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Atomistic simulation with machine learning-based potentials (MLPs) is an emerging tool for understanding
materials' properties and behaviors and predicting novel materials. Neural network potentials (NNPs) are
outstanding in this field as they have shown a comparable accuracy to ab initio electronic structure
calculations for reproducing potential energy surfaces while being several orders of magnitude faster.
However, such NNPs can perform poorly outside their training domain and often fail catastrophically in
predicting rare events in molecular dynamics (MD) simulations. The rare events in atomistic modeling
typically include chemical bond breaking/formation, phase transitions, and materials failure, which are
critical for new materials design, synthesis, and manufacturing processes. In this study, we develop an
automated active learning (AL) capability by combining NNPs and one of the enhanced sampling
methods, steered molecular dynamics, for capturing bond-breaking events of alkane chains to derive
NNPs for targeted applications. We develop a decision engine based on configurational similarity and
uncertainty quantification (UQ), using data augmentation for effective AL loops to distinguish the
informative data from enhanced sampled configurations, showing that the generated data set achieves

an activation energy error of less than 1 kcal mol™. Furthermore, we have devised a strategy to alleviate
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Accepted 13th February 2024 training uncertainty within AL iterations through a carefully constructed data selection process that

leverages an ensemble approach. Our study provides essential insight into the relationship between data
DOI: 10.1039/d3dd00216k and the performance of NNP for the rare event of bond breaking under mechanical loading. It highlights

rsc.li/digitaldiscovery strategies for developing NNPs of broader materials and applications through active learning.

break apart. Such failure events can have catastrophic conse-
quences, preventing materials from performing their intended

1. Introduction
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As the name implies, rare events are observed very infrequently.
Pandemics, tornados, and stock market crashes are rare events in
our daily lives. Although these events occur rarely, they can have
long-lasting and catastrophic consequences. In atomistic
modeling for materials science, rare events include chemical
reactions, protein folding, and phase transitions. Another
example of rare events is a material failure, a large deformation
causing the material's structure to change shape or completely
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roles, but they are also essential processes for fabricating mate-
rials. While studying rare events in materials systems is crucial, it
is often challenging through conventional quantum/static
approaches due to the time- and length scales that atomistic
models can achieve. Therefore, predicting or simulating such
behaviors in materials requires enhanced sampling techniques
to capture these rare events appropriately. Such as energy barrier
or activation energy for chemical bond breaking/formation and
materials strength, are essential to understanding the materials’
behaviors and deriving design principles for novel materials.
Computational modeling at the atomic scale approaches has
been widely utilized to capture and understand these rare
events. However, highly accurate quantum mechanics-based
electronic structure approaches such as density functional
theory (DFT) are computationally demanding and generally
impractical for complex and large systems simulations over
a long timescale. On the other hand, classical molecular
mechanics-based forcefields, including reactive forcefields, can
be used with larger systems, but their accuracy and trans-
ferability often need to be improved in specific applications.
Machine learning (ML) techniques have revolutionized
problem-solving approaches in a wide range of fields of science

© 2024 The Author(s). Published by the Royal Society of Chemistry
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and engineering.® Recent advances in physics-based compu-
tational atomistic modeling and simulations, in combination
with artificial intelligence (AI) techniques, provide a novel
avenue for materials design and efficient computational
modeling.”® In particular, recently developed ML-based poten-
tials (MLPs)>™ has demonstrated a capability to predict
potential energy surfaces (PESs) for atomic configurations with
an accuracy comparable to ab initio electronic structure
methods, but at a speed that is several orders of magnitude
faster.”

“Neural network” (NN) is a machine learning method that
mimics the structures and functions of the human brain to
process data. NNs have been applied to various problems, such as
classification, predictions, and pattern recognition. Neural
network potentials (NNPs) utilize NNs to fit the interatomic
interaction energies.”> These have rapidly emerged due to their
flexibility, accuracy, and efficiency. Moreover, they are more
suitable for large and complex systems than other types of ML
potentials, as they can handle large data sets with many training
data points. Such NNPs are known to work remarkably well for
the interpolation between data points. However, they can perform
poorly outside their training domain and typically fail cata-
strophically in predicting rare events without appropriate data.

Active learning (AL) performs iteratively, selecting the most
informative data points from unlabeled data and requesting
their labels to be annotated to train the ML model.* Increasing
the data size by adding new data through AL often improves
NNP performance.''® However, continuously acquiring more
data and re-training without keen strategies incurs significant
computational costs. Nevertheless, AL is a vital methodology for
deploying Al-based tools to real-world applications, such as
predicting new materials' properties and simulating processing
materials."”'® A critical limitation of conventional NNPs' ability
is their inability to describe rare events and transitory structures
through enhanced sampling methods since these structures
and their energetics are typically under-represented in tradi-
tional data of training generation.

