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le computational topology
framework for the Euler characteristic

Daniel J. Laky and Victor M. Zavala*

The Euler characteristic (EC) is a powerful topological descriptor that can be used to quantify the shape of

data objects that are represented as fields/manifolds. Fast methods for computing the EC are required to

enable processing of high-throughput data and real-time implementations. This represents a challenge

when processing high-resolution 2D field data (e.g., images) and 3D field data (e.g., video, hyperspectral

images, and space-time data obtained from fluid dynamics and molecular simulations). In this work, we

present parallel algorithms (and software implementations) to enable fast computations of the EC for 2D

and 3D fields using vertex contributions. We test the proposed algorithms using synthetic data objects

and data objects arising in real applications such as microscopy, 3D molecular dynamics simulations, and

hyperspectral images. Results show that the proposed implementation can compute the EC a couple of

orders of magnitude faster than GUDHI (an off-the-shelf and state-of-the art tool) and at speeds

comparable to CHUNKYEuler (a tool tailored to scalable computation of the EC). The vertex

contributions approach is flexible in that it can compute the EC as well as other topological descriptors

such as perimeter, area, and volume (CHUNKYEuler can only compute the EC). Scalability with respect to

memory use is also addressed by providing low-memory versions of the algorithms; this enables

processing of data objects beyond the size of dynamic memory. All data and software needed for

reproducing the results are shared as open-source code.
1 Introduction

Data objects that appear in the form of elds (e.g., images,
video, space-time data) are common in science and engi-
neering. These data objects can be processed using powerful
algorithms such as convolution operations, Fourier transforms,
and singular value decomposition to extract information and to
enable reduction and visualization. Convolutional neural
networks (CNNs), in particular, are a highly exible tool that can
be used to extract diverse types of feature information from eld
data. However, CNNs have signicant scalability limitations
(e.g., require repetitive convolutions to learn adequate opera-
tors) and might require large amounts of data to be trained.
Moreover, attributing meaning to features extracted from CNNs
is not straight-forward.1

Topological data analysis (TDA) has recently emerged as
a powerful framework to quantify the shape of eld data.1–3 A
simple topological descriptor known as the Euler Characteristic
(EC), in particular, has gained signicant attention in diverse
applications.4 The EC is a descriptor that captures basic topo-
logical features of binary elds (e.g., connected components,
voids, holes) and can be extended to continuous elds by using
Engineering, University of Wisconsin–

WI 53706, USA. E-mail: victor.zavala@

–409
ltration/percolation procedures (i.e., the EC is computed at
different ltration values). The EC has also been used for
analyzing data in neuroscience,5,6 medical imaging,7,8

cosmology,9,10 and plant biology.11 The EC has also been recently
used as a descriptor/feature to train simple machine learning
models (e.g., linear regression) that have comparable prediction
accuracy to those of CNNs but that are signicantly less
computationally expensive to build.1,3,12

Enabling fast computations of topological descriptors is
necessary to handle eld data at high resolutions, high-
throughput data, and to enable real-time applications (e.g.,
control). Methods for fast processing of small-scale images was
proposed by Snidaro and Foresti;13 specically, they proposed to
compute only the change in the EC over the ltration values.
This idea was further explored in ref. 14–17. Heiss and Wagner
presented an algorithm that computes the EC for 3D elds that
are too large to t into memory and provide a soware imple-
mentation called CHUNKYEuler.14 A parallel implementation of
this method using GPUs has also been recently developed.15

In this work, we provide parallel implementations of the
vertex contributions methods of Snidaro and Foresti.13 We
highlight that a major contribution of this work is the general-
ization of this method to 3D elds (including handling of non-
binary elds and parallel implementation); these capabilities
allow us to process a broad range of data sets arising in appli-
cations. The vertex contributions method is scalable and exible
© 2024 The Author(s). Published by the Royal Society of Chemistry
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in that contributions can be used to compute the EC and other
relevant topological descriptors such as perimeter, area, and
volume (the approach implemented in CHUNKYEuler can only
compute the EC). We provide background information on the
computation of the EC with an in-depth look at 2D/3D eld data
and level set ltration and outline the vertex contribution
method. We highlight aspects that make the proposed method
highly parallelizable and describe our soware implementation.
In addition, we benchmark our implementations against state-
of-the-art computational topology tools using synthetic data
sets and data sets arising in real applications. Specically, we
analyze synthetic random elds that are systematically generated
to obtain eld data at different resolutions and we study data sets
arising in real applications such as microscopy, molecular
simulations, and hyperspectral images. Our results demonstrate
that our implementation can compute the EC a couple of orders
of magnitude faster than the off-the-shelf computational
topology tool GUDHI.18 We also compare times of the proposed
methods to those implemented in the CHUNKYEuler soware14

and their GPU implementation.15
2 Methodology

The EC of a data object is computed by counting the contribu-
tion of each fundamental component to the overall topology of
Fig. 1 Cubical simplexes relevant to 2D and 3D field processing.

Fig. 2 Liquid crystal micrograph (image) represented as a cubical simpl
connected by lower dimensional cubical simplexes (i.e., edges and verti

© 2024 The Author(s). Published by the Royal Society of Chemistry
the object. These fundamental components, which we will refer
to as simplexes, are the building blocks that contribute to the
topology of the object. The simplexes that are important to this
work, and more broadly 2D/3D eld analysis, include 0-
dimensional through 3-dimensional cubical simplexes (Fig. 1).
In this work we will refer to a 0-dimensional cubical simplex as
a vertex, 1-dimensional as an edge, 2-dimensional as a face or
pixel, and 3-dimensional as a cell or voxel. A 2D eld data object
is a collection of face/pixel data (e.g., images) that contains
intensity information to describe data at a particular position
within the object. By representing each pixel as a face, an image
object may be represented as a collection of cubical simplexes
(Fig. 2).

