RFB electrode design.
3.3. Chemistry-dependent optimization

The electrolyte chemistry dictates the electrochemical perfor-
mance by, among others, the kinetic rate constant and ionic
conductivity. The vanadium VO2+/VO2

+ electrolyte features
sluggish kinetics, with a low exchange current density of 0.39 A
m−2, and a high ionic conductivity of 28 S m−1.13 Therefore, the
GA prioritizes the electrode structure optimization for a high
internal surface area for the vanadium electrolyte to decrease
the activation overpotential over the enhancement of the
through-plane ionic conductance to decrease the ohmic over-
potential, especially for the cubic structure. Thus, we expect that
the electrolyte chemistry can considerably inuence the struc-
ture optimization and we therefore investigate the optimization
of the non-aqueous TEMPO/TEMPO+ electrolyte21 with facile
kinetics (exchange current density of 460 A m−2) and a low ionic
conductivity (2.0 S m−1). The impact of the electrolyte on the
structure evolution was assessed for both networks and ow
elds in Fig. 5. The structure evolution and values can be found
in Section A8.†

For both ow elds, the tness of the networks with the
TEMPO electrolyte is close to the theoretical maximum (x /

0.603) as both the pumping power and electrical power are
improved. The pumping power is lower than for the vanadium
electrolyte because of the lower electrolyte viscosity (3.4 × 10−4

vs. 8.9 × 10−4 Pa s), yet the same percentual decrease in
pumping power is obtained for both electrolytes (52–55% for
the cubic structures with both ow elds and 65–66% with the
FTFF, and 77% with the IDFF for the extracted networks). The
electrical power is enhanced with the TEMPO electrolyte at 0.5 V
applied potential (for the FTFF: 100 mA cm−2 vs. 5 mA cm−2 for
the cubic network and 35 mA cm−2 vs. 23 mA cm−2 for the
extracted network) because of the negligible activation over-
potential due to the facile kinetics (Fig. 5d). For the FTFF to this
end, the percentual increase in the internal surface area is lower
for the TEMPO electrolyte (18% vs. 34% for the cubic and 25%
vs. 31% for the extracted network), which translates to a lower
percentual increase in the electrical power for the cubic (7.5%
1302 | Digital Discovery, 2024, 3, 1292–1307
vs. 30%) and extracted networks (11 vs. 22%). Furthermore,
facile kinetics give rise to a higher species conversion for the
cubic networks as can be seen in the concentration proles in
Fig. 5c.

When evaluating the performance at 1 V applied potential in
Fig. 4d and 5d for both ow elds, it is found that the cubic
network has a considerably higher current output with the
TEMPO electrolyte (140 mA cm−2) compared to the vanadium
electrolyte (29 mA cm−2) because of the strong decrease in
activation overpotential. Whereas the extracted network has
a lower performance with the TEMPO electrolyte at 1 V (70 mA
cm−2 vs. 145 mA cm−2 for the vanadium electrolyte with the
FTFF, and 36 mA cm−2 vs. 58 mA cm−2 with the IDFF) due to an
increased ohmic overpotential. These results support our claim
on the importance of the operating conditions, reactor design,
and electrolyte chemistry on the electrode selection and opti-
mization, as the cubic network that performed signicantly
worse with the vanadium chemistry, outperforms the extracted
network with the TEMPO chemistry. Even though the internal
surface area is 1.6 x lower for the cubic network, the activation
(0.04 V vs. 0.009 V at ∼70 mA cm−2 with the FTFF) and
concentration overpotentials (0.04 vs. 0.006 V at ∼70 mA cm−2

with the FTFF) are larger, while the membrane resistance and
ionic conductivity are the same for both networks, and thus the
ohmic overpotential is notably higher for the extracted network
at a xed current density (0.09 V vs. 0.85 V at ∼70 mA cm−2 with
the FTFF, not considering the membrane overpotential which is
0.13 V for both networks). The stark difference can be explained
by the hydraulic transport through the networks. As the ionic
conductivity is low for the TEMPO electrolyte, the hydraulic
conductance of the networks becomes imperative to the
electrode performance as it dictates the penetration of the
reaction front from the membrane towards the current collector
and is thus optimized for during the structure evolution
(Fig. 5b). Due to the cubic structure with large pores and throats
in the ow direction, but additionally in the through-plane
direction causing a low resistance to ow, the ionic ux
towards the membrane is high compared to the extracted
network. The random orientation of the throats in the extracted
network in combination with their small diameter, results in
a low hydraulic conductance in the through-plane direction,
and thus a high ohmic overpotential, resulting in lower species
conversion compared to the cubic network (Fig. 5c, species
conversion takes place predominantly near themembrane). The
GA-PNM optimizes for the ionic conductance towards the
membrane over the generations for both networks as is shown
in Fig. A5b and A30,† resulting in a decrease in the ohmic
overpotential of 13% (evaluated at ∼55 mA cm−2 for the
extracted network and at ∼120 mA cm−2 for the cubic network,
both with the FTFF). To this end the internal surface area near
the membrane is increased in the cubic network to form throats
with a large diameter, increasing the ionic conductance near
the membrane to counterbalance the low ionic conductivity of
the TEMPO electrolyte.

