Open Access Article. Published on 02 January 2024. Downloaded on 2/3/2026 3:50:53 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital
Discovery

#® ROYAL SOCIETY
PPN OF CHEMISTRY

View Article Online

View Journal | View Issue,

i ") Check for updates ‘

Cite this: Digital Discovery, 2024, 3,
392

A fast and scalable computational topology
framework for the Euler characteristic

Daniel J. Laky © and Victor M. Zavala*

The Euler characteristic (EC) is a powerful topological descriptor that can be used to quantify the shape of
data objects that are represented as fields/manifolds. Fast methods for computing the EC are required to

enable processing of high-throughput data and real-time implementations. This represents a challenge
when processing high-resolution 2D field data (e.g., images) and 3D field data (e.g., video, hyperspectral
images, and space-time data obtained from fluid dynamics and molecular simulations). In this work, we
present parallel algorithms (and software implementations) to enable fast computations of the EC for 2D

and 3D fields using vertex contributions. We test the proposed algorithms using synthetic data objects

and data objects arising in real applications such as microscopy, 3D molecular dynamics simulations, and

hyperspectral images. Results show that the proposed implementation can compute the EC a couple of
orders of magnitude faster than GUDHI (an off-the-shelf and state-of-the art tool) and at speeds
comparable to CHUNKYEuler (a tool tailored to scalable computation of the EC). The vertex

contributions approach is flexible in that it can compute the EC as well as other topological descriptors

Received 17th November 2023
Accepted 28th December 2023

such as perimeter, area, and volume (CHUNKYEuler can only compute the EC). Scalability with respect to

memory use is also addressed by providing low-memory versions of the algorithms; this enables

DOI: 10.1039/d3dd00226h

rsc.li/digitaldiscovery

1 Introduction

Data objects that appear in the form of fields (e.g., images,
video, space-time data) are common in science and engi-
neering. These data objects can be processed using powerful
algorithms such as convolution operations, Fourier transforms,
and singular value decomposition to extract information and to
enable reduction and visualization. Convolutional neural
networks (CNNs), in particular, are a highly flexible tool that can
be used to extract diverse types of feature information from field
data. However, CNNs have significant scalability limitations
(e.g., require repetitive convolutions to learn adequate opera-
tors) and might require large amounts of data to be trained.
Moreover, attributing meaning to features extracted from CNNs
is not straight-forward."

Topological data analysis (TDA) has recently emerged as
a powerful framework to quantify the shape of field data." A
simple topological descriptor known as the Euler Characteristic
(EC), in particular, has gained significant attention in diverse
applications.* The EC is a descriptor that captures basic topo-
logical features of binary fields (e.g., connected components,
voids, holes) and can be extended to continuous fields by using

Department of Chemical and Biological Engineering, University of Wisconsin—
Madison, 1415 Engineering Dr, Madison, WI 53706, USA. E-mail: victor.zavala@
wisc.edu

392 | Digital Discovery, 2024, 3, 392-409

processing of data objects beyond the size of dynamic memory. All data and software needed for
reproducing the results are shared as open-source code.

filtration/percolation procedures (i.e., the EC is computed at
different filtration values). The EC has also been used for
analyzing data in neuroscience,”® medical imaging,”®
cosmology,”'® and plant biology." The EC has also been recently
used as a descriptor/feature to train simple machine learning
models (e.g., linear regression) that have comparable prediction
accuracy to those of CNNs but that are significantly less
computationally expensive to build."***

Enabling fast computations of topological descriptors is
necessary to handle field data at high resolutions, high-
throughput data, and to enable real-time applications (e.g.,
control). Methods for fast processing of small-scale images was
proposed by Snidaro and Foresti;** specifically, they proposed to
compute only the change in the EC over the filtration values.
This idea was further explored in ref. 14-17. Heiss and Wagner
presented an algorithm that computes the EC for 3D fields that
are too large to fit into memory and provide a software imple-
mentation called CHUNKYEuler.™ A parallel implementation of
this method using GPUs has also been recently developed.*

In this work, we provide parallel implementations of the
vertex contributions methods of Snidaro and Foresti.’* We
highlight that a major contribution of this work is the general-
ization of this method to 3D fields (including handling of non-
binary fields and parallel implementation); these capabilities
allow us to process a broad range of data sets arising in appli-
cations. The vertex contributions method is scalable and flexible

© 2024 The Author(s). Published by the Royal Society of Chemistry

http://crossmark.crossref.org/dialog/?doi=10.1039/d3dd00226h&domain=pdf&date_stamp=2024-02-09
http://orcid.org/0000-0002-3917-8039
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3dd00226h
https://pubs.rsc.org/en/journals/journal/DD
https://pubs.rsc.org/en/journals/journal/DD?issueid=DD003002

Open Access Article. Published on 02 January 2024. Downloaded on 2/3/2026 3:50:53 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

Lo

[

Paper

in that contributions can be used to compute the EC and other
relevant topological descriptors such as perimeter, area, and
volume (the approach implemented in CHUNKYEuler can only
compute the EC). We provide background information on the
computation of the EC with an in-depth look at 2D/3D field data
and level set filtration and outline the vertex contribution
method. We highlight aspects that make the proposed method
highly parallelizable and describe our software implementation.
In addition, we benchmark our implementations against state-
of-the-art computational topology tools using synthetic data
sets and data sets arising in real applications. Specifically, we
analyze synthetic random fields that are systematically generated
to obtain field data at different resolutions and we study data sets
arising in real applications such as microscopy, molecular
simulations, and hyperspectral images. Our results demonstrate
that our implementation can compute the EC a couple of orders
of magnitude faster than the off-the-shelf computational
topology tool GUDHI.*® We also compare times of the proposed
methods to those implemented in the CHUNKYEuler software**
and their GPU implementation."

2 Methodology

The EC of a data object is computed by counting the contribu-
tion of each fundamental component to the overall topology of

. B .

0-simplex
(vertex)

1-simplex
(edge)

Fig. 1 Cubical simplexes relevant to 2D and 3D field processing.

View Article Online

Digital Discovery

the object. These fundamental components, which we will refer
to as simplexes, are the building blocks that contribute to the
topology of the object. The simplexes that are important to this
work, and more broadly 2D/3D field analysis, include 0-
dimensional through 3-dimensional cubical simplexes (Fig. 1).
In this work we will refer to a 0-dimensional cubical simplex as
a vertex, 1-dimensional as an edge, 2-dimensional as a face or
pixel, and 3-dimensional as a cell or voxel. A 2D field data object
is a collection of face/pixel data (e.g., images) that contains
intensity information to describe data at a particular position
within the object. By representing each pixel as a face, an image
object may be represented as a collection of cubical simplexes
(Fig. 2).

The EC can be defined as the alternating sum of cubical
simplexes; for 3D fields, this is:

x=V—-E+F-C. (1)

here, V is the number of vertices, E is the number of edges, F is
the number of faces/pixels, C is the number of cells or voxels,
and x represents the EC value.

To generate the EC for a field (a continuous object), one must
first transform the original field into a binary field by applying
a filtration at a desired face/pixel intensity level. A filtration/
percolation is a function that is used to define which

2-simplex
(face)

3-simplex
(cell)

Fig. 2 Liquid crystal micrograph (image) represented as a cubical simplicial complex; this is done by assigning pixel values to faces which are
connected by lower dimensional cubical simplexes (i.e., edges and vertices).

© 2024 The Author(s). Published by the Royal Society of Chemistry

Digital Discovery, 2024, 3, 392-409 | 393

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3dd00226h

Open Access Article. Published on 02 January 2024. Downloaded on 2/3/2026 3:50:53 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital Discovery

components (e.g., pixels in the case of a 2D image) should be
included and which should not. The filtration function used
throughout this work is a sublevel filtration:

g:(f) = {(XW, xh)m-xw’ xh) = C‘}. (2‘)

here, c is the filtration level, faces are defined at position (xy, xp)
with intensity f, and set g contains faces that are less than or
equal to ¢ only. Importantly, when a face is included, all edges
and vertices relevant to that face are also included in the set. An
example of filtration for multiple values of ¢ over a small image
is shown in Fig. 3.

The EC at each filtration value in Fig. 3 can be verified by
counting the number of components included and utilizing (1).
A generalization of the EC, called the EC curve, encodes infor-
mation for the entire field by applying g, for values of ¢ that
cover the entire range of face intensities for a given field. A small
example of an EC curve is shown in Fig. 4 for a 2D field.

