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mark for small molecule activity
few-shot prediction using cell microscopy images†

Son V. Ha, Lucas Leuschner and Paul Czodrowski *

Predicting small molecule activities using information from high-throughput microscopy images has been

shown to tremendously increase hit rates and chemical diversity of the hits in previous drug discovery

projects. However, due to high cost of acquiring data or ethical reasons, data sparsity remains a big

challenge in drug discovery. This opens up the opportunity for few-shot prediction: fine-tuning a model

on a low-data assay of interest after pretraining on other more populated assays. Previous efforts have

been made to establish a benchmark for few-shot learning of molecules based on molecular structures.

With cell images as a molecular representation, methods in the computer vision domain are also

applicable for activity prediction. In this paper, we make two contributions: (a) a public data set for few-

shot learning with cell microscopy images for the scientific community and (b) a range of baseline

models encompassing different existing single-task, multi-task and meta-learning approaches.
1 Introduction

High-throughput imaging (HTI) has been a powerful tool in
drug discovery, having yielded many biological discoveries.1–3 It
oen involves capturing the morphological changes of cells
induced by chemical compounds and quantifying these
changes into a large set of numerical features4 such as staining
intensity, texture, shape and spatial correlations. They act as
‘ngerprints’ that can be used to characterise compounds in
a relatively unbiased way. This technique, known as morpho-
logical proling, has proven to be useful for a variety of appli-
cations, such as optimizing the diversity of compound
libraries,5 determining the mechanism of action of
compounds,6–8 and clustering genes based on their biological
functions.9,10

Cell painting is a morphological proling method in which
cells are perturbed with a compound, have their different
compartments stained using six dyes, and have their images of
the ve uorescence channels captured.4 Cell painting data
have been used for a range of applications, from predicting
mitochondrial toxicity,3,11 in vitro toxicity,12 hit identication,13

andmore. In addition, cell painting can be used in combination
with other modalities to enhance prediction such as chemical
structure14 and gene expression data.15
1.1 Small molecule activity prediction

Prediction of small molecule activity against a drug target is an
important task in drug discovery. It helps identify and optimise
i-mainz.de

tion (ESI) available. See DOI:

the Royal Society of Chemistry
compounds for a desired activity, as well as recognise and avoid
off-target activities. This leads to the identication of compounds
with the highest potential in the early drug discovery pipeline.

HTI data have been used in bioactivity prediction by Simm
et al.16 in two drug discovery projects, which led to a tremendous
increase in hit rates by 50- to 250-fold, while increasing the
chemical structure diversity of the hits. In these projects, only
1.6% of the label matrix is lled, for over 500 000 compounds
and 1200 prediction tasks. This reects the need for a modeling
paradigm which can not only adapt to new tasks quickly with
little data, but also leverage the availability of many low-data
related tasks. We nd that this setting is ideal to form a few-
shot learning challenge.
1.2 Few-shot learning

In the few-shot learning setting, there is not one big dataset D to
learn from, but instead many small datasets we called tasks,
denoted T. The aim of few-shot methods is to generalise over new
tasks {Tu}

U
u=1 ˛ Dtest efficiently with only a small number of

available datapoints. Each task Tu consists of a support set S for
learning and a query setQ for evaluation, Tu= hS,Qi. Typically the
size of support set S is very small to reect the low-data setting.

Few-shot models adapt efficiently to low-data tasks by using
an advantage initialisation of their parameters, normally
through some sort of pretraining on a large data corpus such as
a set of auxiliary tasks {Tv}

V
v=1 ˛ Dtrain. We expect that knowledge

gained from pretraining can be transferred effectively to new
unseen tasks, so that models can quickly learn these new tasks
using only little data. This can be compared to, for example,
a person who already has prior knowledge of music picking up
a new musical instrument relativelyquickly with little
demonstration.
Digital Discovery, 2024, 3, 719–727 | 719
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Most state-of-the-art few-shot methods come from computer
vision and natural language processing domains.17–21 Drug
discovery is another eld where there is growing interest in few-
shot learning,22 since data scarcity is a common setting for
many prediction tasks. In this paper, we propose to expand
another challenge in drug discovery to the few-shot learning area:
the aforementioned small molecule activity prediction with cell
imaging data. We nd that this is a real-world scientic problem
with an ideal few-shot setting: there are many related low-data
tasks convenient for knowledge transfer between each other.
Furthermore, with cell images as a molecular representation,
methods in the computer vision domain can be adapted for
activity prediction. We believe that the eld of cell imaging/
analysis would greatly benet from these algorithmic innovations.