The EC can be dened as the alternating sum of cubical
simplexes; for 3D elds, this is:

c = V − E + F − C. (1)

here, V is the number of vertices, E is the number of edges, F is
the number of faces/pixels, C is the number of cells or voxels,
and c represents the EC value.

To generate the EC for a eld (a continuous object), onemust
rst transform the original eld into a binary eld by applying
a ltration at a desired face/pixel intensity level. A ltration/
percolation is a function that is used to dene which
icial complex; this is done by assigning pixel values to faces which are
ces).

Digital Discovery, 2024, 3, 392–409 | 393
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components (e.g., pixels in the case of a 2D image) should be
included and which should not. The ltration function used
throughout this work is a sublevel ltration:

g−c (f) = {(xw, xh)jf(xw, xh) # c}. (2)

here, c is the ltration level, faces are dened at position (xw, xh)
with intensity f, and set g−c contains faces that are less than or
equal to c only. Importantly, when a face is included, all edges
and vertices relevant to that face are also included in the set. An
example of ltration for multiple values of c over a small image
is shown in Fig. 3.

The EC at each ltration value in Fig. 3 can be veried by
counting the number of components included and utilizing (1).
A generalization of the EC, called the EC curve, encodes infor-
mation for the entire eld by applying g−c for values of c that
cover the entire range of face intensities for a given eld. A small
example of an EC curve is shown in Fig. 4 for a 2D eld.

A fundamental aspect to consider in EC computations is
connectivity. There are a couple of types of adjacency in a 2D
eld: (i) vertex adjacency and (ii) edge adjacency. Vertex adja-
cency denes that a face that shares a vertex with another face is
adjacent. This is oen referred to as 8-connectedness (or 8-C) as
all 8 of the faces that surround an arbitrary central face are
considered connected to the central face, as seen in Fig. 5. Edge
Fig. 3 Example 2D field undergoing the process of filtration over the fu

Fig. 4 EC curve for a 2D field. Note that, in this example, we see the em

394 | Digital Discovery, 2024, 3, 392–409
adjacency is more strict, as a face is adjacent to another face
only if an edge is shared. This is oen referred to as 4-
connectedness (or 4-C) as there are only 4 edge-connected faces
from an arbitrary central face (also shown in Fig. 5). In the above
example, where the EC was computed for Fig. 3, 8-C was
assumed. Throughout this work, we will be using vertex adja-
cency for all dimensions: 8-C for 2D eld analysis and 26-C for
3D eld analysis.

A näıve approach for computing the EC curve would be to
count the vertices, edges, and faces at each ltration level. This
would require iterations over every vertex, edge, and face at each
level, resulting in poor computational scalability: OðwhncÞ
where w and h are the width and height of the eld, respectively,
and nc is the number of ltration levels. Another method would
be to consider the vertices, edges, and faces from the previous
ltration level and only add the new ones to the current ltra-
tion; unfortunately, adding a new face does not necessarily add
all vertices and edges associated with the face as new compo-
nents to the level set. This is because the EC follows the
inclusion-exclusion principle:

c(A W B) = c(A) + c(B) − c(A X B). (3)

As such, the unique components added to set A by adding set
B, or a new face, would be those in Bminus the intersection: AX
ll range of its pixel intensity values.

ergence of a hole in the simplicial complex at a filtration level of c = 6.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Types of connectivity; on the left is vertex-adjacency (or 8-C)
and, on the right, is edge-adjacency (or 4-C).

Fig. 6 Adding a single face to the bottom right of a 3 × 3 field
complex requires the subtraction of two edges and 3 vertices which
are double counted.

Fig. 7 Examining a face-sized neighborhood about each vertex in a 2
× 2 binary image.
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B. An illustration of this concept is included in Fig. 6 where
edges and vertices will be double-counted if we do not subtract
the intersection of the new face and the existing set.

One can avoid the aforementioned problem by tracking
vertices and edges which are included in the set. This provides
a means to check new vertices and edges against the existing set
Table 1 The 2D vertex contributions to the overall EC for both 4-C and 8
8-C cases) are given as well

Type V (8-C) E (8-C) F (8-C) EC (8-C) V (4-C

0 0 0 0 0

1 2 × (0.5) 1 × (0.25) 0.25 1

1 3 × (0.5) 2 × (0.25) 0 1

1 4 × (0.5) 2 × (0.25) −0.5 2

1 4 × (0.5) 3 × (0.25) −0.25 1

1 4 × (0.5) 4 × (0.25) 0 1

© 2024 The Author(s). Published by the Royal Society of Chemistry
and only add novel components. However, this comes at large
memory cost, as these additional edge and vertex arrays would
require storage of a binary or integer value for each entry,
exceeding the element size of the original face data array from
the eld data itself. A solution to both of these problems is to
use vertex neighborhoods to determine impact on EC.19 Vertices
can be used to compute EC contribution by considering a face-
sized neighborhood centered on a vertex. A quarter of each face
that share the vertex contribute to make up this neighborhood.
Subsequently, one-half of each edge that shares the vertex are
also included in this vertex-centered neighborhood. An illus-
tration of this concept is shown in Fig. 7.

There are 16 positionally-different types of vertex contribu-
tions of which 6 are unique subject to symmetry, as shown in
Table 1. From these representations we can compute the EC
contribution and we can compute the contribution to the
perimeter and area of the ltered eld. One advantage to this
method over strictly keeping track of the EC contribution is that
the perimeter cannot be computed from the edges in the set, it
can only be computed from exterior edges, which would require
the tracking of additional information. The contribution of
these 6 types of vertex contributions is given for EC (both 4-C
and 8-C), area, and perimeter in Table 1.