A fundamental aspect to consider in EC computations is
connectivity. There are a couple of types of adjacency in a 2D
field: (i) vertex adjacency and (ii) edge adjacency. Vertex adja-
cency defines that a face that shares a vertex with another face is
adjacent. This is often referred to as 8-connectedness (or 8-C) as
all 8 of the faces that surround an arbitrary central face are
considered connected to the central face, as seen in Fig. 5. Edge

Original Image =
EC=4-4+1=1

c=0 c=1 c=2

EC=7-8+2=1

View Article Online

Paper

adjacency is more strict, as a face is adjacent to another face
only if an edge is shared. This is often referred to as 4-
connectedness (or 4-C) as there are only 4 edge-connected faces
from an arbitrary central face (also shown in Fig. 5). In the above
example, where the EC was computed for Fig. 3, 8-C was
assumed. Throughout this work, we will be using vertex adja-
cency for all dimensions: 8-C for 2D field analysis and 26-C for
3D field analysis.

A naive approach for computing the EC curve would be to
count the vertices, edges, and faces at each filtration level. This
would require iterations over every vertex, edge, and face at each
level, resulting in poor computational scalability: O(whn,)
where w and # are the width and height of the field, respectively,
and n, is the number of filtration levels. Another method would
be to consider the vertices, edges, and faces from the previous
filtration level and only add the new ones to the current filtra-
tion; unfortunately, adding a new face does not necessarily add
all vertices and edges associated with the face as new compo-
nents to the level set. This is because the EC follows the
inclusion-exclusion principle:

x(4 U B) = x(4) + x(B) — x(4 N B). (3)

As such, the unique components added to set A by adding set
B, or a new face, would be those in B minus the intersection: A N

= c=3
EC=8-10+3=1 EC=9-12+4=1

Fig. 3 Example 2D field undergoing the process of filtration over the full range of its pixel intensity values.

9. (f) 21

EC

2 4 6 8
filtration value (c)

Fig. 4 EC curve for a 2D field. Note that, in this example, we see the emergence of a hole in the simplicial complex at a filtration level of c = 6.

394 | Digital Discovery, 2024, 3, 392-409

© 2024 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3dd00226h

Open Access Article. Published on 02 January 2024. Downloaded on 2/3/2026 3:50:53 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

Fig. 5 Types of connectivity; on the left is vertex-adjacency (or 8-C)
and, on the right, is edge-adjacency (or 4-C).

l:l:' I

Fig. 6 Adding a single face to the bottom right of a 3 x 3 field
complex requires the subtraction of two edges and 3 vertices which
are double counted.

I e |

_____ .,

Fig. 7 Examining a face-sized neighborhood about each vertex in a 2
x 2 binary image.

B. An illustration of this concept is included in Fig. 6 where
edges and vertices will be double-counted if we do not subtract
the intersection of the new face and the existing set.

One can avoid the aforementioned problem by tracking
vertices and edges which are included in the set. This provides
a means to check new vertices and edges against the existing set

View Article Online

Digital Discovery

and only add novel components. However, this comes at large
memory cost, as these additional edge and vertex arrays would
require storage of a binary or integer value for each entry,
exceeding the element size of the original face data array from
the field data itself. A solution to both of these problems is to
use vertex neighborhoods to determine impact on EC." Vertices
can be used to compute EC contribution by considering a face-
sized neighborhood centered on a vertex. A quarter of each face
that share the vertex contribute to make up this neighborhood.
Subsequently, one-half of each edge that shares the vertex are
also included in this vertex-centered neighborhood. An illus-
tration of this concept is shown in Fig. 7.

There are 16 positionally-different types of vertex contribu-
tions of which 6 are unique subject to symmetry, as shown in
Table 1. From these representations we can compute the EC
contribution and we can compute the contribution to the
perimeter and area of the filtered field. One advantage to this
method over strictly keeping track of the EC contribution is that
the perimeter cannot be computed from the edges in the set, it
can only be computed from exterior edges, which would require
the tracking of additional information. The contribution of
these 6 types of vertex contributions is given for EC (both 4-C
and 8-C), area, and perimeter in Table 1.

Because there is no intersection between the contributions
of each vertex, the EC can be computed by the strict addition of
contributions from each vertex. In other words, (eqn (3)) loses
the x(A N B) term because it is zero. By providing a collar of
values about the edge of the field, or by determining if a given
vertex is a corner, edge, or central vertex, the EC of that field may
be computed by iterating over all vertices for each value of the
level set. Although this is clearly an improvement over checking
each vertex, edge, and face, this method still is computationally
expensive in large-scale fields as the order of computation
remains at O(whn,). However, by tracking only the change in
contribution types (i.e., the 6 unique vertex contribution types)
for a given level set, time complexity can be reduced from
O(whn,) to O(wh + n;), as shown in Snidaro and Foresti."

The method implemented in CHUNKYEuler yields the same
reduction in time complexity by analyzing change in EC

Table1 The 2D vertex contributions to the overall EC for both 4-C and 8-C cases. Area and perimeter contributions (equivalent in both 4-C and

8-C cases) are given as well

Type V (8-C) E (8-C) F (8-C) EC (8-C) V (4-C) E (4-C) F (4-C) EC (4-C) Perimeter Area
EH 0 0 0 0 0 0 0 0 0 0
E 1 2 x (0.5) 1 x (0.25) 0.25 1 2 x (0.5) 1 x (0.25) 0.25 1 0.25
E 1 3 x (0.5) 2 x (0.25) 0 1 3 % (0.5) 2 x (0.25) 0 1 0.5
E 1 4 % (0.5) 2 x (0.25) —0.5 2 4 % (0.5) 2 x (0.25) 0.5 2 0.5
n 1 4 % (0.5) 3 x (0.25) —0.25 1 4 % (0.5) 3 x (0.25) —0.25 1 0.75
. 1 4 % (0.5) 4 x (0.25) 0 1 4 % (0.5) 4 % (0.25) 0 0 1

© 2024 The Author(s). Published by the Royal Society of Chemistry

Digital Discovery, 2024, 3, 392-409 | 395

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3dd00226h

Open Access Article. Published on 02 January 2024. Downloaded on 2/3/2026 3:50:53 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital Discovery

through changes in which top-dimensional cells are active;
however, only the changes in EC are tracked. Modifications
would need to be made to CHUNKYEuler to consider other
topological descriptors proposing new challenges when
considering indirect metrics such as perimeter. GUDHI
computes the so-called persistence homology of a cubical
complex over filtration values using the compressed annotation
matrix method® and currently cannot benefit from the reduc-
tion in time complexity by looking at changes instead of eval-
uating each filtration level. The limitations of GUDHI (in terms
of computational speed) and CHUNKYEuler (in terms of ability

View Article Online

Paper

to compute diverse descriptors) are overcome by vertex contri-
bution algorithms.

With our implementation of the vertex contribution method,
an array that includes two entries for each contribution type at
each level set value is initialized at zero. Then, for each vertex
neighborhood, the integer values of the pixels are used as the
index to be incremented. As an example, in Fig. 8 we show the
central face neighborhood of Fig. 3; the first face becomes active
at a value of 0. Subsequently, the vertex contribution with one
active face is incremented as born at index 0. Since the second
face becomes active at a value of 1, the one-face vertex

Algorithm 1 Bitmap contribution (2D, serial)

1: Field < read(raw data file)
: w < field width
: h < field height
: M < largest filtration value

: foralli < h+1do
forallj < w+1do
data«~ [M +1,M+1,M + 1, M + 1]
ifi > 0Aj > 0then

10: data[0] < Field(i — 1,j — 1)

11: elseif i > 0 A j < w then

12: data[l] + Field(i — 1, j)

13: end if

14: ifi <hAj>0then

15: data[2] < Field(i,j — 1)

16: elseif i < h A j < w then

17: data[3] < Field(z, j)

18: end if

19: pos < argsort(data)

20: adjacency < distance(pos|0], pos[1])
21: q1,in[data0]]++, g1 out[data[1]]++
22: if adjacency == 1 then

