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Multi-task scattering-model classification and
parameter regression of nanostructures from
small-angle scattering dataf

Batuhan Yildirim, 2> James Doutch® and Jacqueline M. Cole (& *2b¢

Machine learning (ML) can be employed at the data-analysis stage of small-angle scattering (SAS)
experiments. This could assist in the characterization of nanomaterials and biological samples by
providing accurate data-driven predictions of their structural parameters (e.g. particle shape and size)
directly from their SAS profiles. However, the unique nature of SAS data presents several challenges to

such a goal. For instance, one would need to develop a means of specifying an input representation and

ML model that are suitable for processing SAS data. Furthermore, the lack of large open datasets for
training such models is a significant barrier. We demonstrate an end-to-end multi-task system for jointly
classifying SAS data into scattering-model classes and predicting their parameters. We suggest a scale-
invariant representation for SAS intensities that makes the system robust to the units of the input and

arbitrary unknown scaling factors, and compare this empirically to two other input representations. To
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address the lack of available experimental datasets, we create and train our proposed model on 1.1

million theoretical SAS intensities which we make publicly available. These span 55 scattering-model
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1 Introduction

Small-angle scattering (SAS) (of X-rays, neutrons or optical
light)** are widely used experimental procedures for probing
the nanostructure of materials, polymers, proteins and other
biological matter. Relationships between observable experi-
mental scattering intensities and the morphology of the scat-
terers can be exploited to shed light on the underlying structure
of a sample, including the structure of individual scatterers as
well as their inter-particle distance distribution functions.
Following the acquisition of SAS data from a sample, data
analysis is generally carried out in software such as SasView
(http://www.sasview.org/), in which a library of many possible
scattering models are available. Scattering models are
analytical expressions that result from integrating the
scattering density of a shape over 3-D space (see Fig. 1 for an
example). These expressions can have many structural
parameters that influence the profile of the resulting SAS
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classes with a total of 219 structural parameters. Finally, we discuss applications, limitations and the
potential for such a model to be integrated into SAS-data-analysis software.

intensity. The goal of SAS-data analysis is typically to deter-
mine these unknown parameters using least-squares fitting of
theoretical models to experimental data. Predictive analytics
deployed at the data-analysis stage of SAS experiments could
assist researchers in characterizing their samples by providing
accurate estimates of model-function classes to try, as well as
estimates of morphological parameters. Such tools may speed
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Fig.1 An example of an idealized scattering model and the scattering
intensity, /(q), it produces. This particular model represents the scat-
tering from an ellipse with polar and equatorial radii of 549.6 and 720.7
Arespectively. In this case, the scattering intensity is a function of g and
the radii parameters that are specific to ellipsoids.
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up analysis of SAS data by nudging experts in the right direction
and removing some guess work from the procedure.

Machine-learning (ML) models that take as input SAS
intensities and estimate scattering-model classes and their
parameters have the potential to be integrated into SAS-data
analysis software, although there are several challenges that
must first be addressed. The lack of large sets of experimental
data labeled with scattering-model classes and their parameters
means that such models must be trained on synthetic data,
which raises questions of generalizability. Additionally, SAS
intensities in their raw form are not particularly suitable as
inputs to ML models. They can span several orders of magni-
tude in intensity and have arbitrary scale factors and additive
background shifts that make it difficult to attribute a single SAS
intensity to a particular scattering-model class and set of
parameters. For such a system to be practically useful as a data-
analysis tool, uncertainty quantification is likely to be an
important feature. In cases where the input experimental data
are noisy, or when the data result from a structure with a scat-
tering-model class that is unknown to the ML model, we
should expect high uncertainty values. This will allow sensible
conclusions to be drawn in the cases where input experimental
data are out-of-distribution relative to the training data. Small-
angle neutron scattering (SANS) data pose additional challenges
as instrumental resolution functions (i.e., smearing parame-
ters), that are unique to individual SANS instruments, can cause
variability in data resulting from the same sample measured
using different SANS instruments.