Because there is no intersection between the contributions
of each vertex, the EC can be computed by the strict addition of
contributions from each vertex. In other words, (eqn (3)) loses
the c(A X B) term because it is zero. By providing a collar of
values about the edge of the eld, or by determining if a given
vertex is a corner, edge, or central vertex, the EC of that eldmay
be computed by iterating over all vertices for each value of the
level set. Although this is clearly an improvement over checking
each vertex, edge, and face, this method still is computationally
expensive in large-scale elds as the order of computation
remains at OðwhncÞ: However, by tracking only the change in
contribution types (i.e., the 6 unique vertex contribution types)
for a given level set, time complexity can be reduced from
OðwhncÞ to Oðwhþ ncÞ; as shown in Snidaro and Foresti.13

The method implemented in CHUNKYEuler yields the same
reduction in time complexity by analyzing change in EC
-C cases. Area and perimeter contributions (equivalent in both 4-C and

) E (4-C) F (4-C) EC (4-C) Perimeter Area

0 0 0 0 0

2 × (0.5) 1 × (0.25) 0.25 1 0.25

3 × (0.5) 2 × (0.25) 0 1 0.5

4 × (0.5) 2 × (0.25) 0.5 2 0.5

4 × (0.5) 3 × (0.25) −0.25 1 0.75

4 × (0.5) 4 × (0.25) 0 0 1

Digital Discovery, 2024, 3, 392–409 | 395
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through changes in which top-dimensional cells are active;
however, only the changes in EC are tracked. Modications
would need to be made to CHUNKYEuler to consider other
topological descriptors proposing new challenges when
considering indirect metrics such as perimeter. GUDHI
computes the so-called persistence homology of a cubical
complex over ltration values using the compressed annotation
matrix method20 and currently cannot benet from the reduc-
tion in time complexity by looking at changes instead of eval-
uating each ltration level. The limitations of GUDHI (in terms
of computational speed) and CHUNKYEuler (in terms of ability
396 | Digital Discovery, 2024, 3, 392–409
to compute diverse descriptors) are overcome by vertex contri-
bution algorithms.

With our implementation of the vertex contribution method,
an array that includes two entries for each contribution type at
each level set value is initialized at zero. Then, for each vertex
neighborhood, the integer values of the pixels are used as the
index to be incremented. As an example, in Fig. 8 we show the
central face neighborhood of Fig. 3; the rst face becomes active
at a value of 0. Subsequently, the vertex contribution with one
active face is incremented as born at index 0. Since the second
face becomes active at a value of 1, the one-face vertex
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 8 Visualization of the contribution of a single vertex neighborhood over its face values.
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contribution is incremented as dying at index 1, and the two-
face diagonal vertex contribution is incremented as being
born. This process continues for each face value until the
maximum value is reached. At this point, the neighborhood will
be lled under the assumption that the maximum value for
ltration exceeds the maximum intensity of faces in the eld.
The only additional step is determining if the rst two face
values are in a diagonal position or not as the two types of 2-face
neighborhoods have different contributions to the topological
descriptors. In the example in Fig. 8, it can be seen that there
will be a diagonal vertex neighborhood as the rst two active
faces are diagonally adjacent. Importantly, the output of this
method is not just the EC curve, but rather an array of the
quantity of vertex contributions of each type that are present at
each level set. This means that one can compute EC, perimeter,
area, and any other descriptors/metrics that can utilize these
vertex contributions as input for each ltration value. The
process of gathering vertex contributions of a 2D eld consid-
ering ltration values using this method is summarized in
Algorithm 1. In the following sections, we propose algorithms
for computing vertex contributions and extend the method to
3D elds.
2.1 Parallel implementation

Parallel implementation follows the same pattern as the serial
implementation but requires: either (i) a vertex contribution
array for each thread, or (ii) a lock-based structure for a global
vertex contribution array. The length of the 2D vertex contri-
bution array would be one more than the number of levels, and
the width would be 10. Although there are 6 vertex contribution
types which would result in an array width of 12, the empty type
contributes nothing to perimeter, area, and EC (see Table 1); in
addition, the number of empty contributions at a given level can
be back-calculated using the total number of vertices. In addi-
tion, when considering lock-based methods, at the entry value,
every vertex will increment the empty contribution at the initial
ltration level, causing a pile-up that could exceed serial
computation time. A standard 8-bit image with pixel values
ranging from 0–255 would require 2570 entries in a vertex
contribution matrix, requiring 10 280 bytes of storage per array
instance using 32-bit integers. In most CPU systems, holding
these arrays in memory is not expensive and can be done easily
for most modern systems, even with one storage array per core
for highly distributed systems. The size of the image in memory
© 2024 The Author(s). Published by the Royal Society of Chemistry
will greatly exceed that of vertex contributions in most cases.
For perspective, if we consider a standard high-denition (HD)
image size of 1280 × 720, the storage for only one color channel
using arrays of unsigned 8-bit integers would require 921 600
bytes of memory, which exceeds the size of approximately 90
vertex contribution arrays. If a vertex contribution array can be
afforded for each thread, Algorithm 2 can and should be used.
The lock-based method for these algorithms will not be
described in detail in this work, however in highly distributed
systems, such as GPUs, a global contribution array with locks
should be used where local or register memory does not exceed
the size of a thread vertex contribution array plus dynamic
memory required to compute vertex contributions. Instead of
increasing the global array values directly, the algorithm would
use a locking system for each increment operation to pre-
vent a data race. A light-weight locking mechanism would be
best for these purposes, such as a spin-lock, which would
reduce overhead of waking up a thread as in a mutex-based
locking system.
2.2 3D eld processing

For processing 3D elds we need to dene vertex contributions
in 3D. To the best of our knowledge, there are no extensions of
the contribution methods of Snidaro and Foresti to 3D elds
reported in the literature. Following the denition in ref. 21,
there are 22 unique types of vertex contribution subject to
symmetry in 3D, binary elds. All 22 unique contributors are
described in Table 2. Similarly, the empty type contributes
nothing to EC, perimeter, area, or volume, so is only back-
calculated in post if desired. This means that with 21 unique
contribution types without the empty type, there are a total of 42
array entries per level. Therefore with an 8-bit 3D data le,
a storage size of 43 176 bytes per vertex contribution array would
be required. Again, the size is not overwhelmingly large and
therefore a 3D extension of Algorithm 2 is sufficient. It should
be noted that many 3D elds, especially those from computer
tomography (CT) scans, can use much higher resolution (e.g.,
14-bit or 16-bit integers). The size of a 512 × 512 × 512 scan
with 16-bit data requires almost 24 times the memory of the
vertex contribution array.