In general, the active learning process of NNP begins with an
initial data set and a model's training. Then, the trained model
is used to predict the labels for unlabeled samples, and the
uncertainty associated with these predictions is measured using
an appropriate metric like prediction variance. Based on this
uncertainty, a subset of samples is selected and added as new
training data by labeling it. The process is repeated iteratively
until a predefined criterion is met.

Therefore, uncertainty quantification (UQ) is a centerpiece of
AL because it enables the distinction of valuable new ab initio
data as they can be tagged to provide essential information not
included in previously generated ab initio data." In this context,
the model uncertainty arising from the lack of training data
(epistemic uncertainty) is much more critical than the aleatoric
uncertainty from the noise in the training data. Approaches that
provide a distribution of predictions are commonly used to
quantify epistemic uncertainty. For example, Bayesian NNs,*
Monte Carlo dropout,®* and NN committees* (or ensembles)
estimate the uncertainty by assembling models and comparing
their predictions for a given input.”

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Exploring new trial configurations (before new labeling)
without guidance from molecular dynamics (MD) simulation,
solely based on the high uncertainty regions identified by UQ, is
of limited value. This is because it requires exhaustive sampling
configurations that are physically irrelevant. Therefore, strate-
gies for generating new trial configurations often rely on MD
simulations based on the PES constructed by the NNPs to
expand the training set in an AL loop. However, conventional
MD simulations with NNPs can only produce atomic configu-
rations that are highly correlated to the training set, merely
providing incremental improvement. Furthermore, configura-
tions of rare events are less likely to be captured. Therefore, it is
crucial to efficiently generate trial configurations that are
physically and chemically relevant to the targeted rare events of
materials.

This study uses an enhanced sampling technique with the
trained NNPs to sample new configurations. The effectiveness of
the enhanced sampling methods in atomistic simulations is well
established.?*?®* However, whether the trained model can evolve
to the desired model through the AL process remains unclear
because the initial model does not know the energy-minimized
path for the rare event. If the sampled configuration is not well
correlated to the reaction path, the models may still fail to
describe the desired events, even with the addition of newly
labeled data to the training set. It also strongly depends on the
capability of the types of NNPs and whether they can describe
rare events. In a previous study, we demonstrated that the ANI
model*”” based on the Behler-Parrinello (BP) symmetry func-
tions®® can effectively capture the failure of graphene under
mechanical loadings once the training data is well provided.
While our main development is based on the ANI model, we also
tested our AL algorithm with the other well-known model,
SchNet.>* We found a difference between SchNet and TorchANI
for sampling configurations near the failure points, which can
affect the performance of the AL.

By utilizing our developed AL process, we demonstrate that
the error of the activation energy can be lower than
1 keal mol ™", which requires much smaller data points than
those sampled directly through the DFTB-based SMD simula-
tions. We also observed training uncertainty during the AL
process, which is detrimental to the NNP's performance and the
convergence of the activation energy for the chain breaking. We
proposed and tested the inherited data selection strategy to
reduce training uncertainty through the AL process employing
the ensemble approach. After training the NNP for hexane
chains through the AL, we further tested its transferability for
other alkane chains and strain rates.

Our systematic study provides significant insight into the
relationship between data selection and NNP performance and
guidance for other rare events from broader applications
through active learning.

2. Method

2.1 Overviews

A schematic of the active learning process in the current study is
shown in Fig. 1. The data selector in the AL loop is crucial in our
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Fig.1 Schematic of the active learning process for neural network potentials proposed in the current study. Especially the workflow is designed
for utilizing enhanced sampling methods through trained NNPs to capture rare events in atomistic simulations. The simulator is running MD with
enhanced sampling, e.g., SMD using ab initio calculation or trained NNP. Multiple NNPs are trained for the ensemble approach. The selector
selects configurational data for the following iteration. Utilizing only uncertainty quantification (UQ) values has limitations for screening valuable
configurations for the following iteration. In addition to UQ estimation, we utilized data augmentation through random noise and similarity

checks for efficient AL iterations.

study because it determines the quantity and quality of data,
which directly impacts the NNP accuracy, the speed of the AL
process, and the time required for calculations for new labeling.
We employed a ‘query by committee’ algorithm for the UQ,*
where the disagreement in an ensemble of NN models is used to
estimate the reliability of the current data set. A previous study
has shown that it effectively derives NNPs for organic molecules
with conformal and configuration search® although missing
the capability of bond breaking. This study also estimates the
UQ value through an ensemble of multiple models. Then, the
selector utilizes the UQ value to choose new configurations for
the following ab initio calculations. Unlike the previous study
that used absolute values for the UQ criteria, we defined our
criteria using the mean and standard deviation of UQ because
the absolute values for the same configurations can change as
more data are added.