23: ¢2in[data[l]]++, g2 out[data[2]]++
24: else

25: qain[data[l]]++, g4, out[data[2]]++
26: end if

27 g3in[data[2]]++, g3 out[data[3]]++
28: qa,in[data[3]]++

29: end for

30: end for

2
3
4
5 Qk,in, Gk,out < Zeros of length M+2 Vk € {0, 1, ...
6
7
8
9

79}

396 | Digital Discovery, 2024, 3, 392-409

© 2024 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3dd00226h

Open Access Article. Published on 02 January 2024. Downloaded on 2/3/2026 3:50:53 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

H

birth—0
death-1

xapul

birth — 1
death -2

o

m "=

birth -2
death -3

N

birth -3
no death

H
© O O O uyug

w

S O O uyesp

@)

View Article Online

Digital Discovery

)
mal
"
[
[

S O O = yug
S O = O Ywedp
© O O O uyug
S O O O yesp
S O = O yug
O = O O yedp
S = O O yuq
—_ O O O yesp
= O O O yug
O O O O Wesp

Fig. 8 Visualization of the contribution of a single vertex neighborhood over its face values.

contribution is incremented as dying at index 1, and the two-
face diagonal vertex contribution is incremented as being
born. This process continues for each face value until the
maximum value is reached. At this point, the neighborhood will
be filled under the assumption that the maximum value for
filtration exceeds the maximum intensity of faces in the field.
The only additional step is determining if the first two face
values are in a diagonal position or not as the two types of 2-face
neighborhoods have different contributions to the topological
descriptors. In the example in Fig. 8, it can be seen that there
will be a diagonal vertex neighborhood as the first two active
faces are diagonally adjacent. Importantly, the output of this
method is not just the EC curve, but rather an array of the
quantity of vertex contributions of each type that are present at
each level set. This means that one can compute EC, perimeter,
area, and any other descriptors/metrics that can utilize these
vertex contributions as input for each filtration value. The
process of gathering vertex contributions of a 2D field consid-
ering filtration values using this method is summarized in
Algorithm 1. In the following sections, we propose algorithms
for computing vertex contributions and extend the method to
3D fields.

2.1 Parallel implementation

Parallel implementation follows the same pattern as the serial
implementation but requires: either (i) a vertex contribution
array for each thread, or (ii) a lock-based structure for a global
vertex contribution array. The length of the 2D vertex contri-
bution array would be one more than the number of levels, and
the width would be 10. Although there are 6 vertex contribution
types which would result in an array width of 12, the empty type
contributes nothing to perimeter, area, and EC (see Table 1); in
addition, the number of empty contributions at a given level can
be back-calculated using the total number of vertices. In addi-
tion, when considering lock-based methods, at the entry value,
every vertex will increment the empty contribution at the initial
filtration level, causing a pile-up that could exceed serial
computation time. A standard 8-bit image with pixel values
ranging from 0-255 would require 2570 entries in a vertex
contribution matrix, requiring 10 280 bytes of storage per array
instance using 32-bit integers. In most CPU systems, holding
these arrays in memory is not expensive and can be done easily
for most modern systems, even with one storage array per core
for highly distributed systems. The size of the image in memory

© 2024 The Author(s). Published by the Royal Society of Chemistry

will greatly exceed that of vertex contributions in most cases.
For perspective, if we consider a standard high-definition (HD)
image size of 1280 x 720, the storage for only one color channel
using arrays of unsigned 8-bit integers would require 921 600
bytes of memory, which exceeds the size of approximately 90
vertex contribution arrays. If a vertex contribution array can be
afforded for each thread, Algorithm 2 can and should be used.
The lock-based method for these algorithms will not be
described in detail in this work, however in highly distributed
systems, such as GPUs, a global contribution array with locks
should be used where local or register memory does not exceed
the size of a thread vertex contribution array plus dynamic
memory required to compute vertex contributions. Instead of
increasing the global array values directly, the algorithm would
use a locking system for each increment operation to pre-
vent a data race. A light-weight locking mechanism would be
best for these purposes, such as a spin-lock, which would
reduce overhead of waking up a thread as in a mutex-based
locking system.

2.2 3D field processing

For processing 3D fields we need to define vertex contributions
in 3D. To the best of our knowledge, there are no extensions of
the contribution methods of Snidaro and Foresti to 3D fields
reported in the literature. Following the definition in ref. 21,
there are 22 unique types of vertex contribution subject to
symmetry in 3D, binary fields. All 22 unique contributors are
described in Table 2. Similarly, the empty type contributes
nothing to EC, perimeter, area, or volume, so is only back-
calculated in post if desired. This means that with 21 unique
contribution types without the empty type, there are a total of 42
array entries per level. Therefore with an 8-bit 3D data file,
a storage size of 43 176 bytes per vertex contribution array would
be required. Again, the size is not overwhelmingly large and
therefore a 3D extension of Algorithm 2 is sufficient. It should
be noted that many 3D fields, especially those from computer
tomography (CT) scans, can use much higher resolution (e.g.,
14-bit or 16-bit integers). The size of a 512 x 512 X 512 scan
with 16-bit data requires almost 24 times the memory of the
vertex contribution array.

A major difference between the 2D and 3D case is that
diagonal adjacency of cells in the vertex neighborhood must be
determined to differentiate between contributor types in the 3D
case whereas only one adjacency needs to be calculated for the

Digital Discovery, 2024, 3, 392-409 | 397

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3dd00226h

Open Access Article. Published on 02 January 2024. Downloaded on 2/3/2026 3:50:53 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital Discovery

View Article Online

Paper

Algorithm 2 Bitmap contribution (2D, parallel)

1: Field « read(Field file)
2: M < largest filtration value
3: Nihreads < Number of threads

4 Qtkin, Gtk,out < Zeros of length M+2 Vk € {0,1,...,9},Vt € {1,2, ..., Nthreads }

5: jobs; < total jobs / Nihreads
6: for all ¢ < Nypreads do
7. forall (i,7) € jobs, do

8: data«~ [M +1, M +1,M + 1, M + 1]
9: ifi > 0A j > 0then
10: data[0] < Field(: — 1,5 — 1)
11: elseif i > 0 A j < w then
12 data[1] < Field(i — 1, j)
13: end if
14: ifi <hAj>0then
15: data[2] + Field(i,j — 1)
16: elseif i < h A j < w then
17: data([3] < Field(s, j)
18: end if
19: pos < argsort(data)
20: adjacency < distance(pos|0], pos[1])
21: qt1,in[data0]]++, g41 out[data[1]]++
22: if adjacency == 1 then
23: qr2,in[data[1]]++, g2 out[data[2]]++
24: else
2 qunldata[l]]++, g euldata2]]++
26: end if
27: ¢t3.in[data[2]]++, 3 out[data[3]]++
28: qt4.in[data[3]]++
29: end for
30: end for

31: join threads
32: Qk,in < Z:;haeads qtk,ind € {0, 1,..., 9}
33: Qk,out < Z?:{)eads qtk,outh € {0, 1,..., 9}

in parallel

2D case. Using the sum of Euclidean distance between all pairs
of points, one can completely differentiate contribution types
and use a running sum to avoid computing the same number

twice. We call this function f,q; which is defined as:

=1 Jv|

Juai) =D DW= Vil

=1 j=i+1

398 | Digital Discovery, 2024, 3, 392-409

here, v represents the set of vertex coordinates V;. The 2-norm is
taken to get the Euclidean distance between all coordinate pairs
of the vertices, allowing for distinction between which type of
contribution is present. For instance, with 2 active cells, they may
share only one face (f,qj = 1), share only one edge (fugj = v/2), or

share only one vertex (fugj=+/3). Adjacency for all

© 2024 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3dd00226h

Open Access Article. Published on 02 January 2024. Downloaded on 2/3/2026 3:50:53 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

Table 2 3D vertex contributions to EC for the 26-C case along with perimeter, area, and volume contributions