In this paper, we make two contributions:
� A data set for few-shot prediction of small molecule activity

using cell microscopy images, which we named FSL-CP. The
dataset is curated so that it is easy for future researchers to
experiment with their few-shot methods.

� A benchmark of models encompassing different existing
single-task, multi-task and meta-learning approaches on the
dataset. This acts as both a diverse baseline for future algo-
rithms and a means to study the strengths and weaknesses of
different modelling paradigms.
2 Methods
2.1 FSL-CP: few-shot learning data set with cell microscopy
images

The FSL-CP dataset comprises compounds at the intersection of
ChEMBL23 version 31 and the cell painting4 public dataset. We
provide an overview of the data construction process below
Fig. 1 FSL-CP data curation and processing. Cell painting images and fea
by six 520 × 696 × 5 images and a feature vector of length 993. Small m
a threshold procedure is applied to binarise the labels, producing differen
unique compounds and 201 prediction tasks. 18 tasks are chosen for mod
validation (referred to as auxiliary tasks).

720 | Digital Discovery, 2024, 3, 719–727
(Fig. 1), and the exact reproducible source code is available on
GitHub, at https://github.com/czodrowskilab/FSL_CP_DataPrep.

Original cell painting data set. Cell microscopy images come
from Bray et al.4 and contain 919 265 ve-channel views, rep-
resenting 30 616 compounds. In this cell painting protocol,
U2OS cells have 8 major organelles and sub-compartments
stained using a mixture of 6 uorescent dyes, resulting in 5
different image channels. A CellProler24 pipeline is then used
to extract 1783 single-cell morphological features from those
images.

Labelling the compounds. For this project we focus on small
molecule activity assays (e.g. IC50 and EC50) available in the
ChEMBL database. We query activity data for all the compounds
in the original cell painting dataset using their InChiKey. We
follow a similar data processing strategy to that by Hofmarcher
et al.25 For each assay, both the activity comments from the
experimenter and the pChEMBL values (numerical value for
activity on a negative logarithmic scale) are retrieved. Duplicate
labels are resolved either by averaging if they are pChEMBL
values, or by majority voting if they are activity comments. The
pChEMBL values are restricted to only between 4 and 10, and
the activity comments are also chosen to only be spelling vari-
ants of ‘active’ and ‘inactive’. The nal modeling task is dened
as an assay aer being binarized, either with a threshold on the
pChEMBL value, or based on the activity comments. For the
pChEMBL values specically, we use three thresholds for each
assay: 5.5, 6.5, and 7.5, which results in three separate model-
ling tasks. Lastly, we lter out to only allow tasks with at least 10
active and 10 inactive labelled compounds.

Processing the cell painting data. The images, as well as
morphological features aggregated at well-level and metadata,
can be found at the ‘Cell Image Library’. The ve dye channels
tures fromCellProfiler24 come from Bray et al.4 Each well is represented
olecule activity labels are retrieved from assays in ChEMBL31.23 Then

t tasks from assays. The intersection of the two sources results in 10 526
el evaluation based on a set of criteria, and the rest are for training and

© 2024 The Author(s). Published by the Royal Society of Chemistry
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are concatenated along the third dimension, converted into 8
bits, and have their 0.0028% outlier bits removed.25 The images
are further normalised prior to modelling. For the well-level
morphological features, we remove columns that are highly
correlated (correlation coefficient >0.95), or have only one value.
Finally, we standardize features by removing the mean and
scaling to unit variance.