We endeavor to address some of these challenges in this
work. Thereby, we create the SAS-55M-20k dataset, consisting of
1.1 million theoretical 1-D SAS intensities with corresponding
discrete scattering-model classes and their continuous param-
eters.” This dataset is made publicly available alongside this
paper, including the training and test splits to ease bench-
marking of any future models trained on this dataset. Full
details on the construction and composition of the dataset can
be found in the ESI.f We propose a simple scale invariant
representation of SAS intensities that is suitable for input to ML
algorithms, and empirically compare this to two other scale
invariant representations (including one which is commonly
used in the literature). Primarily, we present a multi-task
transformer neural network that takes as input a 1-D SAS
intensity and jointly estimates the scattering-model class that
produced it (classification), as well as the continuous parame-
ters of the scattering model (regression), and evaluate its
performance on both tasks. Finally, we discuss some limitations
and propose ways in which the data and model may be
improved to be more applicable to real 1-D SAS data.

1.1 Related work

Recently, there have been many studies that apply ML to 1-D X-
ray and neutron scattering data to predict structural parameters
and properties of a variety of organic and inorganic
structures.®>° We briefly highlight the few that are most relevant
to our work. Franke et al. developed a ML technique to analyze
SAXS data, categorizing biomolecules into distinct shapes and
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estimating their structural parameters.® They first assembled
and normalized a dataset consisting of ideal SAXS signals of
biological macromolecules, which they further represented in
a three-dimensional feature space where each feature is a Porod
invariant calculated with differing parameters. The authors fit
two k-nearest neighbors (KNN) models to this data for shape
classification and structural parameter estimation. Molo-
denskiy et al. employed a simple multi-layer perceptron with
a single hidden layer to predict molecular weights (MW) and
maximum intra-particle distances of nucleic acids and folded/
intrinsically disordered proteins from small-angle X-ray scat-
tering (SAXS) data.® They simulated SAXS data from experi-
mentally determined protein structures* and used this to train
and evaluate their models. They showed that their model was
able to predict MW with smaller errors than several analytical
methods while relying on fewer assumptions in comparison.
This work shows that neural networks can be employed to
accurately estimate structural parameters from SAS data, and
hints at their potential to be integrated into SAS-data-analysis
toolkits for fast and reliable analysis. Butler et al. applied con-
volutional neural networks to inelastic neutron scattering data
to discriminate between magnetic phases of half-doped
magnetites.”” Since their model was trained on synthetic data,
they integrated uncertainty quantification into their method
such that when applied to real experimental data, the reliability
of predictions can be assessed. Most relevant to our work are the
methods developed by Archibald et al.” They applied ML
methods, namely weighted kNN and Gaussian processes, to
classify SAS data into several scattering-model classes that are
available in the SasView package. Given input SAS data and
a predicted model class, they used a stochastic gradient-descent
fitting procedure to obtain the parameters of the model class
that produced the input data. Lutz-Bueno et al introduce
a model-free classification method for small-angle and wide-
angle X-ray scattering signals, where they use only the inflec-
tion points of a signal as features for a clustering and
segmentation model.” By using only the inflection points as
features for their model, they reduce the dimensionality of the
input data significantly and simplify the analysis of large data-
sets as demonstrated through applications in segmenting
mudrock and tissue samples. Finally, in a novel approach to SAS
analysis, Heil et al. present a method that concurrently deter-
mines the form and structure factors in dense macromolecular
solutions.”® Termed CREASE, this method employs a genetic
algorithm to transform SAS intensity data into a real-space
particle configuration. Form and structure factors are derived
from this configuration using either the Debye scattering
equation or an auxiliary machine learning model. The efficacy
of CREASE is underscored by its ability to produce form and
structure factors that more accurately align with target scat-
tering profiles than traditional analytical methods.