A major difference between the 2D and 3D case is that
diagonal adjacency of cells in the vertex neighborhood must be
determined to differentiate between contributor types in the 3D
case whereas only one adjacency needs to be calculated for the
Digital Discovery, 2024, 3, 392–409 | 397
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2D case. Using the sum of Euclidean distance between all pairs
of points, one can completely differentiate contribution types
and use a running sum to avoid computing the same number
twice. We call this function fadj which is dened as:

fadjðnÞ ¼
Xjnj�1

i¼1

Xjnj

j¼iþ1

kVi � Vjk2: (4)
398 | Digital Discovery, 2024, 3, 392–409
here, n represents the set of vertex coordinates Vi. The 2-norm is
taken to get the Euclidean distance between all coordinate pairs
of the vertices, allowing for distinction between which type of
contribution is present. For instance, with 2 active cells, they may

share only one face (fadj = 1), share only one edge ðfadj ¼
ffiffiffi
2

p Þ; or
share only one vertex ðfadj ¼

ffiffiffi
3

p Þ: Adjacency for all
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 2 3D vertex contributions to EC for the 26-C case along with perimeter, area, and volume contributions

Type fadj V (26-C) E (26-C) F (26-C) Vox (26-C) EC (26-C) Perimeter Area Volume

0 0 0 0 0 0 0 0 0

0 1 3 × (0.5) 3 × (0.25) 1 × (0.125) 0.125 1.5 0.75 0.125

1 1 4 × (0.5) 5 × (0.25) 2 × (0.125) 0 1 1 0.25

1.414 1 5 × (0.5) 6 × (0.25) 2 × (0.125) −0.25 3 1.5 0.25

1.732 1 6 × (0.5) 6 × (0.25) 2 × (0.125) −0.75 3 1.5 0.25

3.414 1 5 × (0.5) 7 × (0.25) 3 × (0.125) −0.125 1.5 1.25 0.375

4.146 1 6 × (0.5) 8 × (0.25) 3 × (0.125) −0.375 2.5 1.75 0.375

4.243 1 6 × (0.5) 9 × (0.25) 3 × (0.125) −0.125 4.5 2.25 0.375

6.828 1 5 × (0.5) 8 × (0.25) 4 × (0.125) 0 0 1 0.5

7.243 1 6 × (0.5) 9 × (0.25) 4 × (0.125) −0.25 3 1.75 0.5

7.560 1 6 × (0.5) 9 × (0.25) 4 × (0.125) −0.25 2 1.5 0.5

7.975 1 6 × (0.5) 10 × (0.25) 4 × (0.125) 0 3 2 0.5

8.293 1 6 × (0.5) 10 × (0.25) 4 × (0.125) 0 2 2 0.5

8.485 1 6 × (0.5) 12 × (0.25) 4 × (0.125) 0.5 6 3 0.5

3.414a 1 6 × (0.5) 10 × (0.25) 5 × (0.125) −0.125 1.5 1.25 0.625

4.146a 1 6 × (0.5) 11 × (0.25) 5 × (0.125) 0.125 2.5 1.75 0.625

4.243a 1 6 × (0.5) 12 × (0.25) 5 × (0.125) 0.375 4.5 2.25 0.625

1a 1 6 × (0.5) 11 × (0.25) 6 × (0.125) 0 1 1 0.75

1.414a 1 6 × (0.5) 12 × (0.25) 6 × (0.125) 0.25 3 1.5 0.75

1.732a 1 6 × (0.5) 12 × (0.25) 6 × (0.125) 0.25 3 1.5 0.75

0a 1 6 × (0.5) 12 × (0.25) 7 × (0.125) 0.125 1.5 0.75 0.875

© 2024 The Author(s). Published by the Royal Society of Chemistry Digital Discovery, 2024, 3, 392–409 | 399
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Table 2 (Contd. )

Type fadj V (26-C) E (26-C) F (26-C) Vox (26-C) EC (26-C) Perimeter Area Volume

0a 1 6 × (0.5) 12 × (0.25) 8 × (0.125) 0 0 0 1

a Adjacency of empty voxels used to avoid more computation.
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congurations of vertex neighborhoods in 3D are included in
Table 2. Also, for the case of 5, 6, and 7 cells active, the position of
the inactive cells, or empty cells, is used to reduce the number of
adjacencies computed. For the sake of brevity, the serial version
for computing 3D vertex contributions is shown in the appendix
in Algorithm 3. When considering memory requirements, the
implementation of a low-memory algorithm for 3D eld pro-
cessing is all the more important. For this case, the 3D algorithm
can be extended exactly the same way as the 2D case, by replacing
the calls to the 8-cell values in the eld le in memory with calls
to read the 8 cell-specic indices from the eld le which is
described in more detail in the following section.
2.3 Low-memory processing