The AL workflow involves numerous hyperparameters, such
as the number of selected data included, the criteria of UQ, the
number of ensemble models, etc. One major challenge to opti-
mizing these parameters is the computational cost of labeling
new data and retraining. Significantly, if all parameters are not
optimized at the early stage of development, it becomes inevi-
table to perform lengthy ab initio calculations and retraining
repeatedly. Therefore, selecting a test system and the method-
ology for labeling the new configurations identified through
development becomes critical. We utilize a small finite-size
molecular system, specifically hexane, one of the alkane
chains. The alkane chains are simple, but testing such systems
before investigating a more complex system is valuable and can
provide useful insights for newly developed methods.**

516 | Digital Discovery, 2024, 3, 514-527

Furthermore, the density functional-based tight binding
(DFTB) approach, an approximate electronic structure
method, overcomes the computational demands of density
functional theory (DFT) in developing and demonstrating our
AL process. We applied one enhanced sampling method,
steered molecular dynamics (SMD),* to describe chemical bond
breaking for the alkane chain under tensile loading. SMD
utilizes an imaginary spring to apply an external force to an
atom or a group of atoms, which allows us to study the dynamic
behaviors of the system. The method has been widely utilized
for protein systems**** and nanomaterials**** due to the natural
behaviors of materials while applying external forces compared
to directly moving atoms or groups.

During the AL process, we performed SMD simulations
through trained NNPs. Not all configurations sampled through
SMD with the initially trained NNP are valuable to be included
in the subsequent iterations. One anticipated issue is that these
configurations will have very similar structures because the
sampling is based on the simulations with a short time step.
Each sampled configuration is highly correlated with the
previously sampled configurations. In the SMD simulations, the
distance between one end to the other end of the molecule is
a good indicator of structural similarity, as we utilized the
spring distance as a collective variable representing the reaction
path. One can choose other values for different applications,
e.g., density, order parameters, and structural fingerprints,
which should be well-designed for desired performance. Based
on the spring distance, we can select a small number of
configurations distinguished from each other well in each AL
loop.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Another issue is that the sampled path via the inaccurate
NNPs usually does not represent a correct path. To accurately
learn the PES around the sampled configurations, additional
data is required to guide whether the configurations are ener-
getically favored. The additional configurations must be similar
enough to the sampled ones. Otherwise, the NNPs cannot
interpolate between the sampled and additional configurations.
In this study, we augmented the configuration data by adding
random noise to the coordinates of each atom in the sampled
configurations.

2.2 Data generation

2.2.1 Steered molecular dynamics. We performed steered
molecular dynamics (SMD)* for a hexane molecule (C¢Hi4) via
the LAMMPS package.? The interaction between atoms was
described with the density functional tight binding (DFTB)
method through the DFTB+ package,** utilizing a previously
developed interface for LAMMPS.*> We employed the 30B*
parameters with the DFTB3 scheme. The initial structure was
relaxed at 10 K for 2000 steps through the Berendsen thermostat
with a time step of 0.5 fs. After relaxation, an imaginary spring
(spring constant, 10 eV A=) was attached to two carbon atoms
at the edges, and then, the atoms were stretched with a velocity
of 1 A ps™* for 6500 steps. The low temperature was selected to
estimate the activation energy for the chain breaking precisely
by minimizing kinetic energy contribution. The recorded data,
as unseen test data, is utilized to test the performance of trained
NNPs during the active learning process. We performed the
SMD simulation with trained NNPs under the same conditions,
using a previously developed interface between PyTorch and
LAMMPS.*

2.2.2 Molecular dynamics. The initial model is trained
from the sampled configurations through constant temperature
simulation. We followed a conventional approach, running an
MD simulation at a high temperature. We obtained 2000 data
points at 500 K with a time step of 0.5 fs. This data set is for the
first NNP model initiating the AL process. The previous section
provides the correctly sampled configurations directly sampled
from DFTB-based SMD simulation.