2 Results and discussion
2.1 Dataset construction and composition

The data used in this work were generated with SasView and the
sasmodels package (version 0.96) using open-source code
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written by Archibald et al.” We used 55 of the 73 scattering-
model classes that are available in SasView to generate 20 000
idealized SAS intensity functions of dilute (i.e., structure factor
S(q) = 1) systems from each class with parameters sampled
randomly in each case. We have ensured that general parame-
ters common to all model classes, including polydispersity and
scattering length densities for solvents and model-specific
features, were randomly sampled for each instance in our
dataset. This effectively ensures that models trained on this
data, including ours, are robust to varying ranges of poly-
dispersities and contrasts. In each case, the scattering intensi-
ties were generated with fixed volume fractions (i.e., sample
concentrations) and background constants (full details on how
parameters were sampled can be found in Archibald et al.”). The
total number of scattering-model parameters across all 55
classes is 219. Some model classes were excluded because they
were computationally infeasible (i.e., too slow) to compute or
caused out-of-memory errors. The resulting dataset comprised
1.1 million samples, which we split into training and test data
using a 80 : 20 split. We call this the SAS-55M-20k dataset, and
we provide both training and test sets through this publication
to facilitate further work on applying ML and other computa-
tional methods to 1-D SAS intensities with known parameters.
Details on how to download the SAS-55M-20k dataset® can be
found at https://github.com/by256/sasformer.

2.2 Input representation

A SAS intensity function, I(g), refers to the intensity of the scattered
neutron/X-ray beam as a function of the magnitude of the scat-
tering vector g = 41 sin(6)/4, where 6 is the half-angle between the
incident beam and a detector. Using raw I(g) data as input to
neural networks presents some challenges. SAS intensities can
span several orders of magnitude in scale, while neural networks
typically work best with standardized inputs that have zero mean
and unit variance. Moreover, the scale of I(g) depends on arbitrary
scaling factors that result from experimental or sample conditions
as well as the units used to describe the function. Consequently,
although a structural system may be characterized by a single
model function specified by a particular set of parameters, various
scale factors and units can afford a potentially large number of I(g)
functions that could describe the same system. Thus, a scale
invariant input representation is required.
To achieve scale invariance, we apply what we call
a “quotient transform” to I(g). If I(g,) and I(g,.,) are the scat-
tering intensities at indices n and n + 1 of a discretized I(q)
I(gn+1)
1(qn)
transformation, any scale factors (such as those occurring from
sample concentrations) are cancelled as can be seen by
considering if sI(q) is a scattered intensity scaled by an arbitrary
scale factor, s, then the quotient transform of sI(g) is

il 1
% = M Formally, the quotient transform of I(g) is
n

1(gn)

expressed as:

function, the quotient transform is By applying this

(q +dq)

QT(() = 14 )
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In practice, we take the logarithm of the quotient transform
to reduce the variability between classes of scattering-model
functions that are present in the data. This can be interpreted

as a difference transform in  log-space  since
log (I(CIIFrT)dq)) =log I(q +dq) —log I(g). Examples of SAS
intensities and their log-quotient transforms are shown in
Fig. 2.

Besides enabling inputs to be tokenized, discretizing the input
has two other notable benefits. Firstly, by forcing the input values
into a set number of bins, small fluctuations in the input are
eliminated, increasing the signal-to-noise ratio. This can be
particularly useful for experimental SAS data which tend to be
noisy. The second benefit is that discretizing the input makes any
subsequent ML model trained on these inputs somewhat robust to
background shifts that are commonly present in experimentally
obtained SAS data. These additive background constants are often
observed to be in the range of 0.001 to 0.01 and the discretizing
process neutralizes them since they are so small relative to the
range of values that is spanned by SAS data, particularly at lower g
values. In our method, quotient transformed data are discretized
using an ordinal encoding scheme and a quantile-based binning
strategy. The ordinal encoding scheme transforms continuous
input values into discrete bins represented by integer values, where
each bin corresponds to a specific range of the continuous input.
The quantile-based binning strategy ensures that an equal number
of data points are in each bin. This is particularly useful for
handling skewed distributions, which some portions SAS intensi-
ties can be when compared across scattering models and across
the entire dataset.