Features. At the end, each data point of FSL-CP corresponds to
one well, represented by six 520× 696× 5 images (for six views in
a well), and by a feature vector of length 993. We refer to them as
CP images and CP features, respectively. SMILES strings and
InChiKey are also provided, although for this study we only focus
on the cell images and information which comes from them.

Deep learning embedding. We also create an ‘enhanced’ set
of CP features by concatenating the original CP features with
embeddings from ResNet50 (ref. 26) pretrained on ImageNet,27

akin to the method used by Schiff et al.28 This embedding
provides the input vector with abstract high-level neural-network-
based features. For each well, we run the six 520 × 696 × 5 views
through ResNet50 to generate six embeddings, which are then
averaged to create one nal embedding of length 1000. We tried
different variants of ResNet and Inception:29,30 ResNet18,
ResNet50, ResNet101, ResNet152, inception_resnet_v2, and
inception_v3.We ended up settling on ResNet50, which yields the
best performance on our dataset despite being a simple model. It
Fig. 2 FSL-CP data statistics. (A) Number of compounds for every mode
tasks (in turquoise) have an active ratio between 0.3 and 0.7. (C) Distributio
design, but there can be more or less duplicates, due to omission of low

© 2024 The Author(s). Published by the Royal Society of Chemistry
should be noted that the length of the embedding can be further
tuned to boost predictive performance.

Pretraining, validation and test splits. The models are eval-
uated on 18 tasks which we will call test set Dtest. The other 183
tasks, referred to as auxiliary tasks, are used for model pre-
training. They are randomly split into train set Dtrain and vali-
dation set Dval, consisting of 161 and 22 tasks, respectively. The
test tasks are selected based on the following criteria:

� Tasks in Dtest do not share the same targets as those in the
Dtrain and Dval, unless a target is unknown (denoted as
‘unchecked’ on ChEMBL). This is to avoid the overlap of very
similar tasks during training and inference.

� Test tasks must have over 96 datapoints, to enable model
comparison for a range of support set sizes.

� Test tasks must have a ratio of active compounds between
0.3 and 0.7, to avoid strongly imbalanced data affecting the
model comparison. Some methods might be better because
they overcome the data imbalance problem, not the low data
problem which is what we focus on.

Dataset statistics. FSL-CP contains 201 modelling tasks for
10 526 unique compounds, with only 2.58% of the label matrix
lled. The number of compounds for each task and their active
ratio are visualised in (Fig. 2A) and (Fig. 2B), respectively. It is
worth noting that the majority of the compounds have 4 repli-
cates, as per the design of the cell painting assay. However,
there are cases where there are fewer or more replicates
lling task. (B) Ratio of active compounds for every modelling task. Test
n of compound duplicates. Most have 4 duplicates as per experimental
-quality images, or repeated purchases of compounds.

Digital Discovery, 2024, 3, 719–727 | 721
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(Fig. 2C), potentially due to the omission of low-quality images
and repeated purchases of some compounds.

2.2 Evaluation

Few-shot prediction. In order to simulate a low-data setting
when evaluating models, we sample from each task in a strat-
ied manner a small number M of datapoints for the support
set and 32 datapoints for the query set. The models are then
trained on a binary classication task on the support set and
evaluated on the query set. In the literature, this sampled
subset is called a M-samples 2-shot episode, where ‘samples’
refer to available data (size of the support set) and ‘shot’ refers
to the number of classes to predict, which is two for binary
classication.

For every test task, we report model performances averaged
over 100 episodes in order to eliminate variations from
sampling. Additionally, the results are recorded over a range of
support set sizes M: 8, 16, 32, 64, 96, to monitor how well
models perform as the size of available data increases.

Metrics. We mainly report and discuss results using area
under the receiver operating characteristic curve (AUROC).
AUROC comes with many benets, such as ranking predictions
without a decision threshold, meaning predictions can be
compared without needing to be rounded to 0 or 1. At the same
time, the active ratios of tasks in Dtest are not so imbalanced that
they make AUROC misleading.