2.3 Active learning

Fig. 1 shows the schematic of the active learning process in this
study. We prepared multiple ANI-based NNP models, per-
formed an SMD simulation using the best model (the lowest
MAE, Mean Absolute Error, of force components), and obtained
the trajectories. From the configurations from SMD, we esti-
mate each configuration's UQ values based on the energy
predictions’ standard deviation. At each active learning itera-
tion, unique configurations are selected based on the similarity
check and boosting configurations by adding random noise
displacement. The energy of generated new configurations is
calculated using a physics-based model and is incorporated into
the training in the following active learning iteration. The
performances of NNPs are also evaluated through the unseen
DFTB-based SMD simulation data and the activation energy.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table1 Neural network structures utilized for TorchANI in the current
study. We followed the basic settings of ANI-2x (provided in TorchANI).
Gaussian error linear unit activation function*® was utilized to add non-
linearity between AEV-1st, 1st-2nd, and 2nd-3rd layers

NN model 1st 2nd 3rd Output (energy)
H 256 192 160 1
C 224 192 160 1

2.3.1 ANI neural network structure and training. We

utilized the TorchANI*” tool to train ANI-based NNPs from data
sets. The detailed structures of the NN are listed in Table 1. In
this model, atomic environmental vectors (AEV), or symmetry
functions, G, are calculated from the coordinates (q) as input for
the NN.?® There are radial (atoms i and j with distance R;) and

angular terms (atoms £, j, and k with two distances R, Ry, and
one 0;):>
all atoms e
GmR - ein(R'./iRi ) fC (Rfj)7 (1)
J#Fi
all atoms ;
GmA = 217t Z (1 + COS(Hijk - 05(11)))5
Jk#i
N1\2
x0Tt e (R (R, (@)

where n governs the width of the Gaussian function with
multiple R, (m is an index for R); { governs the width of probing
as 7; 05 decides the specific region in the angular environments
as Rs. fc is a cutoff function to change values to zero at Rc

R
smoothly, defined as fc(R) = 0.5 [cos 2—4— 1} for R =< Rc and
C

0 for R > Rc.

At each AL iteration, 80% of the data was used to train the
model, and 20% was used for validation with a mini-batch size
of 64. The data was shuffled when they were loaded. We fol-
lowed the parameters of the AEV from ANI-2x** model.

The loss function is defined as

= R 2
(FNNP - Fref)
Natom

1 (Enxp — Eref)2 o

Lo N T Vo N 2 ©)
where « was set to 0.1, a parameter to determine the contribu-
tion of forces. The basic training conditions are the same as in
the previous study.** We trained parameters with 300 epochs
and took the best parameters for the MSE of energy with the
validation set during the epochs. We did not prepare a test set
during the active learning iterations. However, the performance
of trained models was also measured through unseen data to
check the generalization of the models at each AL iteration.

2.3.2 Uncertainty quantification. Uncertainty quantifica-
tion (UQ) of the NNPs is a central part of active learning because
it allows us to identify valuable data, which is likely to be
informative and worth labeling with new calculations, dis-
tinguishing from the previous data set. In this study, we employ
the ensemble-based approach, utilizing the same NNP structure
but with different training and validation sets for each model.

Digital Discovery, 2024, 3, 514-527 | 517
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Then, energy is predicted from each model, and the standard
deviation from the models’ predictions is used as an uncertainty
quantification (UQ) measure. The UQ values of the same
sampling region can vary at each AL iteration (see Fig. S1%).
Therefore, instead of an absolute value for the UQ criteria, we
utilized data from the initial 1000 steps of SMD simulation to
calculate the mean (uyq) and standard deviation (oyg) of the UQ
values. Then, we utilized the values of uyq + 30yq as a criterion
to decide whether the sampled configurations are new or not.
For example, if the UQ value is larger than uyq + 30yq, we
consider the configuration is not included in the training and
validation data set at the active learning iteration.

2.3.3 Similarity screening. Once an atomic bond breaks,
the molecule is separated into two parts. From that stage, the
local configurations of the broken parts maintain the similarity
because no further stretching force is applied to the molecule.
Those configurations may or may not be essential, so we set the
maximum number (e.g., 50) of configurations to exclude too
similar configurations, even with high UQ values. Also, during
the stretching of the molecule before the bond breaking, the
configuration of the molecule slowly changes. In contrast, the
breaking process itself drastically changes the configurations in
a short time. Therefore, including all the configurations based
on the same time step would cause a data imbalance problem.
To alleviate the problem, the spring distance was used to indi-
cate the configurational similarity. We selected the data step by
step to check the distance and energy differences between
chosen configurations. All selected data for new labeling must
satisfy the condition that the differences in energy and distance
are larger than 1 kecal mol™* difference and 0.01 A, respectively.
A previous study applied a similar approach to graphene frac-
ture to address the data imbalance problem.**

2.3.4 Configuration augmentation. To improve the gener-
alization of NNPs, learning the potential energy surface is crit-
ical rather than memorizing energy values at specific
configurations. SMD simulation guides the molecule to deform
through a very narrow path, and in the early stages of the AL
iterations, the guided path is not energetically favorable.
Therefore, verifying if the predicted path is appropriate is
essential by labeling configurations near the path. Empirically,
NNPs perform better with data augmentation, especially after
bond breaking (see ESI Note 1}). Therefore, we added random
(uniform) noise (max/min 4-0.05 A) to the coordinates of atoms
along each axis for NNP to learn the potential energy surface
near the sampled point (e.g., two more configurations).