2.3 SAS transformer

A neural network was chosen for this problem as these types of ML
models can be flexibly constructed to create architectures with
multiple inputs and outputs, while most other ML models can not.
The problem of predicting a scattering-model class and its
parameters is multi-task in nature, so we employed an encoder-
decoder architecture with two decoders: one for scattering-model
class classification and one for scattering-model parameter
regression. Besides being state of the art for sequence
modeling,” the fact that transformers support masked inputs
make them particularly suitable for SAS data modeling. The g
values spanned by experimental SAS data depend on experimental
setup choices and instrumental limitations such as the size of the
detector surface, size of the direct beam stop, detector pixel size,
beam wavelength, etc. Thus we expect to see a variety of g-ranges in
real experimental SAS data. During training of our model which is
trained on synthetic data with a fixed g-range of [0.001, 1.0] A", we
can mask inputs beyond a randomly selected g value (e.g:, 0.5 A™")
since batches of data are sampled at each training step, making
the model robust to inputs with different g-ranges. If the trained
model is subsequently used for prediction on real SAS data, one
can simply append dummy I(g) values until the g-range of the
input data matches that of the training data, and mask these
values such that the model does not consider them during
processing.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Illustration showing log-scaled /(q) samples from the SAS-55M-20k dataset (top row) and their discretized log quotient transformed
versions (bottom row). The y-axes in the bottom row represent the bin of the value after discretization. The x-axes in both rows range from 0.001
to 1.0 A~%. The quotient transform appears to exaggerate minor features in /(q). (a) Core shell ellipsoid model (equatorial radius of core — 285.833
A; shell thickness at equator — 75.221 A; axial ratio of core — 4.956 A; ratio of thickness of shell at pole and equator — 9.349). (b) Linear pearls
model (radius — 19.165 A; length of string segment — 13.311 A: number of pearls — 5). (c) Fractal core—shell model (fractal dimension — 2; radius —
28.511 A; volume fraction — 0.041; shell thickness — 27.699 A: correlation length — 116.349 A). (d) Lamellar stack paracrystal model (lamellar
spacing — 8.691 A sheet thickness — 26.484 A; number of layers — 116).
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Fig. 3 Data pre-processing steps and SASformer model overview. The input is a quotient transformed and discretized /(q), which is tokenized
and position encoded resulting in a matrix X e R>*F where S and F are the sequence and feature dimensionalities, respectively. A cross-attention
layer then transforms this to a latent representation Z e R™*F with a smaller sequence dimension (T < S) for efficient processing by N subsequent
self-attention blocks. The latent representation is then passed through two decoders (that are single cross-attention blocks), one that outputs
a probability distribution over all scattering-model classes m and another that outputs a P-dimensional vector of continuous parameters for all
scattering-model classes. Using an efficient variant of the transformer?* architecture called Perceiver 10,2*2¢ we developed a neural network to
characterize small-angle scattering data into a scattering-model class and its parameters. We call our model SASformer.

We now provide a high level overview of transformers and functional parameters of the scattering model. The main
attention in the context of our model's architecture, but we refer ~component of both the encoder and decoders is the attention
the reader to Vaswani et al.>* and Jeagle et al.** for full details on mechanism,
attention and Perceiver 10, respectively. The SASformer archi-

tecture (Fig. 3) consists of (a) an encoder that maps inputs to XW,, self-attn.
a space with a smaller number of latent feature vectors for Q=< ZW,, cross-attn. (diff. input) (2)
efficient processing; (b) two decoders - one for classifying the bo, cross-attn. (param.)

scattering-model function and another for predicting the
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K=XWgV=XWy, (3)
oK T>
A=o¢ ; Attn(Q, K, V)= AV, 4
(%) Aun ) (@)
where X is the input, o(x;) = _OXPx) is the softmax function
>_exp(x))
J

and dg is the feature dimensionality of K. Q, K and V are queries,
keys and values, respectively, which can vary depending on
whether self-attention or cross-attention is being performed on
the inputs (eqn (2) and (3)). The former entails linear projec-
tions of the input array by a parameter matrix, hence the name
‘self’-attention, since queries, keys and values are all computed
from the same input. The latter involves keys and values that are
computed from the input array, while the query is either
computed from a distinct and separate input (Z in case 2, eqn
(2)) or it can be a learnable parameter matrix (6, in case 3, eqn
(2)); thus it is known as cross-attention. Following Perceiver IO,
the SASformer architecture employs self-attention and cross-
attention with parameter-only queries at various stages.