Reading a data le for processing oen requires that the entire
eld is held in memory during execution. To mitigate this, the
samemethod that is utilized for the serial and parallel cases can
be implemented by forgoing reading the whole eld into
memory, and instead reading only the values needed at a given
vertex of the eld from the le directly. To compute a vertex
contribution in 2D, only four values are required to be read into
memory at a given time. Exploiting the le structure in the BMP
le format (for bitmap images), we utilize a low memory version
of Algorithm 1 (lines 9 through 18) and Algorithm 2 (lines 9
through 18) by replacing calls to the eld data (i.e., data[0] )
eld(i − 1, j − 1)) with calls to the raw data le (i.e., data[0] )
read (eld face(i − 1, j − 1))).
3 Computational results

The proposed algorithms were implemented in C++ and invoked
from Python. For the low-memory cases, C++ was also used to
Table 3 Timing results in seconds and million pixels (faces) processed p

Type GUDHI (s) GUDHI (MP

1280 × 720 U 5.31 � 0.16 0.174 � 0.00
1280 × 720 N 5.11 � 0.16 0.181 � 0.00
1920 × 1080 U 14.99 � 0.44 0.138 � 0.00
1920 × 1080 N 14.57 � 0.44 0.142 � 0.00
20 482 U 32.50 � 1.24 0.129 � 0.00
20 482 N 31.35 � 1.07 0.133 � 0.00
40 962 U 151.1 � 4.8 0.111 � 0.00
40 962 N 145.2 � 5.0 0.116 � 0.00

400 | Digital Discovery, 2024, 3, 392–409
read in the partial eld data. A comparison between the GUDHI
soware package18 invoked from Python and the algorithms for
2D and 3D eld analysis shown above was performed and re-
ported in the following sections. The EC was rst computed on
synthetic random elds of standard sizes for 2D and 3D elds.
We then analyze data arising in real applications: microscopy
(2D), molecular dynamics simulations (3D), and hyperspectral
images (3D). For all case studies, data was translated from raw
format (i.e., oat or integer) to integer format using values from
0 to 255. For each case, benet of parallelization was measured
by computing the EC with up to 24 CPU cores. All timing results
were obtained on a 24-core (Intel Xeon E5-2697—2.7 GHz)
computing server with 256 GB of RAM running Red Hat Enter-
prise release 6.10. All data and soware needed for reproducing
the results are shared as open-source code and are available at
https://github.com/zavalab/ML/tree/master/FastTopology.
3.1 Analysis of synthetic random elds

We generated synthetic 2D random elds in order to test the
scalability of the proposed algorithms in a systematic manner.
Standard 2D image sizes of 1280 × 720 and 1920 × 1080 were
tested along with a couple of large square elds of dimension
2048× 2048 and 4096 × 4096. Fields at each size were generated
using 500 random samples of both uniform and random noise to
show run-to-run timing variation. A summary of the results is
provided in Table 3. We can see that the processing time for
computing the EC using parallel Algorithm 2 is nearly 3 orders of
magnitude faster than GUDHI, with serial operation already
being 50 times faster. The speedup obtained using more cores
can be seen in Fig. 9 for a eld of size 2048× 2048. On the le we
show that the total megapixels (MP) processed per second
exceeds 100 when using 24 cores and on the right, the parallel
er second for random 2D fields

s−1) Alg. 2, 24 cores (s)
Alg. 2, 24 cores
(MP s−1)

5 0.0095 � 0.0006 97.7 � 4.7
5 0.0093 � 0.0006 99.3 � 4.9
3 0.0193 � 0.0010 107.4 � 4.1
4 0.0188 � 0.0011 110.8 � 4.6
4 0.0436 � 0.0031 96.5 � 5.3
4 0.0381 � 0.0029 110.4 � 6.0
3 0.207 � 0.024 82.2 � 9.6
3 0.210 � 0.032 81.95 � 13.2

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 9 Timing results for 2D fields of size 2048 × 2048. On the left, the processing speed of faces for Algorithm 2 with 2–24 cores. On the right,
the speedup due to parallelization of Algorithm 2 with 2–24 cores compared to a perfect parallel efficiency line (dashed).
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speedup efficiency is 62%. Processing random elds of similar
size using 8 cores with CHUNKYEuler results in a processing
speed of about 46.5 MP s−1 as reported in ref. 15, compared to
43.3–45.2 MP s−1 using Algorithm 2 with 8 cores. As such, our
implementation is as scalable as that of CHUNKYEuler.

The 3D algorithm was also tested on both uniform and
normal noise for elds of dimensions 128 × 128 × 128 and 256
× 256× 256. Given the larger size of the data and processing time
required, only 100 samples were run for each eld size with both
uniform and random noise. The processing results are summa-
rized in Table 4; a similar trend is observed, as GUDHI takes
nearly 3 orders of magnitude longer than Algorithm 2 using 24
cores. With elds of size 256 × 256 × 256, the parallel imple-
mentation with 24 cores speeds up execution by about 19 times,
Table 4 Timing results in seconds and million voxels/cells processed pe

Type GUDHI (s) GUDHI (MV s−1)

1283 U 42.61 � 1.19 0.0493 � 0.0011
1283 N 42.13 � 1.46 0.0498 � 0.0015
2563 U 472.3 � 15.5 0.0356 � 0.0011
2563 N 470.7 � 12.2 0.0357 � 0.0009

Fig. 10 Timing results for 3D fields of size 256 × 256 × 256. On the left
with 2–24 cores. On the right, the speedup due to parallelization of Algo
parallel efficiency line (dashed).

© 2024 The Author(s). Published by the Royal Society of Chemistry
leading to an efficiency of 75–80% (Fig. 10). For reference,
CHUNKYEuler processes voxels/cells at a speed of 26.6MV s−1 on
3D random elds with similar size,15 compared to 10.4 MV s−1

with Algorithm 2 for 3D, both using 8 CPU cores. The reduction
in speed by our implementation is likely due to the higher
number of comparisons and computation required to determine
adjacency for vertex neighborhood classication. However, this
reduction in speed comes with the benet of more exibility of
enabling computation of alternative topological descriptors.