View Article Online

Digital Discovery

Type Jadj E (26-C) F (26-C) Vox (26-C) EC (26-C) Perimeter Area Volume
@ 0 0 0 0 0 0
@ 0 x (0.5) 3 x (0.25) x (0.125) 0.125 1.5 0.75 0.125
@ 1 x (0.5) 5 x (0.25) x (0.125) 0 1 1 0.25
@ 1.414 x (0.5) 6 x (0.25) x (0.125) -0.25 3 1.5 0.25
@ 1.732 x (0.5) 6 x (0.25) x (0.125) —0.75 3 1.5 0.25
@ 3.414 x (0.5) 7 x (0.25) x (0.125) —0.125 1.5 1.25 0.375
@ 4.146 x (0.5) 8 x (0.25) x (0.125) —0.375 2.5 1.75 0.375
@ 4.243 x (0.5) 9 x (0.25) x (0.125) —0.125 4.5 2.25 0.375
@ 6.828 x (0.5) 8 x (0.25) x (0.125) 0 0 1 0.5
@ 7.243 x (0.5) 9 x (0.25) x (0.125) —0.25 3 1.75 0.5
@ 7.560 x (0.5) 9 x (0.25) x (0.125) —0.25 2 1.5 0.5
@ 7.975 x (0.5) 10 x (0.25) x (0.125) 0 3 2 0.5
@ 8.293 x (0.5) 10 x (0.25) x (0.125) 0 2 2 0.5
@ 8.485 x (0.5) 12 x (0.25) x (0.125) 0.5 6 3 0.5
@ 3.414° x (0.5) 10 x (0.25) x (0.125) —~0.125 1.5 1.25 0.625
@ 4.146° x (0.5) 11 x (0.25) x (0.125) 0.125 2.5 1.75 0.625
@ 4.243° x (0.5) 12 x (0.25) x (0.125) 0.375 4.5 2.25 0.625
@ 1° x (0.5) 11 x (0.25) x (0.125) 0 1 1 0.75
@ 1.414° x (0.5) 12 x (0.25) x (0.125) 0.25 3 1.5 0.75
@ 1.732° x (0.5) 12 x (0.25) x (0.125) 0.25 3 1.5 0.75
@ 0° x (0.5) 12 x (0.25) x (0.125) 0.125 1.5 0.75 0.875

© 2024 The Author(s). Published by the Royal Society of Chemistry

Digital Discovery, 2024, 3, 392-409 | 399

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3dd00226h

Open Access Article. Published on 02 January 2024. Downloaded on 2/3/2026 3:50:53 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

View Article Online

Digital Discovery Paper
Table 2 (Contd.)

Type Jagj V (26-C) E (26-C) F (26-C) Vox (26-C) EC (26-C) Perimeter Area Volume
@ 0° 1 6 x (0.5) 12 x (0.25) 8 x (0.125) 0 0 0 1

“ Adjacency of empty voxels used to avoid more computation.

configurations of vertex neighborhoods in 3D are included in
Table 2. Also, for the case of 5, 6, and 7 cells active, the position of
the inactive cells, or empty cells, is used to reduce the number of
adjacencies computed. For the sake of brevity, the serial version
for computing 3D vertex contributions is shown in the appendix
in Algorithm 3. When considering memory requirements, the
implementation of a low-memory algorithm for 3D field pro-
cessing is all the more important. For this case, the 3D algorithm
can be extended exactly the same way as the 2D case, by replacing
the calls to the 8-cell values in the field file in memory with calls
to read the 8 cell-specific indices from the field file which is
described in more detail in the following section.

2.3 Low-memory processing

Reading a data file for processing often requires that the entire
field is held in memory during execution. To mitigate this, the
same method that is utilized for the serial and parallel cases can
be implemented by forgoing reading the whole field into
memory, and instead reading only the values needed at a given
vertex of the field from the file directly. To compute a vertex
contribution in 2D, only four values are required to be read into
memory at a given time. Exploiting the file structure in the BMP
file format (for bitmap images), we utilize a low memory version
of Algorithm 1 (lines 9 through 18) and Algorithm 2 (lines 9
through 18) by replacing calls to the field data (i.e., data[0] <
field(i — 1,j — 1)) with calls to the raw data file (i.e., data[0] <
read (field face(i — 1,j — 1))).

3 Computational results

The proposed algorithms were implemented in C++ and invoked
from Python. For the low-memory cases, C++ was also used to

read in the partial field data. A comparison between the GUDHI
software package'® invoked from Python and the algorithms for
2D and 3D field analysis shown above was performed and re-
ported in the following sections. The EC was first computed on
synthetic random fields of standard sizes for 2D and 3D fields.
We then analyze data arising in real applications: microscopy
(2D), molecular dynamics simulations (3D), and hyperspectral
images (3D). For all case studies, data was translated from raw
format (i.e., float or integer) to integer format using values from
0 to 255. For each case, benefit of parallelization was measured
by computing the EC with up to 24 CPU cores. All timing results
were obtained on a 24-core (Intel Xeon E5-2697—2.7 GHz)
computing server with 256 GB of RAM running Red Hat Enter-
prise release 6.10. All data and software needed for reproducing
the results are shared as open-source code and are available at
https://github.com/zavalab/ML/tree/master/FastTopology.

3.1 Analysis of synthetic random fields

We generated synthetic 2D random fields in order to test the
scalability of the proposed algorithms in a systematic manner.
Standard 2D image sizes of 1280 x 720 and 1920 x 1080 were
tested along with a couple of large square fields of dimension
2048 x 2048 and 4096 x 4096. Fields at each size were generated
using 500 random samples of both uniform and random noise to
show run-to-run timing variation. A summary of the results is
provided in Table 3. We can see that the processing time for
computing the EC using parallel Algorithm 2 is nearly 3 orders of
magnitude faster than GUDHI, with serial operation already
being 50 times faster. The speedup obtained using more cores
can be seen in Fig. 9 for a field of size 2048 x 2048. On the left we
show that the total megapixels (MP) processed per second
exceeds 100 when using 24 cores and on the right, the parallel

Table 3 Timing results in seconds and million pixels (faces) processed per second for random 2D fields

Alg. 2, 24 cores

Type GUDHI (s) GUDHI (MP s ") Alg. 2, 24 cores (s) (MPs™)
1280 x 720 U 5.31 4 0.16 0.174 + 0.005 0.0095 + 0.0006 97.7 + 4.7
1280 x 720 N 5.11 + 0.16 0.181 =+ 0.005 0.0093 + 0.0006 99.3 + 4.9
1920 x 1080 U 14.99 + 0.44 0.138 =+ 0.003 0.0193 £ 0.0010 107.4 + 4.1
1920 x 1080 N 14.57 + 0.44 0.142 =+ 0.004 0.0188 + 0.0011 110.8 + 4.6
2048 U 32.50 + 1.24 0.129 =+ 0.004 0.0436 + 0.0031 96.5 + 5.3
2048> N 31.35 + 1.07 0.133 £ 0.004 0.0381 + 0.0029 110.4 + 6.0
40962 U 151.1 + 4.8 0.111 =+ 0.003 0.207 + 0.024 82.2 + 9.6
4096> N 145.2 + 5.0 0.116 =+ 0.003 0.210 + 0.032 81.95 + 13.2

400 | Digital Discovery, 2024, 3, 392-409

© 2024 The Author(s). Published by the Royal Society of Chemistry

https://github.com/zavalab/ML/tree/master/FastTopology
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3dd00226h

Open Access Article. Published on 02 January 2024. Downloaded on 2/3/2026 3:50:53 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper
120
1 Uniform noise i
100 1 Normal noise I
2 80 i
X :
S
© 60 x
g
S 40 h
.
20 x
uF
12345678 12 16 20 24

Number of Cores

(a) Processing speed

View Article Online

Digital Discovery

25
---- Perfect Parallelization L
1 Parallel results Lo
20
a ,//
Si1s 1
i
q(i ’// k> *
210 o
5 Pt
e
S
‘ai

12345678 12 16 20 24
Number of Cores

(b) Speedup from parallelization

Fig.9 Timing results for 2D fields of size 2048 x 2048. On the left, the processing speed of faces for Algorithm 2 with 2-24 cores. On the right,
the speedup due to parallelization of Algorithm 2 with 2—-24 cores compared to a perfect parallel efficiency line (dashed).

speedup efficiency is 62%. Processing random fields of similar
size using 8 cores with CHUNKYEuler results in a processing
speed of about 46.5 MP s~ * as reported in ref. 15, compared to
43.3-45.2 MP s~ ' using Algorithm 2 with 8 cores. As such, our
implementation is as scalable as that of CHUNKYEuler.