2.3.1 I(q) encoder. The bulk of the SASformer model is the
encoder, which starts by applying a single cross-attention
module with a parameter-only query matrix to the tokenized
and position encoded input feature vectors. Full details of the
input preprocessing steps can be found in the ESIL{ This
produces a latent representation in which the input sequence
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dimension of length S has been transformed into a smaller
sized index dimension T (7 < S). In this latent representation, all
feature vectors are weighted combinations of the input feature
vectors, so the values no longer represent a sequence but an
interpolation of all input sequence values. As a result of the
lower dimensionality, this latent array can be processed more
efficiently by subsequent self-attention modules in the encoder.
Twelve self-attention modules are applied after the initial cross-
attention module to produce the final latent I(g) matrix.

2.3.2 Scattering model and parameter decoders. The SAS-
former model incorporates two decoders: one for scattering-
model classification and one for scattering-model parameter
regression. Each decoder takes as input the latent I(g) array
produced by the encoder. Each decoder consists of a single
cross-attention module, that aggregates latent feature vectors by
an input-dependent weighted average and projects this to an
output dimensionality that is dependent on the task. The
output dimensionality of the classification decoder is 55, which
is the number of scattering-model classes in the training data,
and is 219 for the regression decoder, which is the total number
of scattering-model class parameters in the training data.

2.4 Scattering-model classification

To assess how well SASformer can correctly classify SAS inten-
sities into scattering-model classes, we used accuracy and top-3
accuracy as our primary metrics. Top-3 accuracy can be

Table 1 Classification accuracy and top-3 accuracy on the SAS-55M-20k test set. Both metrics range between 0 and 1. Arrows in column

headers indicate whether higher or lower is better

Scattering model Acc 1 Top-3 Acc 1 Scattering model Acc 1 Top-3 Acc 1
Adsorbed layer 1.0 1.0 Lamellar stack paracrys. 0.994 1.0
Binary hard sphere 0.997 0.998 Linear pearls 1.0 1.0
Broad peak 1.0 1.0 Lorentz 1.0 1.0
Core multi shell 0.934 0.991 Mass fractal 1.0 1.0
Core shell bicelle 0.837 0.956 Mass surface fractal 1.0 1.0
Core shell cylinder 0.821 0.967 Mono Gauss coil 0.994 1.0
Core shell ellipsoid 0.888 0.969 Multilayer vesicle 0.987 0.996
Core shell sphere 0.777 0.977 Onion 0.894 0.968
Correlation length 1.0 1.0 Parallelepiped 0.888 0.98
Cylinder 0.906 0.984 Peak Lorentz 1.0 1.0
Dab 1.0 1.0 Pearl necklace 0.998 0.999
Ellipsoid 0.897 0.977 Poly Gauss coil 0.963 1.0
Elliptical cylinder 0.932 0.988 Polymer excl. volume 0.994 1.0
Flexible cylinder 0.966 0.984 Porod 1.0 1.0
Flexible cylinder elliptical 0.998 1.0 Power law 0.998 1.0
Fractal 0.938 0.993 Raspberry 0.994 0.999
Fractal core shell 0.879 0.938 Rectangular prism 0.79 0.982
Fuzzy sphere 0.896 0.999 Sphere 0.88 0.998
Gauss Lorentz gel 0.976 1.0 Stacked disks 0.964 0.992
Gaussian peak 0.997 1.0 Star polymer 1.0 1.0
Gel fit 0.978 0.999 Surface fractal 1.0 1.0
Guinier 1.0 1.0 Teubner strey 0.994 1.0
Hollow cylinder 0.911 0.969 Triaxial ellipsoid 0.917 0.991
Hollow rect. prism thin walls 0.957 0.998 Two Lorentzian 0.997 1.0
Lamellar 1.0 1.0 Two power law 0.976 1.0
Lamellar hg 0.988 1.0 Unified power rg 0.997 1.0
Lamellar hg stack caille 0.948 1.0 Vesicle 0.996 1.0
Lamellar stack caille 0.982 1.0 — — —
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calculated since the classification output of the model is
a probability distribution over all scattering-model classes. In
calculating top-3 accuracy, we label an output as correctly
classified if the top-3 output probability estimates contains the
ground-truth scattering-model class for an input instance. Since
the test dataset we used is considered balanced, as there are
exactly 4000 instances of each scattering-model class, it was not
necessary to use precision and recall to evaluate classification
performance. As a baseline for the classification task, we used k-
nearest neighbors (kNN) with k = 5 to predict the scattering
model class of each instance in the test set. The kNN classifier
was trained on the same training set as SASformer and tested on
the same test set. The baseline model achieved an average
accuracy and average top-3 accuracy of 0.713 and 0.857,
respectively. The full results of the baseline model's classifica-
tion performance on each individual model class are presented
in the ESL}