The 3x greater current output obtained with the cubic
network compared to the extracted electrode at 0.5 V for the
TEMPO electrolyte (even with surface area denition 1 for the
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 The geometrical evolution for the TEMPO-electrolyte for cubic and extracted networks and the flow-through and interdigitated flow
fields with a mutation operator. The networks of the last (1000th) generation are shown, displaying the: (a) pore diameter, (b) the throat hydraulic
conductance, (c) the reactant pore concentration, and (d) the polarization curve of the first and last generation. With the flow in the y-direction
and the thickness in the z-direction with the membrane facing to the top.
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cubic network which is an underestimation compared to de-
nition 2) is substantial and should guide researchers for the
design of next-generation electrodes for organic electrolytes
where the ionic conductivity is generally the performance-
limiting factor. However, a note must be made that the elec-
trode dimensions and uid ow rate most likely impact these
results. Finally, we observed that with the TEMPO electrolyte,
the trends for the IDFF between the extracted and cubic
networks are similar compared to the vanadium electrolyte,
suggesting that the inuence of the ow eld is not very
different for the two investigated electrolytes at the evaluated
electrode dimensions.

To conclude the chemistry-dependent optimization, we
propose certain manufacturing guidelines for the fabrication
of next-generation electrodes, specic to a given redox pair
and electrolyte chemistry. For electrolytes with sluggish
kinetics, electrodes with a high surface area are advantageous
to decrease the activation overpotential. Where, especially for
electrolytes with sluggish kinetics and high ionic conductivity,
electrodes with numerous small pores and throats are
© 2024 The Author(s). Published by the Royal Society of Chemistry
benecial, yet such structures result in a high pressure drop.
Therefore, if this electrode structure would be combined with
some in-plane electrolyte transport pathways along the ow
direction, this would result in the best performance trade-off.
Whereas for electrolytes with low ionic conductivity, elec-
trodes with large throats in the through-plane direction (low
through-plane tortuosity) result in increased performance.
Especially for electrolytes with fast kinetics and low ionic
conductivity, electrodes with large in- and through-plane
electrolyte transport pathways result in increased current
output and decreased pressure drop. However, the internal
surface area of the electrodes should not be too low to be able
to sustain a low activation overpotential.40 Furthermore, the
presented guidelines for electrode design should go together
with the selection of a suitable fabrication method and
approach to translate the pore network to a solid structure as
is oen required for manufacturing purposes. While 3D
printing is promising for optimized structures for electrolytes
with low ionic conductivity and/or facile kinetics due to the
high geometrical order that can be achieved, fabrication
Digital Discovery, 2024, 3, 1292–1307 | 1303
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methods such as electrospinning or non-solvent induced
phase separation might be more benecial for kinetically-
sluggish electrolytes as greater internal surface areas can be
realized. Conventional manufacturing techniques to fabricate
brous electrodes (e.g., paper-making, hydroentangling,
weaving), which are commercially used, do not offer the
design space required to manufacture the geometrically
controlled microstructures obtained in this work. Nonethe-
less, not only could these electrodes be manufactured with the
optimized design by techniques such as 3D printing (by for
example printing the solid part of the optimized pore
networks13), but the learnings from the optimization (e.g.,
bimodal electrodes with electrolyte transport pathways in the
in- and through-plane directions) could also guide conven-
tional electrode manufacturing towards enhanced electrodes
for specic reactor architectures and operating conditions.
Moreover, this work shows that the current GA-PNM frame-
work can only optimize the performance of the electrodes to
a certain degree. Consequently, with the current optimization
approach, the selection of the starting network for the opti-
mization is crucial. To diminish the importance of the starting
network, mutation operators such as merging and splitting, or
pore migration to induce freedom in the location of pores,
should go together with the ability to change the number of
pores, which could be investigated in depth in future work.