The 3D algorithm was also tested on both uniform and
normal noise for fields of dimensions 128 x 128 x 128 and 256
x 256 x 256. Given the larger size of the data and processing time
required, only 100 samples were run for each field size with both
uniform and random noise. The processing results are summa-
rized in Table 4; a similar trend is observed, as GUDHI takes
nearly 3 orders of magnitude longer than Algorithm 2 using 24
cores. With fields of size 256 x 256 x 256, the parallel imple-
mentation with 24 cores speeds up execution by about 19 times,

leading to an efficiency of 75-80% (Fig. 10). For reference,
CHUNKYEuler processes voxels/cells at a speed of 26.6 MV s~ " on
3D random fields with similar size,®> compared to 10.4 MV s~
with Algorithm 2 for 3D, both using 8 CPU cores. The reduction
in speed by our implementation is likely due to the higher
number of comparisons and computation required to determine
adjacency for vertex neighborhood classification. However, this
reduction in speed comes with the benefit of more flexibility of
enabling computation of alternative topological descriptors.

3.2 Memory analysis

The low-memory version of Algorithms 1 and 2 were also tested
on random 2D fields. First, random matrices of uniform and
normal distribution were generated for fields of size 1920 X

Table 4 Timing results in seconds and million voxels/cells processed per second for random 3D fields

Alg. 2 (3D), 24

Type GUDHI (s) GUDHI (MV s 1) Alg. 2 (3D), 24 cores (s) cores (MV s 1)
128° U 42.61 £ 1.19 0.0493 + 0.0011 0.0795 + 0.0067 26.67 £ 1.67
128° N 42.13 £+ 1.46 0.0498 + 0.0015 0.0765 + 0.0045 27.47 £1.21
256° U 472.3 £15.5 0.0356 £ 0.0011 0.602 £ 0.020 27.90 £ 0.87
256° N 470.7 £ 12.2 0.0357 + 0.0009 0.591 £ 0.013 28.38 £ 0.61
30 25
{ Uniform noise k3 ---- Perfect Parallelization o
25 1 Normal noise 1 Parallel results e
F 20 e
r/’ *

L20 -

= a -

£ 3 AT

Q15 = (] -~ =

S 2 5

210 =" v

5 W 5 ,‘,é h
- ‘_/‘
- ol
12345678 12 16 20 24 12345678 12 16 20 24

Number of Cores

(a) Processing speed

Number of Cores

(b) Speedup from parallelization

Fig. 10 Timing results for 3D fields of size 256 x 256 x 256. On the left, the processing speed of voxels for Algorithm 2 with 3D modifications
with 2—24 cores. On the right, the speedup due to parallelization of Algorithm 2 with 3D modifications with 2—24 cores compared to a perfect

parallel efficiency line (dashed).

© 2024 The Author(s). Published by the Royal Society of Chemistry

Digital Discovery, 2024, 3, 392-409 | 401

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3dd00226h

Open Access Article. Published on 02 January 2024. Downloaded on 2/3/2026 3:50:53 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital Discovery

View Article Online

Paper

Table 5 Timing results in million pixels processed per second for the low memory processing algorithm

Alg. 2, 12 cores (MP s~ %) Alg. 2, 24 cores (MP s)

Type Alg. 1 (MPs ™)
1920 x 1080 U 0.346 £ 0.005
1920 x 1080 N 0.347 £ 0.005

1080. Then, the fields were saved as bitmap image files (an
easily readable, raw data format). Finally, the C++ algorithm
directly read and computed the EC for each field. 500 random
2D fields were generated with statistics on the processing speed
reported in Table 5. There is a drastic processing speed loss
from reading individual pixel values to populate only the 4
values from each vertex neighborhood during computation of
the EC curve. However, even the serial methods are still faster
than GUDHI (see Table 3) and now require the minimal memory
to compute the EC curve. Also, data beyond the size of working
memory can be analyzed given that this is a streaming
approach, similar to that used in CHUNKYEuler.™ In addition,
only 2D fields were explored here and memory management
issues are even more important in the 3D case. Similar slow-
down should be expected, if not slightly more, given the
increase in values analyzed at each neighbourhood from 4
faces/pixels (2D) to 8 cells/voxels (3D).

3.3 Microscopy case study

Liquid crystal sensors elicit optical responses in the presence of
target compounds or contaminants. The concentration and

c =50
c = 100
c = 150
c = 200

3.040 £ 0.045
2.991 £ 0.029

4.285 £ 0.036
4.159 + 0.047

environment in which the target compound binds to the liquid
has significant impact on the topological state of the system. In
this case study, data presented in Jiang et al' was used to
benchmark real data and explore the potential of real-time
analysis. The system we are showcasing here is analysis on
a gas-based liquid crystal detection system with varying sulfur
dioxide (SO,) concentrations, from 0.5 ppm to 5 ppm, in an
environment with 40% relative humidity. An example of how
filtration values impact the topology of the system is shown in
Fig. 11.

As shown in Fig. 12, the optical responses at differing SO,
concentrations have distinct EC curves. On a liquid crystal
micrograph plate, anywhere from 1 to 36 fully readable grid
squares may be used to predict the state of the system. There-
fore, the speed at which the images are read dictates how close
to real time the sensor can be monitored.

In Table 6, with image sizes that are so small (approximately
134 x 134 for each grid-square), parallelization does not receive
the same benefit as the larger field data as explored above.
There is even a performance decrease by using more than 12

5 ppm SO,

Er--;_.';_‘f:;gﬂf_ :

= .

2 ppm SO,

‘-

s]

Fig. 11 Filtration process for various liquid crystal micrographs. For some concentrations of SO, no activity occurs until over a filtration value of

150 while other concentrations show activity at low filtration values.

402 | Digital Discovery, 2024, 3, 392-409

© 2024 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3dd00226h

Open Access Article. Published on 02 January 2024. Downloaded on 2/3/2026 3:50:53 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

(@) 0.5 ppm SO, (b) 1 ppm SO,

View Article Online

Digital Discovery

i”‘*‘ 1\
?- s
it T L
X X
(c) 2 ppm SO, (d) 5 ppm SO,

Fig. 12 Varying concentration of SO, in the system changes both the optical response and the topological description of the image through the
EC. The optical response and subsequent EC curve are shown for 0.5 ppm, 1 ppm, 2 ppm, and 5 ppm SO, systems in 40% relative humidity.

Table 6 Timing results in million pixels processed per second for the liquid crystal sensor case study

Alg. 2, 12 cores

Type GUDHI (MP s) Alg. 1 (MPs™) MPs™) Alg. 2, 24 cores (MP s)
SO, images 0.332 = 0.009 6.268 & 0.171 11.33 £ 0.49 9.449 £ 0.225
Random fields 0.271 =+ 0.009 6.127 £ 0.132 11.20 + 0.39 9.600 =+ 0.223

(a) dioxane

- 003

(b) y-valerolactone

(c) tetrahydrofuran

Fig. 13 Water densities from simulations of fructose with various cosolvent species listed.

cores for parallel computation; however, the data is processed
about 20-30 times faster than GUDHI.

3.4 Molecular dynamics data

Simulations that result in 3D fields are also relevant to the
algorithms provided in this work. One such example is
molecular dynamics simulations, where chemical systems can
be simulated to understand molecular-scale interactions
between participating species. Here, we analyze a system
shown by Chew and co-workers,** and later with the EC by
Smith and co-workers.”” The simulations capture molecular
interactions of biomass reactants in cosolvent/water mixtures.
As an example, Fig. 13 shows the density of water molecules in
a 20 x 20 x 20 grid for fructose in three different cosolvent/
water systems with 10 weight% water. The topology of the
solvent environment has been shown to correlate strongly with
reactivity. The process of filtering one of these fields is shown
in Fig. 14.

The small size of the data set shows much less scaling
advantage for the parallel case, as shown in Table 7. Although

© 2024 The Author(s). Published by the Royal Society of Chemistry

the timing advantage is less, the proposed algorithm is still one
order of magnitude faster than GUDHI. To process the entire
data set, GUDHI took 56.6 seconds, while the serial algorithm

100

50 ;féi ;; ux%“%h“ ‘l'

-100
-150
0.00 0.05 0.10

water density

Fig. 14 EC curve evolution with 3D binary fields at various filtration
values.

Digital Discovery, 2024, 3, 392-409 | 403

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3dd00226h

Open Access Article. Published on 02 January 2024. Downloaded on 2/3/2026 3:50:53 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital Discovery

View Article Online

Paper

Table 7 Timing results in million cells processed per second for the molecular dynamics case study

Type GUDHI (MC s 1)

Alg. 1 (3D) (MC s ™)

Alg. 2 (3D), 12
cores (MC s)

Alg. 2 (3D), 12
cores (MC s)

MD fields 0.108 £ 0.004

100+ —— dioxane
--------- y-valerolactone
501 ---- tetrahydrofuran
0_ """"
X
50
—1001
—1501
0.00 0.05 0.10 0.15

water density

Fig. 15 EC Curves for each cosolvent system.