Averaged over all scattering-model classes, accuracy and top-
3 accuracy are 0.95674 and 0.99257, respectively. If such
a model is incorporated into SAS-data-analysis software, the
exceptional top-3 accuracy suggests that proposing the 3 most
probable scattering models is likely to be more informative to
a user, since the top-3 classification predictions almost always
contain the true scattering-model class. Inter-scattering model-
classification results are presented in Table 1, where the values
of the metrics make it clear that some scattering models are
more difficult to predict than others. We observed that most of
the errors result from misclassifying a scattering-model as
a different but similar model from the same family - a group of
related scattering-model classes. For example, when the input
has a ground-truth class label of sphere, the model occasionally
misclassifies these as belonging to either the core-shell sphere,
ellipsoid, fractal (fractal-like aggregates of spheres) or fuzzy
sphere classes. This is unsurprising, as these classes are all
from the sphere family and hence represent similar scattering
systems where the scatterers are slightly different forms of
spheres. The analytic formulae of the scattering functions of
these classes all share very similar form-factor components and
as a result, produce scattering intensities with similar shapes
and features that can be hard for a neural network (and even
a human expert) to distinguish from each other. The same is
observed for scattering models of the parallelepiped family
(parallelepiped, rectangular prism, hollow rectangular prism
thin walls), cylinder family (cylinder, core-shell cylinder, ellip-
tical cylinder, flexible cylinder, hollow cylinder), etc.

2.5 Scattering-model parameter regression

SASformer's ability to predict scattering-model parameters is
shown qualitatively in Fig. 4 and 5. To produce such compari-
sons, we sampled a set of I(q) intensities from the SAS-55M-20k
test dataset for each model and passed them as input to the
trained SASformer model. The predicted intensities were then
reconstructed from SASformer's parameter predictions using
the sasmodels Python package. Similar plots for the remaining
45 scattering models in the SAS-55M-20k dataset are presented
in the ESL.}

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Quantitatively, the performance of SASformer in predicting
the scattering-model parameters was assessed using mean
absolute error (MAE), mean absolute percentage error (MAPE)
and the coefficient of determination (R?) calculated on samples
in the test set. In each case, MAE is presented in the units of the
parameter that is stated in the SasView Model Functions
documentation. Given that the ranges of the parameters vary
substantially, MAE can not be used to compare the performance
of SASformer on different parameters. MAPE is a unitless
quantity that enables this inter-parameter comparison. Full
descriptions and definitions of these metrics are presented in
the ESI.¥ The standard deviation and interquartile range (IQR)
of the absolute errors are also reported to show the variability in
the predictive distributions of each scattering-model parameter.
Compared to the standard deviation, IQR provides a better
description of the spread when data are not normally
distributed.