This work is a rst step for the bottom-up optimization of
electrode structures for ow electrochemical devices. By
extending the presented tool, electrode optimization can be
further improved and coupled to electrode manufacturing
techniques. Possible extensions could include the incorpora-
tion of manufacturing constraints depending on the
manufacturing technique of choice (e.g., mechanical stability,
shrinkage upon carbonization, converting to the solid struc-
ture), redening the tness function, adding more mutation
parameters such as pore migration and changing the number of
pores, and incorporating various pore and throat geometries
(beyond spheres and cylinders) or rened geometrical deni-
tions (e.g., a better representation of the internal surface area).
Other extensions could include reconsidering the network
scaling step (as constraining the porosity limits the internal
surface area enhancement), the optimization of larger electrode
sizes, and optimizing the electrode and ow eld designs in
tandem. Finally, the translation to other electrochemical tech-
nologies, the coupling of the framework to computational uid
dynamic models (for higher detailed optimization or the
simulation of advanced ow eld geometries), and the full
parallelization of the algorithm could be investigated. In
conclusion, the optimization freedom in a genetic algorithm
with many variables and constraints has both advantages and
disadvantages. If the constraints are well understood and the
variables are selected with care (e.g., appropriate geometrical
denitions), this method can be very powerful for the optimi-
zation of electrode structures from the bottom-up. If appro-
priate optimization conditions cannot be found, this approach
can become inefficient where optimal solutions might not be
obtained.43
1304 | Digital Discovery, 2024, 3, 1292–1307
4. Conclusions

In this work, we present a bottom-up tool for electrode opti-
mization for tailored reactor architectures and operating
conditions using the coupling of a genetic algorithm with a pore
network model. The bottom-up approach was validated in our
previous work and here we expanded the framework by adding
pore merging and splitting functions, the ability to start the
optimization from pore networks with a diverse morphology –

including the optimization of benchmark materials – and the
incorporation of the interdigitated ow eld design. In addi-
tion, we elaborate on the possible choices in the optimization
denitions including the selection of the objective function,
geometrical denitions, network dimensions, and mutation
and merging and splitting parameters. The genetic algorithm
provides numerous optimization variables and constraints that
must be well-understood and selected with care for successful
optimization.

We found that mutation is the key operation driving the
optimization, whereas pore merging and splitting can act as
an additional mutation operation by inducing randomization
and optimization beyond xed pore coordinates. Moreover,
the inuence of system parameters, including the choice of
electrolyte and ow eld design, on the electrode optimization
and performance is shown. For all analyzed systems, the
genetic algorithm enhances the tness by a strong reduction
in pumping power of ∼51–77% and an improvement in elec-
trical power of ∼8–39% by the formation of longitudinal ow
pathways in the ow direction of large pores and throats with
high hydraulic conductance, connected to regions with higher
species conversion. We found that for the vanadium electro-
lyte, real electrodes extracted from X-ray tomographic images
as starting structures speed up the electrode optimization,
opening a path for the optimization of commercially available
electrodes. Moreover, the structure evolution is strongly
impacted by the ow eld design because of the induced uid
path through the electrode. Furthermore, the electrode opti-
mization was analyzed for two redox chemistries (VO2+/VO2

+

and TEMPO/TEMPO+) for which substantial differences were
observed in the current output with the cubic and extracted
networks. For the vanadium chemistry with sluggish kinetics
and high ionic conductivity, the extracted network results in
the highest current output due to the presence of small pores
with high mass transfer rates per unit volume, increasing the
species conversion and thus the resulting current output. For
the TEMPO electrolyte with fast kinetics and low ionic
conductivity, electrodes with large in- and through-plane
electrolyte transport pathways with low through-plane tortu-
osity have a higher current output because of the enhanced
ionic conductance. Accordingly, we recommend that next-
generation electrodes are optimized and manufactured
tailored to the required reactor architectures and operating
conditions.

In this study, we show the successful application of the genetic
algorithm and that the obtained results can have a signicant
impact on the design of electrode structures for redox ow
© 2024 The Author(s). Published by the Royal Society of Chemistry
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batteries. Hence, the developed tool can guide the design of next-
generation electrodes for a broad range of operating conditions,
electrolyte chemistries, reactor designs, and electrochemical
technologies. Nevertheless, we encourage researchers to further
extend the optimization framework by for example coupling the
algorithm to suitable manufacturing techniques to further
increase the impact and potential of this framework.
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Flow-through ow eld
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 Genetic algorithm

IDFF
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Sp
 Pore seed

ST
 Throat cross-sectional area, m2
u
 Electrolyte velocity, m s−1
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 Charge transfer coefficient

hp
 Pumping energy efficiency

m
 Viscosity, Pa s

x
 Fitness

r
 Density, kg m−3
s
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sM
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Superscripts
M
 Mutated

o
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Subscripts
1
 Generation 1

1,2
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a
 Anodic
r(s). Published by the Royal Society of Chemistry
c
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 Open circuit cell

el
 Electrochemical

in
 Inlet

losses
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max
 Thermodynamic maximum, maximum

n
 Last generation

p
 Pore

pump
 Pumping

T
 Throat
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