2.3.5 SchNet training. SchNet is a neural network based on
continuous-filter convolutions. It first builds embedding vectors
from the atom type and includes the configurations through
a series of interaction blocks. SchNet performs incredibly for
the energy/force predictions from the atomic structures and
other properties of molecules/crystals, e.g., HOMO LUMO or

Table 2 The setup of SchNet utilized in the current study

# Features # Gaussian # Interaction Cutoff (A)

Values 128 25 3 5

518 | Digital Discovery, 2024, 3, 514-527

View Article Online

Paper

band gaps, dipole moment, zero-point vibrational energy, etc.*®
In the current study, we utilized SchNet only for the energy/force
prediction of the molecule. The detailed structures are listed in
Table 2. The loss function is composed of energy and force loss
based on the mean square errors as

Loss = p x MSE (energy) + (1 — p) x MSE (force) (4)

where we set p as 0.1. The total number of epochs was 300. We
trained the models based on the functions provided in the
SchNet package.”” The Adam optimizer was utilized with
a learning rate (Ir) scheduler (a function “reduced Ir on
plateau”) with factor = 0.8, patience = 5, min_Ir = 1 x 10~
initially Ir = 5 x 10~*. We took the best model for the validation
set during the entire epochs, and training is stopped if Ir rea-
ches the minimum Ir. The achieved accuracy of the training/
validation sets of the equilibrium data set 2000 is
0.29 kecal mol " (40.037 kcal mol '). The MAE of energy
depends on the p value. We can set p as 0.01, as the previous
study suggested, but the unphysical behaviors under tensile
loading were unresolved. We note that the loss functions of
TorchANI and SchNet have different forms based on their
original development. We followed the setting suggested for
weights between energy and force, e.g., more weight for energy
in TorchANI training and more weight for force in SchNet
training. Our current conditions work well for training 2000
data points and the configuration data sampled from the active
learning with TorchANI.

2.3.6 Inherited data selection. The ensemble models are
trained through randomly selected training/validation sets from
the same data. Although the MAE of training/validation has
a small variance (e.g., the variance of three ensembles at AL 9 is
less than 0.005 eV), the activation energy obtained from SMD
simulations can vary much more than that (~0.25 eV >
24 kecal mol ). An apparent training uncertainty exists; there-
fore, we designed a different strategy from the random selection
to stabilize the performance of models. The inherited selection
strategy takes the training/validation sets from the previously
selected sets, showing the best performance based on the error
of forces prediction of the entire data set (training + validation
sets). Only newly imported data sets are randomly distributed in
each ensemble training. This strategy better stabilizes the
convergence of the activation energy from SMD as the number
of ensembles increases.

3. Results and discussions

First, we performed an SMD simulation of the hexane molecule
using DFTB calculation, as shown in Fig. 2. In the simulation,
an imaginary spring is attached to two carbon atoms at the
edges, as shown in Fig. 2a. During the SMD simulation, the
spring distance increases from around 6.5 A to 9.5 A (6500
steps). The work (W) done by the spring, as a function of the
spring distance, is obtained in Fig. 2b. The activation energy for
the chain breaking is about 6.34 eV.

To train the initial NNP models for active learning, we
prepared a data set from the equilibrium state from

© 2024 The Author(s). Published by the Royal Society of Chemistry
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(a) Steered molecular dynamics simulation of stretching a hexane molecule. (b) Obtained work function through the spring elongation as

a function of spring distance. The maximum energy for bond breaking requires around 6.4 eV. (c) Result of SMD through the trained model based
on the 2000 MD data. Since the NVT ensemble does not include elongated configurations, the error of the energy barrier is huge, 5.4 eV. (d)
Results of SMD through the trained model based on the 6500 DFTB-based SMD data. Although the data set includes the entire trajectories, there

is still a non-negligible amount of error, 0.9 eV.

a conventional MD simulation at 500 K (2000 steps, see
Method). Fig. 2¢ shows the results of SMD simulation through
the trained NNPs from the data set. As expected, the NNP from
the equilibrium data cannot adequately describe the molecule's
deformation (or stretching), and failure occurs at a short spring
distance of around 7.5 A. Although the NNP accurately describes
the potential curve near the equilibrium position, the obtained
activation energy is only 1.0 eV. On the other hand, we also
trained the NNP from the SMD data points (6500). This data set
could more accurately describe the deformation with a better
estimation of the activation energy ~5.5 eV in Fig. 2d. However,
the error of the activation energy is still significant, ~0.9 eV
(~20 kecal mol™'). These observations are consistent with
a previous study on graphene fracture.** The trained model
from the equilibrium states could not describe the graphene's
fracture. Also, the data obtained from a single fracture simu-
lation is insufficient to train the NNP to accurately describe the
properties of graphene fracture, e.g., strength and bond-
breaking processes.