Fig.16 Visualization of hyperspectral image data. Here, a near infrared
image with 6 selected wavelengths (4) is illustrated. In totality, the
hyperspectral image has 252 unique wavelengths.

took 5.7 seconds, and 12-core parallel implementation took 2.9
seconds. The EC curve of each solvent system is shown in
Fig. 15.

1.065 £ 0.025

2.105 £+ 0.111 1.853 £ 0.045

3.5 Hyperspectral image data

Another example relevant to the chemical sensing community is
hyperspectral image analysis. In this research domain, each
pixel of a 2D image has a spectral dimension, meaning each
pixel of the image is associated with a unique spectra. This
requires each image to be analyzed in 3D to take full advantage
of the information contained in the spectral dimension. One
can view each spectral wavelength as a 2D image, as shown in
Fig. 16.

A sample data set on the ripeness of fruits*® is used to
benchmark the performance. Hyperspectral images were taken
of both the front and back of the fruit each day. Fruits were
removed from the set when considered overripe. A total of 360
hyperspectral images make up the kiwifruit data set. Some
sample images translated from visible spectra to RGB are shown
in Fig. 17, where it is clear that using only RGB, it is difficult to
tell which kiwifruit is ripe, overripe, or under ripe.

Statistics on the processing speed are shown in Table 8. The
processing time for these images was removed as a column of
the table due to the varying size of the images and instead
strictly analyzed processing speed in MV s~ ', similar to the
liquid crystal case study. For comparison, the EC curve from
filtering the hyperspectral images of ripe, overripe, and under
ripe kiwifruits are shown in Fig. 18.

4 Discussion

Using Algorithms 1 and 2 in both 2D and 3D field data, we find
that there is a clear scaling advantage in both time and
memory usage while computing EC when compared with off-
the-shelf computational tools such as GUDHI. Also, when
compared to state-of-the-art parallel implementations, such as
CHUNKYEuler, there is comparable speed. The time
complexity of CHUNKYEuler and the algorithms presented in

(a) Under ripe

(b) Ripe

(c) Overripe

Fig. 17 RGB equivalent images of kiwifruits presenting with varying ripeness levels. RGB alone is difficult to discern whether a kiwifruit is ripe or

not without feeling the firmness of the kiwifruit.

404 | Digital Discovery, 2024, 3, 392-409

© 2024 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3dd00226h

Open Access Article. Published on 02 January 2024. Downloaded on 2/3/2026 3:50:53 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

View Article Online

Digital Discovery

Table 8 Timing results in million voxels processed per second for the hyperspectral imaging case study

Type GUDHI (MV s~ 1)

Alg. 2 (3D), 24

Alg. 1 (3D) (MV s 1) cores (MV s 1)

0.0701 + 0.0078
0.0427 £+ 0.0031

Kiwifruit images
Random fields

— ripe
overripe
underripe

0.4 0.6 0.8 1.0

Intensity

0.0

Fig. 18 EC Curves for each stage of kiwifruit ripeness.

this work are nearly identical, as both methods stem from the
same principle that using change in features is more compu-
tationally scalable than counting features at each filtration
value.

For the microscopy case study for liquid crystals, the
average size of images in that data set was 134 x 134, or 17
956 pixels, meaning that it would require a processing speed
of 19 MP s~ " to fully process a liquid crystal sensor with 36
readable grid-squares at a video frame rate of 30 frames per
second (FPS). Considering control applications, the serial
version of the tool is capable of processing 11 grid-squares in
real-time considering a 30 FPS video. However, some control
applications will not require the reading of all 36 grid-
squares, or reading data as quick as 30 measurements per
second. Also, when implementing a complete control
scheme, the time required to read and crop the raw video
data to these processable grid-squares must be considered,
introducing a time delay between measurement and data
reconciliation.

Also, the potential limitations of parallelization are
noticed when considering the microscopy case. For larger
random fields for benchmarking, more cores yielded signifi-
cantly faster performance, whereas in the liquid crystal case
study, more cores did not yield favorable speedup. This is
seen with a peak efficiency at about 12 cores before dropping
as more cores were used (Fig. 19). This analysis does not
consider simply using Algorithm 1 for each individual image,
but running the dispatch of the image analysis in parallel
(which may increase throughput). This highlights the
importance to design a computational framework that accu-
rately addresses data analysis and data structure from case to

© 2024 The Author(s). Published by the Royal Society of Chemistry

1.973 £ 0.112
1.506 £ 0.006

34.57 £ 2.38
28.19 £ 1.02

case. This is especially relevant in the case of designing
lightweight, standalone sensors with limited computational
capabilities.

The molecular dynamics study shows similar trends as the
microscopy study, indicating the data was small enough that
parallelization did not realize the same benefit as random 3D
fields of larger size. However, this framework is capable of
handling molecular dynamics simulations which may include
thousands or millions of molecules. This becomes especially
relevant with the more recent use of parallel computation
using GPUs to accelerate computations in density functional
theory**—*® where more detailed or holistic simulation results
can be analyzed quickly. The granularity of the grid (20 x 20 x
20) could be expanded to have more fine-grained analysis on
larger systems and see significant speed-up similar to that
found in the random 3D fields analyzed earlier. Also, any 3D
field data that can be translated to a cubical lattice may be
analyzed in the same way. For instance, computational fluid
dynamics data with millions of finite elements could be
analyzed for trends in EC which could transform large-scale,
fine-grained data into a feasible size for input into a predic-
tion algorithm without losing important topological infor-
mation. For reference, a couple of computational fluid
dynamics simulations were analyzed to demonstrate scal-
ability: first, a 302 x 302 x 302 element simulation of heptane
gas undergoing combustion (The University of Utah Center for
the Simulation of Accidental Fires and Explosions), took 405
seconds for GUDHI, and 3.5 seconds for Algorithm 3 in
parallel with 4 cores; and second, simulation of duct flow*” of
size 193 x 194 x 1000 took GUDHI 673 seconds, whereas

251
---- Perfect Parallelization L
¥ Parallel results L
20 o
o e
S154
© e
0] L
0] e
Q101 e
wn e
51
_‘/; PP S - - - - -
12345678 12 16 20 24

Number of Cores

Fig. 19 Speedup curve through parallelization for processing liquid
crystal images. Perfect speedup line shown for reference.

Digital Discovery, 2024, 3, 392-409 | 405

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3dd00226h

Open Access Article. Published on 02 January 2024. Downloaded on 2/3/2026 3:50:53 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital Discovery

Algorithm 3 in parallel with 4 cores took 5.5 seconds. Clearly,
scaling advantages exist in these data-rich applications.

For the hyperspectral image case study, the size of the
images indicated that parallelizing the identification of vertex
contributions was economical. The average size of images in
this data set was 6.88 MV, meaning it takes about 100 seconds to
process a single hyperspectral image with GUDHI, 3 seconds in
serial with Algorithm 1 in 3D mode, and only about 0.2 seconds
when using Algorithm 2 in 3D mode with 24 cores. Applications
where sensors are developed with a hyperspectral camera may
require processing speeds that allow data analysis at speeds
faster than those presented in this work. However, in certain
applications, such as monitoring pharmaceutical powder
composition, standard sampling times for single-sample anal-
ysis (only spectral dimension; no 2D image component) with
near infrared sensors can be on the order of 5-15 seconds.”® On
the other hand, commercially available hyperspectral cameras
can achieve frame rates that could facilitate real-time data
collection and analysis.* Once again, understanding the needs
of the system and the dynamic response to control actions
should be considered case-to-case when implementing
topology-informed control schemes to hyperspectral data.

An important distinction with respect to hyperspectral
imaging is that we used the raw data for the case study. Per-
forming dimensionality reduction in hyperspectral image is not
uncommon, for instance, using principal component analysis
to reduce the number of wavelengths used in the spectral
dimension.** Reducing the number of wavelengths through
dimensionality reduction or selecting regions that are known to
contain the most important topological information could
reduce computation time enough to process these 3D hyper-
spectral images in real time as well.