In addition, the results reported in terms of F1 score,
balanced accuracy, Cohen's kappa, and DAUPRC22 can also be
found in the ESI.†

2.3 Benchmark models

In this section, we provide a detailed description of different
modelling paradigms for this particular few-shot problem. The
code for all of the models and the training/inference scripts can
be found at https://github.com/czodrowskilab/FSL_CP. As
a naming convention, models with _img are trained directly
on the images, _cp means that they are trained on the
original CP features, and _cp+ means that they are trained on
the enhanced CP features.

Single-task models. Traditionally, modelling of tasks in
drug discovery is solely a single-task, with models such as
random forest or gradient boosting algorithms on top of
ngerprints or curated phys-chem properties.31–34 In these
settings, auxiliary tasks are not used. Here, we mimic the same
procedure by assessing the performance of logistic regression
(LR), XGBoost, and a single-task fully connected neural
network (FNN), on both the original and enhanced CP features.
For each prediction task of each model we run a randomised
hyperparameter grid search using the library scikit-learn,35

considering 10 hyperparameter congurations per run. We
report the results of the two best performing single-task
models: LR on enhanced CP features (logistic_cp+) and FNN
on original CP features (singletask_cp).

Multi-task models. Multi-task models have been a staple in
the drug discovery eld, being adopted by many academic and
industry groups for various prediction tasks.16,36,37 These models
722 | Digital Discovery, 2024, 3, 719–727
consist of multiple ‘heads’, each specialised on one task, on top
of a shared ‘trunk’. The trunk aims to learn a common repre-
sentation across tasks, which allows it to learn knowledge
transferable between tasks and improve performance of each
one.

For our benchmark, the same FNN model as that in the
single-task case is used, but with a head of length 183 instead.
Pretraining and validation are performed using 183 auxiliary
tasks in Dtrain and Dval in a multi-task manner. Then the weights
are frozen, and the head is replaced with a new one of length 1
for ne-tuning. During evaluation, for each episode, the same
frozen model has its last layer ne-tuned using the support set,
evaluated on the query set, and reverted back to the state before
ne-tuning. We tried training on both sets of CP features but
neither led to drastic improvements over the other. We decided
to report the result for the model trained on the original CP to
reect the methods by Simm et al. This model is denoted as
multitask_cp.

Meta-learning models. Inspired by human's ability to learn
certain tasks very quickly with prior knowledge, meta-learning
methods aim to tackle the problem of adapting to new tasks
efficiently with only a few training examples. The idea is still the
same: pretraining to gain transferable knowledge to generalise
to new tasks. But the meta-learning methods introduce the idea
of training in the same way as testing.38 In particular, if we
evaluate the model on M-sample 2-shot episodes, then we can
mimic that setting during pretraining to encourage fast adap-
tation. That means that during pretraining, we sample an
episode from Dtrain the same way we sample from Dtest and
accumulate the loss from many episodes to update our models'
weights. This process is called episodic training.

One subclass of meta-learning is a metric-based method,
which tries to learn a distance function over data samples. For
example, the prototypical network17 uses a backbone model to
generate an embedding. Then classication is made using k-
means clustering based on the Euclidean distance from the
embedding to the cluster prototypes. Since the backbone for
a prototypical network can be any kind of embedding generator,
we try 2 versions: a ResNet50 and an FNN backbone, which
generate embeddings from CP images and CP features,
respectively. These models are named protonet_img, proto-
net_cp and protonet_cp+.

The optimisation-based method is another subclass of meta-
learning. This approach intends to make gradient-based opti-
misation converge within a small number of optimisation steps.
MAML18 (model-agnostic meta-learning) achieves this by
obtaining good weight initialisation through pretraining, so
that ne-tuning to unseen tasks can be more efficient. Thanks
to MAML working with any algorithm that uses gradient
descent, we provide the results of ResNet50 and an FNN aer
being trained by MAML (denoted as maml_img andmaml_cp+).