© 2024 The Author(s). Published by the Royal Society of Chemistry

The aim of our active learning process is to obtain valuable
newly labeled data by enhanced sampling through trained NNP
models, not by directly sampled data from DFT or DFTB
calculations. We initially performed ten iterations of the
designed active learning (see Method) from the 2000 initial data
points. In the process we designed, the SMD simulations were
performed using trained NNPs, rather than the DFI/DFTB.
Fig. 3a shows the work functions from the SMD simulations
as a function of spring distance from the initial NNP to the final
NNP. The work functions get close to the correct answer (black
line), and the error of the activation energy for chain breaking
becomes lower than 1 kcal mol ™" in Fig. 3b. For each active
learning iteration, we added 150 new data. Therefore, the final
NNP was trained using only 3350 data points. Given that the
error is about 0.9 eV (~20 kcal mol™") from the NNP trained by
the SMD data (6500), the performance (the error is about
0.007 eV, ~0.16 kcal mol ') of the final NNP is excellent. It
should be noted that the error does not monotonically decrease
but shows a fluctuation. One of the reasons for the oscillation is
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the presence of inaccurate sampling paths. There are states
where the error increases or does not decrease significantly. In
those states, the early-stage NNP searches for wrong reaction
paths until the newly labeled data indicate that the paths are
not energetically favorable. Another reason comes from training
uncertainty, which will be discussed later.

Fig. 3¢ shows the MAE values of the relative energy from the
training and validation data sets at each iteration. The error
increases from the initial model trained with 2000 data points
as the new data are included in the data set. This further
confirms that the accuracy of training and validation does not
guarantee any physically reasonable behaviors of the systems.
As we evaluate the models based on the unseen data set from
the DFTB-based SMD simulation (6500 data points), the accu-
racy significantly improves once the data acquired from the
active learning was added until 2nd iteration. However, the
accuracy does not improve but fluctuates around 1 kcal mol™*
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after the 3rd iteration. There is little correlation between the
activation energy and SMD data accuracy. This also suggests
that the SMD data from the DFTB-based simulation does not
provide enough configurations for training NNP to describe the
failure process appropriately and why it is essential to check the
physical properties of the trained models.

The current active learning process can offer significant
advantages over the enhanced sampling through ab initio
calculations as the system becomes complicated. SMD simula-
tions require sequential time integration for the dynamic
process. This cannot be easily parallelized as the following
configuration depends on a previous configuration. For
example, if each configuration calculation through DFT takes
one minute, the entire SMD simulation (6500 sequential inte-
grations) takes about 4.5 days. However, the obtained configu-
rations from active learning can be newly labeled through the
DFT calculation with embarrassing parallelization. Therefore,
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Fig. 3 Active learning (AL) results based on TorchANI models: (a) the work function of the best model from three models with the random
selection strategy. (b) Absolute error (|Exnne — Eaprrs|) Of the best model trained and selected at each AL iteration (c) MAE of the relative energy
during the active learning based on the train/validation data at each iteration (d) MAE of the relative energy during the active learning based on the

unseen SMD data (6500 points).
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the most time-consuming part of active learning is training the
models. For example, 2000-4000 data training takes about an
hour using one GPU. Based on the above assumptions, the time
for obtaining an accurate reaction barrier through SMD can be
reduced to 10% of DFT-based calculations. The advantage
becomes more critical as the system complexity increases,
making it practical for more complex and larger atomistic
simulations with DFT accuracy.

We investigated whether the same developed process can be
transferable to other types of NNP. We hypothesized that critical
configurations for training to describe appropriate physical
behaviors should be similar, and the configurations can be
distinguished in the developed active learning process. To test
our hypothesis, we utilized SchNet,” another type of NNP,
showing high performance in terms of accuracy of energy and
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forces, but we could not obtain the desirable behaviors from
SchNet. Table 2 lists the parameters for the SchNet structure
and training in the current study. Fig. 4a shows the SMD results
from the initial model trained from the 2000 data points. The
configuration snapshots show reasonable behaviors of stretch-
ing and breaking one of the C-C bonds, which is consistent with
SMD simulation through DFTB. The activation energy for the
bond breaking is about 2 eV, which is better than TorchANI
model (~1 eV). However, after the acquisition of the 1st data
(150 points), the SchNet model showed unphysical configura-
tions in Fig. 4b. Snapshot (iii) in Fig. 4b shows two different
bond lengths between two carbon atoms. After one of the C-C
bonds breaks at the spring distance of about 9.5 A, the config-
uration does not recover to the configuration as in Fig. 4a (iv).
On the other hand, the TorchANI model shows better behaviors