3.2 Memory analysis

The low-memory version of Algorithms 1 and 2 were also tested
on random 2D elds. First, random matrices of uniform and
normal distribution were generated for elds of size 1920 ×
r second for random 3D fields

Alg. 2 (3D), 24 cores (s)
Alg. 2 (3D), 24
cores (MV s−1)

0.0795 � 0.0067 26.67 � 1.67
0.0765 � 0.0045 27.47 � 1.21
0.602 � 0.020 27.90 � 0.87
0.591 � 0.013 28.38 � 0.61

, the processing speed of voxels for Algorithm 2 with 3D modifications
rithm 2 with 3D modifications with 2–24 cores compared to a perfect

Digital Discovery, 2024, 3, 392–409 | 401
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Table 5 Timing results in million pixels processed per second for the low memory processing algorithm

Type Alg. 1 (MP s−1) Alg. 2, 12 cores (MP s−1) Alg. 2, 24 cores (MP s−1)

1920 × 1080 U 0.346 � 0.005 3.040 � 0.045 4.285 � 0.036
1920 × 1080 N 0.347 � 0.005 2.991 � 0.029 4.159 � 0.047
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1080. Then, the elds were saved as bitmap image les (an
easily readable, raw data format). Finally, the C++ algorithm
directly read and computed the EC for each eld. 500 random
2D elds were generated with statistics on the processing speed
reported in Table 5. There is a drastic processing speed loss
from reading individual pixel values to populate only the 4
values from each vertex neighborhood during computation of
the EC curve. However, even the serial methods are still faster
than GUDHI (see Table 3) and now require theminimal memory
to compute the EC curve. Also, data beyond the size of working
memory can be analyzed given that this is a streaming
approach, similar to that used in CHUNKYEuler.14 In addition,
only 2D elds were explored here and memory management
issues are even more important in the 3D case. Similar slow-
down should be expected, if not slightly more, given the
increase in values analyzed at each neighbourhood from 4
faces/pixels (2D) to 8 cells/voxels (3D).

3.3 Microscopy case study

Liquid crystal sensors elicit optical responses in the presence of
target compounds or contaminants. The concentration and
Fig. 11 Filtration process for various liquid crystal micrographs. For some
150 while other concentrations show activity at low filtration values.

402 | Digital Discovery, 2024, 3, 392–409
environment in which the target compound binds to the liquid
has signicant impact on the topological state of the system. In
this case study, data presented in Jiang et al.1 was used to
benchmark real data and explore the potential of real-time
analysis. The system we are showcasing here is analysis on
a gas-based liquid crystal detection system with varying sulfur
dioxide (SO2) concentrations, from 0.5 ppm to 5 ppm, in an
environment with 40% relative humidity. An example of how
ltration values impact the topology of the system is shown in
Fig. 11.

As shown in Fig. 12, the optical responses at differing SO2

concentrations have distinct EC curves. On a liquid crystal
micrograph plate, anywhere from 1 to 36 fully readable grid
squares may be used to predict the state of the system. There-
fore, the speed at which the images are read dictates how close
to real time the sensor can be monitored.

In Table 6, with image sizes that are so small (approximately
134 × 134 for each grid-square), parallelization does not receive
the same benet as the larger eld data as explored above.
There is even a performance decrease by using more than 12
concentrations of SO2, no activity occurs until over a filtration value of

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 12 Varying concentration of SO2 in the system changes both the optical response and the topological description of the image through the
EC. The optical response and subsequent EC curve are shown for 0.5 ppm, 1 ppm, 2 ppm, and 5 ppm SO2 systems in 40% relative humidity.

Table 6 Timing results in million pixels processed per second for the liquid crystal sensor case study

Type GUDHI (MP s−1) Alg. 1 (MP s−1)
Alg. 2, 12 cores
(MP s−1) Alg. 2, 24 cores (MP s−1)

SO2 images 0.332 � 0.009 6.268 � 0.171 11.33 � 0.49 9.449 � 0.225
Random elds 0.271 � 0.009 6.127 � 0.132 11.20 � 0.39 9.600 � 0.223

Fig. 13 Water densities from simulations of fructose with various cosolvent species listed.
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cores for parallel computation; however, the data is processed
about 20–30 times faster than GUDHI.
Fig. 14 EC curve evolution with 3D binary fields at various filtration
values.
3.4 Molecular dynamics data

Simulations that result in 3D elds are also relevant to the
algorithms provided in this work. One such example is
molecular dynamics simulations, where chemical systems can
be simulated to understand molecular-scale interactions
between participating species. Here, we analyze a system
shown by Chew and co-workers,22 and later with the EC by
Smith and co-workers.12 The simulations capture molecular
interactions of biomass reactants in cosolvent/water mixtures.
As an example, Fig. 13 shows the density of water molecules in
a 20 × 20 × 20 grid for fructose in three different cosolvent/
water systems with 10 weight% water. The topology of the
solvent environment has been shown to correlate strongly with
reactivity. The process of ltering one of these elds is shown
in Fig. 14.

The small size of the data set shows much less scaling
advantage for the parallel case, as shown in Table 7. Although
© 2024 The Author(s). Published by the Royal Society of Chemistry
the timing advantage is less, the proposed algorithm is still one
order of magnitude faster than GUDHI. To process the entire
data set, GUDHI took 56.6 seconds, while the serial algorithm
Digital Discovery, 2024, 3, 392–409 | 403

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3dd00226h


Table 7 Timing results in million cells processed per second for the molecular dynamics case study

Type GUDHI (MC s−1) Alg. 1 (3D) (MC s−1)
Alg. 2 (3D), 12
cores (MC s−1)

Alg. 2 (3D), 12
cores (MC s−1)

MD elds 0.108 � 0.004 1.065 � 0.025 2.105 � 0.111 1.853 � 0.045

Fig. 15 EC Curves for each cosolvent system.