Tables S5-S8 in the ESIT show the quantitative regression
metrics, stratified by scattering-model class, for each param-
eter. To assess SASformer's ability to accurately predict each
scattering-model parameter, we decide that parameters with
a MAPE less than 0.25 (i.e., 25%) and R* greater than 0.6 are
those that SASformer predicts reasonably well. Of the 219
scattering-model parameters in the SAS-55M-20k dataset, SAS-
former achieves these desired results on 100 parameters. Using
stricter cutoffs of less than 0.1 for MAPE and greater than 0.9 for
R?, 59 scattering-model parameters meet these criteria. From
these results, we can conclude that although SASformer
performs well on a reasonably sized subset of parameters, there
is room for improvement. Limited performance on the
remaining parameters may be due to a variety of factors. For
instance, the relatively lower performance observed in multi-
shell models, such as core multi-shell or onion, can likely be
attributed to their inherently increased complexity, which arises
not only from the substantial number of parameters within
these models but also from the intricate interdependencies
among these parameters. While SASformer may encounter
difficulty in predicting some of the available parameters, it is
not designed as a substitute for the least-squares fitting method
used to determine these parameters in practical applications.
Instead, SASformer is intended to aid in this fitting process by
proposing parameter ranges to test, potentially making it
a valuable tool despite its limitations.

2.5.1 Comparison of input representations. We studied
how the quotient transform compares to two other scale
invariant representations of SAS intensities. All other training
variable being held constant, we trained and evaluated SAS-
former using three different input representations:

e Quotient transform, as described in the methods section of
this work, where we take the log of the quotient transform of the
square of 1(q).

e Scalar neutralization, which is the cumulative product of
the quotient transform of the square of I(g). A logarithm follows
the cumulative product.

e Zero-index normalization, where we first square then take
the logarithm of I(g) and divide the entire resulting sequence by
its zeroth index value.
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Fig. 4 Visual comparison of /(g) generated from SASformer's parameter predictions to the true /(g) for several cylinder, ellipsoid, parallelepiped,
sphere and vesicle scattering models. The ground-truth intensities for each model were sampled randomly from the SAS-55M-20k test dataset
and passed as input to SASformer. The predicted intensities were then generated from SASformer's parameter predictions using the sasmodels
Python package.
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While the quotient transform changes the shape of the input
scattering intensity, scalar neutralization restores its original
shape by application of the cumulative product, removing any

© 2024 The Author(s). Published by the Royal Society of Chemistry

scale factors in the process. Zero-index normalization, which
also preserves the original function's shape, is arguably the
simplest transformation, and was used by Molodenskiy et al.®
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Table 2 Comparison of different scale-invariant input representa-
tions. Arrows in column headers indicate whether higher or lower is
better

Acc 1 MdAMAPE |
Quotient transform 0.957 0.297
Scalar neutralization 0.934 0.365
Zero-index norm 0.891 0.326

and Archibald et al.” in their work. We omit a comparison to
dimensionally-reduced representations which do not make use
of the full sequence, such as those used in works by Franke
et al.,® Lutz-Bueno et al.*® and others cited in 1.1. Our approach
utilizes a transformer-based neural network, which capitalizes
on the strengths of such models in processing and learning
from features across the entire signal sequence.

For each model trained using the three scale-invariant
representations and evaluated on the test dataset, Table 2
shows (a) the average of the accuracies of each scattering-model
class; (b) the median of the MAPEs of scattering-model
parameters (MAMAPE). The quotient transform results in the
highest accuracy and lowest MAMAPE, while both the quotient
transform and scalar neutralization methods significantly
outperform zero-index normalization on accuracy. Zero-index
normalization significantly outperforms scalar neutralization
in terms of MdMAPE.

All three input transformations studied in this work are scale
invariant, which provides a solution to the aforementioned
problems of units and arbitrary scalars in real SAS intensities.
However, it is worth highlighting that there may be cases where
some quantities that we would like to predict depend on the
scale of I(g). In these cases, scale invariant transformations like
the quotient transform are insufficient since scale information
is removed completely from the input. This suggests the
possibility that a lack of scale in the input may be responsible
for the inability of our model to predict some of the scattering-
model parameters in Tables S5-S81 with any accuracy at all (as
shown by the large MAPE and near-zero R*> values for some
targets). This is plausible, but we leave the investigation of this
for future work, as this requires the development of either an
entirely new input representation or extending the model to
additionally take scale information as input (alongside a scale-
invariant representation of I(g)). Meanwhile, the results of this
work are compelling as evidenced by the good fits observed on
many of scattering-model classes.