WW

p Broken

iv i" Broken
P <‘ P = Y.
,,,,, % ) O * "p. v v
....... Je [ @
v <
Still bonded Still bonded

Reforrs —— i . - o
6 TorchANI 1 —— WM
5F
v (*] L&
—~ 4 L
>
2 ;1 |
= v o T Broken (,
| /QLV/&\V» .................. ?
1 L
v @ (¥
0 D Still bonded v
6 65 7 75 8 85 9 95 10 No rotation

d (A)

Fig. 4

(a) Results of SMD simulation from the initial SchNet model without active learning. (b) Results of SMD simulation from the SchNet model

trained from 1st active learning iteration. (c) Results of SMD simulation from the ANI model trained from 1st active learning (see Movies 1 and 2 for

panels b and c).
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in Fig. 4c after the 1st active learning iteration. Although it
results in an unphysical bond length in the snapshot (iii) in
Fig. 4c, it does not show the local minimum as SchNet. In later
iterations of TorchANI-based active learning, this long bond
length is adjusted by labeling the new data. We could not
successfully apply iterative active learning with SchNet because
the trained models became unstable during SMD simulations,
breaking down into several pieces. We further investigated
where the difference between SchNet and TorchANI arises. We
realized that the challenge did not originate from training
conditions (e.g., cutoff) for SchNet but happened when SchNet
tried to learn the sampled configuration by the SchNet (see ESI
Note 2}). Our observations also remind us that just errors of
energy and force cannot evaluate the reliability of ML-based
interatomic potential models.*

Then, we explored the stability of training by performing
further iterations of active learning. Fig. S21 shows the results of
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active learning iterations from the 9th to the 19th. We observed
that the accuracy of the activation energy was unstable. Such
instability is not ideal for the practical applications of active
learning because the convergence of physical quantity (here, the
activation energy for chain breaking) is the only reliable indi-
cator. We found that SMD simulations and the derived activa-
tion energy can change due to the different training/validation
sets from additional tests. In other words, the NNP's perfor-
mance could fluctuate if we mixed the data into different
training/validation sets. Therefore, we proposed a new strategy
(see Method) as the training/validation sets showing the most
promising performance are carried forward to the following
iteration. The direct comparison between the two strategies
(one is the random selection of training/validation sets at each
iteration, and the other is the inherited selection of training/
validation sets from the previous iteration) is shown in Fig. 5a
and b (see also Fig. S3}). It demonstrates that using the
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Fig. 5 Absolute error (|Eonne — Eaprrs|) Of the best model trained and selected at each AL iteration based on the TorchANI models: (a) an
ensemble includes three models with the random selection strategy. (b) Three models with the inherited selection strategy (c) five models with
the inherited selection strategy. (d) Seven models with the inherited selection strategy.
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inherited data selection reduces fluctuations in the error.
However, the converged error is now significant (~0.2 eV),
although it still presents an improvement over the model
trained from DFTB-based SMD data sets (~0.9 eV). We increase
the number of ensembles from three to five and seven and draw
the error of activation energies, as shown in Fig. 5¢ and d (see
also Fig. S4 and S5%). We added three more iterations for the
seven ensembles to confirm the convergence. The results
suggest that more models of the ensemble can enhance the
convergence of the activation energy with a very high accuracy.

Fig. 6 compares the activation energy and accuracy for the
SMD data (unseen data) from DFTB between random selections
(# of ensembles = 3) and transferred selections (# of ensembles
= 7). Interestingly, the initial trained model (curve (i), Oth iter-
ation) of the random selection predicts the unseen data better
than the inherited selection. Since we selected the best models
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based on the error of force components to avoid overfitting,
more ensembles provide a better model but do not necessarily
perform better in energy prediction. However, in the 1st itera-
tion, the inherited selection with a larger number of ensembles
covers more relevant data (blue curves, (ii)). We can interpret
that a less overfitted model can find a path through the SMD in
the next iteration, helping to find the correct reaction path and
faster convergence of the activation energy estimation (see also
Fig. S61).