Fig. 16 Visualization of hyperspectral image data. Here, a near infrared
image with 6 selected wavelengths (l) is illustrated. In totality, the
hyperspectral image has 252 unique wavelengths.
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took 5.7 seconds, and 12-core parallel implementation took 2.9
seconds. The EC curve of each solvent system is shown in
Fig. 15.
Fig. 17 RGB equivalent images of kiwifruits presenting with varying ripen
not without feeling the firmness of the kiwifruit.

404 | Digital Discovery, 2024, 3, 392–409
3.5 Hyperspectral image data

Another example relevant to the chemical sensing community is
hyperspectral image analysis. In this research domain, each
pixel of a 2D image has a spectral dimension, meaning each
pixel of the image is associated with a unique spectra. This
requires each image to be analyzed in 3D to take full advantage
of the information contained in the spectral dimension. One
can view each spectral wavelength as a 2D image, as shown in
Fig. 16.

A sample data set on the ripeness of fruits23 is used to
benchmark the performance. Hyperspectral images were taken
of both the front and back of the fruit each day. Fruits were
removed from the set when considered overripe. A total of 360
hyperspectral images make up the kiwifruit data set. Some
sample images translated from visible spectra to RGB are shown
in Fig. 17, where it is clear that using only RGB, it is difficult to
tell which kiwifruit is ripe, overripe, or under ripe.

Statistics on the processing speed are shown in Table 8. The
processing time for these images was removed as a column of
the table due to the varying size of the images and instead
strictly analyzed processing speed in MV s−1, similar to the
liquid crystal case study. For comparison, the EC curve from
ltering the hyperspectral images of ripe, overripe, and under
ripe kiwifruits are shown in Fig. 18.

4 Discussion

Using Algorithms 1 and 2 in both 2D and 3D eld data, we nd
that there is a clear scaling advantage in both time and
memory usage while computing EC when compared with off-
the-shelf computational tools such as GUDHI. Also, when
compared to state-of-the-art parallel implementations, such as
CHUNKYEuler, there is comparable speed. The time
complexity of CHUNKYEuler and the algorithms presented in
ess levels. RGB alone is difficult to discern whether a kiwifruit is ripe or

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 8 Timing results in million voxels processed per second for the hyperspectral imaging case study

Type GUDHI (MV s−1) Alg. 1 (3D) (MV s−1)
Alg. 2 (3D), 24
cores (MV s−1)

Kiwifruit images 0.0701 � 0.0078 1.973 � 0.112 34.57 � 2.38
Random elds 0.0427 � 0.0031 1.506 � 0.006 28.19 � 1.02

Fig. 18 EC Curves for each stage of kiwifruit ripeness.

Fig. 19 Speedup curve through parallelization for processing liquid
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this work are nearly identical, as both methods stem from the
same principle that using change in features is more compu-
tationally scalable than counting features at each ltration
value.

For the microscopy case study for liquid crystals, the
average size of images in that data set was 134 × 134, or 17
956 pixels, meaning that it would require a processing speed
of 19 MP s−1 to fully process a liquid crystal sensor with 36
readable grid-squares at a video frame rate of 30 frames per
second (FPS). Considering control applications, the serial
version of the tool is capable of processing 11 grid-squares in
real-time considering a 30 FPS video. However, some control
applications will not require the reading of all 36 grid-
squares, or reading data as quick as 30 measurements per
second. Also, when implementing a complete control
scheme, the time required to read and crop the raw video
data to these processable grid-squares must be considered,
introducing a time delay between measurement and data
reconciliation.

Also, the potential limitations of parallelization are
noticed when considering the microscopy case. For larger
random elds for benchmarking, more cores yielded signi-
cantly faster performance, whereas in the liquid crystal case
study, more cores did not yield favorable speedup. This is
seen with a peak efficiency at about 12 cores before dropping
as more cores were used (Fig. 19). This analysis does not
consider simply using Algorithm 1 for each individual image,
but running the dispatch of the image analysis in parallel
(which may increase throughput). This highlights the
importance to design a computational framework that accu-
rately addresses data analysis and data structure from case to
© 2024 The Author(s). Published by the Royal Society of Chemistry
case. This is especially relevant in the case of designing
lightweight, standalone sensors with limited computational
capabilities.

The molecular dynamics study shows similar trends as the
microscopy study, indicating the data was small enough that
parallelization did not realize the same benet as random 3D
elds of larger size. However, this framework is capable of
handling molecular dynamics simulations which may include
thousands or millions of molecules. This becomes especially
relevant with the more recent use of parallel computation
using GPUs to accelerate computations in density functional
theory24–26 where more detailed or holistic simulation results
can be analyzed quickly. The granularity of the grid (20 × 20 ×

20) could be expanded to have more ne-grained analysis on
larger systems and see signicant speed-up similar to that
found in the random 3D elds analyzed earlier. Also, any 3D
eld data that can be translated to a cubical lattice may be
analyzed in the same way. For instance, computational uid
dynamics data with millions of nite elements could be
analyzed for trends in EC which could transform large-scale,
ne-grained data into a feasible size for input into a predic-
tion algorithm without losing important topological infor-
mation. For reference, a couple of computational uid
dynamics simulations were analyzed to demonstrate scal-
ability: rst, a 302 × 302 × 302 element simulation of heptane
gas undergoing combustion (The University of Utah Center for
the Simulation of Accidental Fires and Explosions), took 405
seconds for GUDHI, and 3.5 seconds for Algorithm 3 in
parallel with 4 cores; and second, simulation of duct ow27 of
size 193 × 194 × 1000 took GUDHI 673 seconds, whereas
crystal images. Perfect speedup line shown for reference.
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Algorithm 3 in parallel with 4 cores took 5.5 seconds. Clearly,
scaling advantages exist in these data-rich applications.