Also, the output of this tool is not just the EC curve, it is the
vertex contribution map over the filtration values. Thus, by
simply changing the weights each vertex contributes to an
overall topological descriptor, the same vertex contribution map
can be used to compute any number of topological descriptors
as a function of vertex contributions. Also, connectivity need not
be assumed in the beginning, as the connectivity only impacts
the weights, not the vertex types. This allows for analyses to
identify that alternate definitions of connectivity may be more
suitable for a given physical system without reanalyzing the
entire data set.

With this being said, sensitivity of the system to connectivity
can be explored alongside sensitivity of topological descriptors
to image resolution, number of filtration values, or image pre-
processing techniques. It is commonplace to blur images or
treat images with another convolutional operator while utilizing
neural networks in machine learning. However, in this work, we
use the raw data for both applications. Since the tool is scalable
and allows for large-scale analysis, performing studies to

406 | Digital Discovery, 2024, 3, 392-409

View Article Online

Paper

understand which combination of resolution, number of
filtrations, preprocessing technique, and connectivity type may
lead to more topologically-based physical intuition of chemical
systems discerned through field/image analysis.

5 Conclusions

In this work, we presented algorithms addressing the scalable
computation of vertex contributions in field data. Ultimately,
the tool was tested using EC, but the analysis that can be done
with vertex contribution maps is not limited just to EC. The
speedup was significant, 2 to 3 orders of magnitude, when
compared with a common package used for topological
persistence in Python (GUDHI). Also, recent advancement of the
CHUNKYEuler software show similar timing capabilities, indi-
cating that methods that address changes in topological
contributions are much more scalable than counterparts that
compute topological characteristics at each level of a filtration
set.

Future research directions could address the usage of vertex
contribution maps for more complex topological descriptors,
such as the fractal dimension. Also, generalizing these methods
to larger dimensions (4D data, such as hyperspectral imaging
with a temporal dimension) requires the set of unique vertex
contributors for a given dimension. The number of unique
contributors and subsequent impact on scalability in terms of
computational time and storage for vertex contribution
methods in higher dimensions is an open question currently
being explored by the authors. In terms of low memory
methods, CHUNKYEuler uses chunks of each image, whereas
the low memory version of Algorithms 1 and 2 reads only the
minimum data required to compute the EC curve. Exploration
into the optimal decomposition scheme for a cubical field/
image could be an interesting direction for research, as
having minimum data representations is good for memory
scaling, but results in a slow down of just over an order of
magnitude.

Also, generalizing vertex contributions to regular, non-
cubical lattices, or even more generally to Voronoi cells, with
sets of vertex contributions corresponding to the degree of that
vertex could be impactful for data that is not in a classical
cubical layout that physical fields/images possess. Ultimately, if
an efficient method exists to compute vertex contribution maps
of these more abstract structures, one could calculate a plethora
of topological and general system descriptors to control or
characterize complex and more abstract physical systems in real
time.

6 Appendix

3D algorithms.

© 2024 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3dd00226h

Open Access Article. Published on 02 January 2024. Downloaded on 2/3/2026 3:50:53 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

View Article Online

Digital Discovery

Algorithm 3 Bitmap contribution (3D, serial). Parallel mode runs lines 7 to 35 on different threads.

1: Field «+ read(data file)
2: w « field width
3: h < field height
4: d « field depth
5. M < largest filtration value
6. Q. in; Gk,out < Zeros of length M+2 Vk € {0, 1, ..., 42}
7. foralli < h+1do
8 forallj <w+1do
9 forallk <d+1do
10: data« [M+1,M+1,M+1,M+1,M+1,M+1,M~+1,M+1]
11: data < fill_data_3D (¢, j, k) (Algorithm 4)
12: pos « argsort(data)
13: adjacency « compute | f,qi (pos[0,1]), fagj (pos[0,1,2]), fagj (Pos|0, 1,2, 3])]
14: adjacencyempty < compute [fagj (pos[7,6]) , fagj (pos|7, 6, 5])]
15: q10,in[data[0]]++, q10,0out[data[1]]++
16: if adjacency[0] < v/2 then
17: ¢20,in[data[1]]++, g20,out[data[2]]++
18: else if adjacency[0] < /3 then
19: ¢21,in[data[1]]++, g21 out[data[2]]++
20: else
21 q22,in[data[1]]++, g22 out[data[2]]++
22: end if
23: if adjacency[0] < 1 + V2 + /3 then
24: q30,in[data[2]]++, g30 out[data[3]]++
25: else if adjacency[0] < v/3 then
26: ¢31,in[data[2]]++, g31 out[data[3]]++
27: else
28: ¢32,in[data[2]]++, g32 out[data[3]]++
29: end if
30: :
31: Continue similarly for ¢49 through ¢gg. Use adjacency thresholds in Table 2
32: :
33: end for
34: end for
35: end for
Data avallablllty files, are available within the Zavalab/ML Github repository in

the FastTopology folder (https://github.com/zavalab/ML/tree/

Algorithms, data, and processing scripts for this paper, master/FastTopology). The molecular dynamics case study
including the liquid crystal case study data in the form of .png data is represented as 3D numpy array data, and is found in

© 2024 The Author(s). Published by the Royal Society of Chemistry

Digital Discovery, 2024, 3, 392-409 | 407

https://github.com/zavalab/ML/tree/master/FastTopology
https://github.com/zavalab/ML/tree/master/FastTopology
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3dd00226h

Open Access Article. Published on 02 January 2024. Downloaded on 2/3/2026 3:50:53 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital Discovery

View Article Online

Paper

Algorithm 4 Filling data for 3D field.

1: (4,4, k) < input values

2: data « input data

3:ifi >0ANj>0Ak>0then

4: data[0] « Field(s —1,j — 1,k —1)
5: end if

6: ifi >0Aj>0Ak < dthen

7. data[4] «+ Field(: — 1,5 — 1, k)

8: end if

9: ifi >0Aj <wAk >0then

10: data[2] < Field(i — 1,4,k — 1)

11: end if

12: ifi >0Aj < wAk < dthen
13: data[6] < Field(: — 1,7, k)
14: end if

15: if i <hAj > 0Ak >0 then
16: data[l] < Field(i,j — 1,k — 1)
17: end if

18: ifi <hAj>0Ak <dthen
19: data[5] < Field(i,j — 1,k)
20: end if

21: if i < hAj <wAk >0 then
22: data[3| < Field(,j,k — 1)
23: end if

24: ifi<hAj<wAk<dthen
25: data(7] + Field(s, j, k)

26: end if

the Acid_Catalyzed_Reactions_Train_Test_Data.zip file, found
in the Zavalab/ML Github repository in the MDEuler folder
(https://github.com/zavalab/ML/tree/master/MD_Euler). The
hyperspectral imaging case study data is available at https://
cogsys.cs.uni-tuebingen.de/webprojects/DeepHS-Fruit-2023-

Datasets/ which originally was disseminated as part of
a publication: 10.1109/IJCNN52387.2021.9533728. Files to
process both the molecular dynamics data and hyperspectral
imaging data are included at the original FastTopology folder
(https://github.com/zavalab/ML/tree/master/FastTopology).

Conflicts of interest

There are no conflicts to declare.

408 | Digital Discovery, 2024, 3, 392-409

Acknowledgements

This research was supported by the U.S. National Science
Foundation through the University of Wisconsin Materials
Research Science and Engineering Center (DMR-2309000) and
via grants 1IS-1837812 and CBET-2315963.

References

1 S. Jiang, N. Bao, A. D. Smith, S. Byndor, R. C. Van Lehn,
M. Mavrikakis, et al., Scalable extraction of information
from spatio-temporal patterns of chemoresponsive liquid
crystals using topological data analysis, J. Phys. Chem. C,
2023, 127(32), 16081-16098.

© 2024 The Author(s). Published by the Royal Society of Chemistry

https://github.com/zavalab/ML/tree/master/MD_Euler
https://cogsys.cs.uni-tuebingen.de/webprojects/DeepHS-Fruit-2023-Datasets/
https://cogsys.cs.uni-tuebingen.de/webprojects/DeepHS-Fruit-2023-Datasets/
https://cogsys.cs.uni-tuebingen.de/webprojects/DeepHS-Fruit-2023-Datasets/
https://github.com/zavalab/ML/tree/master/FastTopology
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3dd00226h

Open Access Article. Published on 02 January 2024. Downloaded on 2/3/2026 3:50:53 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

2 A. D. Smith, P. Dlotko and V. M. Zavala, Topological data
analysis: concepts, computation, and applications in
chemical engineering, Comput. Chem. Eng., 2021, 146,
107202.