Finally, we tested the transferability of the trained NNP.
Fig. 7a shows the lengths of the CH;-CH, bonds at the
terminals (or the edges) are different from those of CH,-CH,
bonds near the breaking point from DFTB. Since the stretch-
ing of the hexane chain includes 5 C-C bonds simultaneously,
it is hard to expect the bond-breaking of individual C-C to be
learned well. For example, stretching one in the middle or one
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(left) Activation energy obtained from trained TorchANI-based SMD simulations during the active learning. (right) Scattering plots of

unseen data points (6500 points) from DFTB-based SMD simulation. The results from different strategies for training/validation data sets: (a) the
random selection strategy from the entire data at each iteration with three models. (b) The inherited selection strategy with seven models. Only
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© 2024 The Author(s). Published by the Royal Society of Chemistry

Digital Discovery, 2024, 3, 514-527 | 523


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3dd00216k

Open Access Article. Published on 20 February 2024. Downloaded on 1/17/2026 1:58:51 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Digital Discovery

a

View Article Online

Paper

C11 : ; Reference
10 f C1 0 C6 ‘Mﬂb Configurations
8 F 1 @=mCmCmCmC @muCmCmC
== Bond between CH2 and CH2
< 6 C3C4 T
o == Bond between CH2 and CH3
g 4 A ¢ © ¢
A
2 | ] v v L *] v
C8 “M}.&f}u\,
0 7 ! :
0 12 14 16 18 v v
d (A)
C w (% \.‘4 \‘« w L‘4
c5  “oC g e” Co “glig®o o Se”
OmCmCmCmC OmCmCmC

Fig. 7

(a) Bond lengths of each C—C bond in the hexane chain near the breaking points. There are two types of bonds: one is CH3;—CH, (red line

in panel b), and the other one is CH,—CH, (blue line in panel b). (b) SMD simulations from C, to C41 by the NNP (TorchANI model) trained from the
AL for the hexane chains. The black dotted lines are obtained from DFTB, and the red lines are obtained through the trained NNP (TorchANI
model) with a hexane chain. Only C; and Cg show good estimations of the activation energy. Two different bond groups, starting from red
closed-circled carbon and blue closed-circled carbon, are the longest bond groups under deformation. These two groups can still describe the
longest bond groups under the deformation of the C; and Cg chains. (c) However, new bond group emergs as the chain becomes shorter (e.g., Cs
in pane c) or longer than Cg (e.g., Cg in panel c). This can provide insight into how the transferability of NNP (TorchANI model) works.

in the edge but fully relaxing other bonds is not included in the
data set.

We should consider the stretching of the hexane chain based
on the deformation in the group of bonds in addition to the
individual bonds to understand how NNP works. To demon-
strate this more clearly, we performed additional simulations
with other chains from ethane (C,) to undecane (Cy,) to check
the transferability of NNP derived from the hexane to other
chains. Fig. 7b shows the results; only C; and Cg can be well
described compared to other chains.

We note that there are two distinct bond groups within the
radius cutoff for the BP symmetry function in the hexane chain:
one starts from the carbon at the edge (CHjz, red closed-circle),
and the other starts from the carbon in the middle (CH,, blue
closed-circle). The deformation of chains C; and Cg, the longest

524 | Digital Discovery, 2024, 3, 514-527

bond groups, can still be covered by these two bond groups in
the hexane chain.

However, a new bond group, starting from the red open-
circled carbon, emerges when the chain gets short (e.g., Cs),
as shown in Fig. 7c. Also, a new bond group, starting from the
blue open-circled carbon, shows up as the chain gets longer
(e.g, Co). Therefore, the accuracy of the activation energy
decreases, and the transferability is only validated in limited
cases.

We further check the strain rate effects. Once the simulation
conditions change, the accuracy is not guaranteed and
rechecked because the new conditions may sample new
configurations for the bond breaking. We performed additional
simulations and compared them with DFTB simulations for the
different loading rates to see how much the performance can

© 2024 The Author(s). Published by the Royal Society of Chemistry
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change, as in Fig. S7.] As we expected, the breaking point and
activation energy slightly deviate from the reference calcula-
tions. Still, they could capture the trend of strain rate effects,
e.g., higher energy and longer breaking distance for a higher
strain rate.

The approach we developed in the study offers a practical
way to accurately estimate the activation energy, although
further investigations are required for broader applications.

4. Conclusion

In summary, we proposed and developed an active learning
workflow with enhanced sampling techniques in molecular
dynamics for neural network potentials. Although the initial
training set is obtained from the conventional MD sampling at
the equilibrium state, our developed active learning process
rapidly collects data that covers the essential configuration of
hexane chain breaking under the loading condition, thus
achieving high accuracy in the estimation of the activation
energy, with an error of approximately 1 kcal mol *. However,
the activation energy from the trained NNPs through SMD was
not likely to converge. We devised and applied the inherited
data selection strategy to improve convergence. Although there
is room for further optimizations, e.g., the number of new data,
a way of boosting configurations, similarity checks, and
utilizing UQ values, our approach provides a successful refer-
ence for future research. Our study will benefit more realistic
and complex systems and further development of NNP for
various applications related to catalysis, chemical reactions,
and phase transitions.
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