For the hyperspectral image case study, the size of the
images indicated that parallelizing the identication of vertex
contributions was economical. The average size of images in
this data set was 6.88MV, meaning it takes about 100 seconds to
process a single hyperspectral image with GUDHI, 3 seconds in
serial with Algorithm 1 in 3D mode, and only about 0.2 seconds
when using Algorithm 2 in 3D mode with 24 cores. Applications
where sensors are developed with a hyperspectral camera may
require processing speeds that allow data analysis at speeds
faster than those presented in this work. However, in certain
applications, such as monitoring pharmaceutical powder
composition, standard sampling times for single-sample anal-
ysis (only spectral dimension; no 2D image component) with
near infrared sensors can be on the order of 5–15 seconds.28 On
the other hand, commercially available hyperspectral cameras
can achieve frame rates that could facilitate real-time data
collection and analysis.29 Once again, understanding the needs
of the system and the dynamic response to control actions
should be considered case-to-case when implementing
topology-informed control schemes to hyperspectral data.

An important distinction with respect to hyperspectral
imaging is that we used the raw data for the case study. Per-
forming dimensionality reduction in hyperspectral image is not
uncommon, for instance, using principal component analysis
to reduce the number of wavelengths used in the spectral
dimension.30 Reducing the number of wavelengths through
dimensionality reduction or selecting regions that are known to
contain the most important topological information could
reduce computation time enough to process these 3D hyper-
spectral images in real time as well.

Also, the output of this tool is not just the EC curve, it is the
vertex contribution map over the ltration values. Thus, by
simply changing the weights each vertex contributes to an
overall topological descriptor, the same vertex contributionmap
can be used to compute any number of topological descriptors
as a function of vertex contributions. Also, connectivity need not
be assumed in the beginning, as the connectivity only impacts
the weights, not the vertex types. This allows for analyses to
identify that alternate denitions of connectivity may be more
suitable for a given physical system without reanalyzing the
entire data set.

With this being said, sensitivity of the system to connectivity
can be explored alongside sensitivity of topological descriptors
to image resolution, number of ltration values, or image pre-
processing techniques. It is commonplace to blur images or
treat images with another convolutional operator while utilizing
neural networks in machine learning. However, in this work, we
use the raw data for both applications. Since the tool is scalable
and allows for large-scale analysis, performing studies to
406 | Digital Discovery, 2024, 3, 392–409
understand which combination of resolution, number of
ltrations, preprocessing technique, and connectivity type may
lead to more topologically-based physical intuition of chemical
systems discerned through eld/image analysis.
5 Conclusions

In this work, we presented algorithms addressing the scalable
computation of vertex contributions in eld data. Ultimately,
the tool was tested using EC, but the analysis that can be done
with vertex contribution maps is not limited just to EC. The
speedup was signicant, 2 to 3 orders of magnitude, when
compared with a common package used for topological
persistence in Python (GUDHI). Also, recent advancement of the
CHUNKYEuler soware show similar timing capabilities, indi-
cating that methods that address changes in topological
contributions are much more scalable than counterparts that
compute topological characteristics at each level of a ltration
set.

Future research directions could address the usage of vertex
contribution maps for more complex topological descriptors,
such as the fractal dimension. Also, generalizing these methods
to larger dimensions (4D data, such as hyperspectral imaging
with a temporal dimension) requires the set of unique vertex
contributors for a given dimension. The number of unique
contributors and subsequent impact on scalability in terms of
computational time and storage for vertex contribution
methods in higher dimensions is an open question currently
being explored by the authors. In terms of low memory
methods, CHUNKYEuler uses chunks of each image, whereas
the low memory version of Algorithms 1 and 2 reads only the
minimum data required to compute the EC curve. Exploration
into the optimal decomposition scheme for a cubical eld/
image could be an interesting direction for research, as
having minimum data representations is good for memory
scaling, but results in a slow down of just over an order of
magnitude.

Also, generalizing vertex contributions to regular, non-
cubical lattices, or even more generally to Voronoi cells, with
sets of vertex contributions corresponding to the degree of that
vertex could be impactful for data that is not in a classical
cubical layout that physical elds/images possess. Ultimately, if
an efficient method exists to compute vertex contribution maps
of these more abstract structures, one could calculate a plethora
of topological and general system descriptors to control or
characterize complex andmore abstract physical systems in real
time.
6 Appendix

3D algorithms.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Data availability

Algorithms, data, and processing scripts for this paper,
including the liquid crystal case study data in the form of .png
© 2024 The Author(s). Published by the Royal Society of Chemistry
les, are available within the Zavalab/ML Github repository in
the FastTopology folder (https://github.com/zavalab/ML/tree/
master/FastTopology). The molecular dynamics case study
data is represented as 3D numpy array data, and is found in
Digital Discovery, 2024, 3, 392–409 | 407
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the Acid_Catalyzed_Reactions_Train_Test_Data.zip le, found
in the Zavalab/ML Github repository in the MDEuler folder
(https://github.com/zavalab/ML/tree/master/MD_Euler). The
hyperspectral imaging case study data is available at https://
cogsys.cs.uni-tuebingen.de/webprojects/DeepHS-Fruit-2023-
Datasets/ which originally was disseminated as part of
a publication: 10.1109/IJCNN52387.2021.9533728. Files to
process both the molecular dynamics data and hyperspectral
imaging data are included at the original FastTopology folder
(https://github.com/zavalab/ML/tree/master/FastTopology).
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