3 Conclusions

The application of ML at the data-analysis stage of SAS experi-
ments can assist researchers in the analysis of SAS data by
suggesting scattering models that most probably represent their
sample and predicting the parameters that best fit their exper-
imental data. To this end, we have developed SASformer,
a multi-task transformer-based neural network that jointly
predicts scattering models classes and their parameters. This is
in contrast to previous methods that only predicted the
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scattering model class. The use of a neural network allows the
training and prediction of both classification and regression
tasks efficiently in a single end-to-end model. The use of
a transformer enables the masking of inputs, allowing experi-
mental SAS intensities obtained at varying g-ranges to be
seamlessly inputted into the model. Our method crucially
employs a scale-invariant transformation of SAS intensities that
is more accurate in scattering-model classification and results
in smaller errors in scattering-model parameter estimation
compared to other input representations that we tested. Our
method was trained using a dataset, consisting of 1.1 million
idealized and dilute SAS intensities with corresponding
scattering-model classes and parameters, that we created
specifically for this work. This has been made publicly available
through this publication to ease and facilitate the development
of ML methods on SAS data.

As previously mentioned, a ML model such as ours could be
integrated into SAS-data-analysis software. When experimental
SAS data are loaded into the software, the data could be pre-
processed and passed as input to the SASformer model, which
provides a prediction of the top three scattering models that
most probably represent the data and their parameters. Addi-
tionally, a software library with a simple application program-
ming interface (API) that provides a pre-trained version of
SASformer could allow users with large numbers of SAS-data
files to obtain predictions of structural information in a high-
throughput manner. This would be particularly useful for
analyzing a huge amount of data that would otherwise be too
arduous to analyze manually.

While our method stands to work well for SAXS data,
performance on SANS data is likely to be slightly worse in
comparison. This is due to g-resolution smearing, which occurs
due to the unique geometries of SANS instruments. Conse-
quently, data collected on a single unique sample using
different SANS instruments would result in different scattering
intensities where the sharpness of features would vary with
peaks and fringes being broadened. During training of our
model, batches of SAS intensities are sampled randomly in each
training step. These could be smeared by convolving each I(q)
with random instrument smearing parameters at each step.
This would make the model robust to data from different SANS
instruments and would avoid the need to create intractably
large datasets that cover the configurations of all SANS instru-
ments. Our method was trained on SAS data without noise, and
it is likely that performance on noisy data would be slightly
worse as a result. This could be solved in a similar manner to
the aforementioned SANS data issue, by adding noise to each
SAS intensity as batches are sampled during training. This
would make the model resilient to noisy inputs. Additionally,
since the data in the SAS-55M-20k dataset do not contain
structure factors, it is unclear how the model would perform
when faced with a SAS intensity function with a structure factor
component. In the future, the scope of our method could be
extended to enable the prediction of scattering intensities of
multi-component systems, such as a system containing spher-
ical scatterers with proportion p and cylindrical scatterers with
proportion 1 — p, thus making it more general. This would

© 2024 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3dd00225j

Open Access Article. Published on 12 March 2024. Downloaded on 11/16/2025 4:24:23 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

additionally enable the prediction of structure-factor models
and their parameters, and inter-particle distance-distribution
information could be obtained as a result. Finally, uncertainty
quantification could be enabled by defining the model as
a Bayesian neural network*' which would allow a distribution of
predictions to constructed from multiple stochastic outputs of
the model. Conversely, conformal prediction methods,***
which can be applied to any underlying point predictor given
the assumption of data exchangeability, could be employed to
produce prediction regions or intervals and provide a more
nuanced understanding of the uncertainties associated with the
predictions.

Data availability

The code for SASformer and details on downloading the SAS-
55M-20k dataset® can be found at https://github.com/by256/
sasformer.
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