3 A. D. Smith and V. M. Zavala, The euler characteristic:
a general topological descriptor for complex data, Comput.
Chem. Eng., 2021, 154, 107463.

4 E. Leonhard, Elementa Dosctrinae Solidorum,
commentarii academiae scientiarum Petropolitanae, 1758,
pp. 109-140.

5 J. M. Kilner, S. J. Kiebel and K. J. Friston, Applications of
random field theory to electrophysiology, Neurosci. Lett.,
2005, 3, 174-178.

6 M. K. Chung, H. Lee, A. DiChristofano, H. Ombao and
V. Solo, Exact topological inference of the resting-state
brain networks in twins, Netw. Neurosci., 2019, 3, 674-694.

7 L. Marsh, F. Y. Zhou, X. Qin, X. Lu, H. M. Byrne and
H. A. Harrington, Detecting temporal shape changes with
the euler characteristic transform, arXiv, 2022, preprint,
arXiv:221210883, DOI: 10.48550/arXiv.2212.10883.

8 L. Hakim, M. S. Kavitha, N. Yudistira and K. Takio,
Regularizer based on euler characteristic for retinal blood
vessel segmentation, Pattern Recognit. Lett., 2021, 149, 83-90.

9 J. Schmalzing, M. Kerscher and T. Buchert, Minkowski
functionals in cosmology, arXiv, 1995, preprint, arXiv:
astro-ph/9508154, DOI: 10.1007/978-94-009-0053-0_15.

10 P. Pranav, R. J. Adler, T. Buchert, H. Edelsbrunner,
B. J. T. Jones, A. Schwartzman, et al., Unexpected topology
of the temperature fluctuations in the cosmic microwave
background, Astron. Astrophys., 2019, 627, A163.

11 E. J. Amézquita, M. Y. Quigley, T. Ophelders, J. B. Landis,
D. Koenig, E. Munch, et al., Measuring hidden phenotype:
quantifying the shape of barley seeds using the euler
characteristic transform, In Silico Plants, 2021, 4(1), 1-15.

12 A. Smith, S. Runde, A. K. Chew, A. S. Kelkar, U. Maheshwari,
R. C. Van Lehn, et al., Topological analysis of molecular
dynamics simulations using the euler characteristic, J.
Chem. Theory Comput., 2023, 19(5), 1553-1567.

13 L. Snidaro and G. L. Foresti, Real-time thresholding with
euler numbers, Pattern Recognit. Lett., 2003, 24, 1533-1544.

14 T. Heiss and H. Wagner, Streaming algorithm for euler
characteristic curves of multidimensional images, in
Computer Analysis of Images and Patterns: 17th International
Conference, CAIP 2017, Ystad, Sweden, August 22-24, 2017,
Proceedings, Part I 17, Springer International Publishing, 2017.

15 F. Wang, H. Wagner and C. Chen, GPU computation of the
euler characteristic curve for imaging data, arXiv, 2023,
preprint, arXiv:220309087v2, DOI: 10.48550/
arXiv.2203.09087.

Novi

© 2024 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Digital Discovery

16 E. Richardson and M. Werman, Efficient classification using
the Euler characteristic, Pattern Recognit. Lett., 2014, 49, 99-
106.

17 A. Rieser, A Note on the Simplex-Tree Construction of the
Vietoris-Rips Complex, 2023.

18 T. G. Project, GUDHI User and Reference Manual, GUDHI
Editorial Board, 2015.

19 S. B. Gray, Local properties of binary images in two
dimensions, IEEE Trans. Comput., 1971, 20(5), 551-561.

20 J. Boissonnat, T. K. Dey and C. Maria, The Compressed
Annotation Matrix: an Efficient Data Structure for Computing
Persistent Cohomology, CoRR. 2013, available from: http://
arxiv.org/abs/1304.6813.

21 J. Toriwaki and T. Yonekura, Euler number and connectivity
indexes of a three dimensional digital picture, Forma, 2002,
17, 183-209.

22 A. K. Chew, S. Jiang, W. Zhang, V. M. Zavala and R. C. Van
Lehn, Fast predictions of liquid-phase acid-catalyzed
reaction rates using molecular dynamics simulations and
convolutional neural networks, Chem. Sci., 2020, 11(46),
12464-12476.

23 L. A. Varga, J. Makowski and A. Zell, Measuring the Ripeness of
Fruit with Hyperspectral Imaging and Deep Learning, CoRR,
2021, available from: https://arxiv.org/abs/2104.09808.

24 V. Q. Vuong, C. Cevallos, B. Hourahine, B. Aradi,]J. Jakowski,
S. Irle, et al., Accelerating the density-functional tight-
binding method using graphical processing units, J. Chem.
Phys., 2023, 158(8), 084802, DOI: 10.1063/5.0130797.

25 Y. Nishimura and H. Nakai, Dcdftbmd: Divide-and-Conquer
Density Functional Tight-Binding Program for Huge-System
Quantum Mechanical Molecular Dynamics Simulations, J.
Comput. Chem., 2019, 40(15), 1538-1549, DOI: 10.1002/
jee.25804.

26 S. I. Allec, Y. Sun, J. Sun, CeA. Chang and B. M. Wong,
Heterogeneous CPU+GPU-Enabled Simulations for DFTB
Molecular Dynamics of Large Chemical and Biological
Systems, J. Chem. Theory Comput., 2019, 15(5), 2807-2815,
DOL: 10.1021/acs.jctc.8b01239.

27 M. Atzori, R. Vinuesa, A. Lozano-Duran and P. Schlatter,
Intense Reynolds-Stress Events in Turbulent Ducts, Int. J.
Heat Fluid Flow, 2021, 89, 108802.

28 Technology I, MULTIEYE2 USER MANUAL.

29 SPECIM, The Top 10 Questions about Hyperspectral Imaging
(Part 2 of 2), 2016, https://www.specim.com/the-top-10-
questions-about-hyperspectral-imaging-part-2-of-2/.

30 A. Signoroni, M. Savardi, A. Baronio and S. Benini, Deep
Learning Meets Hyperspectral Image Analysis: A
Multidisciplinary Review, J. Imaging, 2019, 5(5), 52, DOI:
10.3390/jimaging5050052.

Digital Discovery, 2024, 3, 392-409 | 409

https://doi.org/10.48550/arXiv.2212.10883
https://doi.org/10.1007/978-94-009-0053-0_15
https://doi.org/10.48550/arXiv.2203.09087
https://doi.org/10.48550/arXiv.2203.09087
http://arxiv.org/abs/1304.6813
http://arxiv.org/abs/1304.6813
https://arxiv.org/abs/2104.09808
https://doi.org/10.1063/5.0130797
https://doi.org/10.1002/jcc.25804
https://doi.org/10.1002/jcc.25804
https://doi.org/10.1021/acs.jctc.8b01239
https://www.specim.com/the-top-10-questions-about-hyperspectral-imaging-part-2-of-2/
https://www.specim.com/the-top-10-questions-about-hyperspectral-imaging-part-2-of-2/
https://doi.org/10.3390/jimaging5050052
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3dd00226h

	A fast and scalable computational topology framework for the Euler characteristic
	A fast and scalable computational topology framework for the Euler characteristic
	A fast and scalable computational topology framework for the Euler characteristic
	A fast and scalable computational topology framework for the Euler characteristic
	A fast and scalable computational topology framework for the Euler characteristic
	A fast and scalable computational topology framework for the Euler characteristic

	A fast and scalable computational topology framework for the Euler characteristic
	A fast and scalable computational topology framework for the Euler characteristic
	A fast and scalable computational topology framework for the Euler characteristic
	A fast and scalable computational topology framework for the Euler characteristic
	A fast and scalable computational topology framework for the Euler characteristic
	A fast and scalable computational topology framework for the Euler characteristic

	A fast and scalable computational topology framework for the Euler characteristic
	A fast and scalable computational topology framework for the Euler characteristic
	A fast and scalable computational topology framework for the Euler characteristic
	A fast and scalable computational topology framework for the Euler characteristic
	A fast and scalable computational topology framework for the Euler characteristic
	A fast and scalable computational topology framework for the Euler characteristic