It is important to mention that, unlike feature-based models,
image-based models are highly computationally expensive to
train. Hence to train these models and tune the hyper-
parameters in a reasonable time frame, only one out of six
available views is used, plus random cropping and down-sizing
of images are performed. With an 11GiB NVIDIA GeForce RTX
© 2024 The Author(s). Published by the Royal Society of Chemistry
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2080 Ti, the training and inference for one hyperparameter
conguration take between 1 and 2 weeks, depending on the
model.
3 Results

In order to compare performances of different methods
benchmarked on FSL-CP, we plot the mean AUROC across 18
test tasks of each method at different support set sizes (Fig. 3A).
In addition, a paired Wilcoxon sign-rank test is performed for
each pair of models as demonstrated in Table 1, with the
alternative hypothesis that the method in the le column
outperforms the method in the upper row. These gures also
provide insight into how the performance of each model
changes as the amount of available data increases.

Fig. 3A indicates that the best performing models overall are
variants of prototypical networks protonet_cp+ and proto-
net_cp, followed closely by multitask_cp, although according to
the Wilcoxon signed-rank test, protonet_cp+ only outperforms
multitask_cp for medium-sized datasets (support set size 32).
There is no sufficient evidence to reject the null hypothesis that
they perform equally well at other support set sizes with a =

0.01. We note that multitask_cp even slightly outperforms
protonet_cp+ and protonet_cp at support set size 8.
Fig. 3 Comparison of different models benchmarked on FSL-CP. (A) Mea
data available, other methods start to catch up tometa-learningmodels. (
best models tend to have larger AUROC variance. (C) Mean AUROC of se
pretraining on auxiliary tasks leads to an improvement over single-task m

© 2024 The Author(s). Published by the Royal Society of Chemistry
The best single-task model singletask_cp is surprisingly
powerful, being able to catch up with maml_cp+ at lower support
set size, and outperforms it by a wide margin at large support set
size. For these single-task models with no pretraining, the avail-
ability of more data in the support set can lead to dramatic
improvements in performance. It is highly likely that their
performances will keep improving and eventually might overtake
other methods beyond support set size 96. In contrast, improve-
ments in AUROC scores of meta-learning methods slow down at
higher support set size and even drop as in the case of maml_cp+.
However, it is worth noting that at support set size 96, some test
tasks are excluded from the evaluation process due to insufficient
data points. Plus, fewer tasks in Dtrain and Dval are included in the
pretraining formeta-learningmodels at high support set size, due
to the fact that there may not be enough datapoints to sample for
episodic training. All of these factors can affect meta-learning
methods' performance in higher data setting.

Image-based models such as protonet_img and maml_img
substantially under-perform compared to other feature-based
methods, likely because only one view out of six is used and
down-sizing of images of fairly small cells leads to drastic
information loss.

We also try to leverage deep-learning-based features by
concatenating the original CP features with a ResNet50
n AUROC on test tasks as support set size increases. As there are more
B) Distribution of AUROC across all test tasks at support set size 64. The
lected models for each task across all support set sizes. For most tasks,
odels. However, for a few tasks this is not the case.

Digital Discovery, 2024, 3, 719–727 | 723
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Table 1 p-values of the one-sided paired Wilcoxon sign-rank testa with an alternative hypothesis being that the method in the left column
outperforms the method in the upper row. Entries left blank indicate a p-value greater or equal to 9.99 × 10−1

Protonet_cp Multitask_cp Singletask_cp Maml_cp+ Logistic_cp+ Maml_img Protonet_img

(a) Support set size 8
Protonet_cp+ 3.60 × 10−1 7.89 × 10−1 1.56 × 10−1 3.79 × 10−1 1.05 × 10−3 3.09 × 10−3 5.38 × 10−4

Protonet_cp 8.90 × 10−1 2.74 × 10−1 6.12 × 10−1 1.79 × 10−3 5.23 × 10−3 4.52 × 10−4

Multitask_cp 3.96 × 10−2 3.04 × 10−1 2.69 × 10−4 1.11 × 10−3 1.43 × 10−4

Singletask_cp 6.03 × 10−1 3.09 × 10−3 8.05 × 10−2 1.21 × 10−3

Maml_cp+ 8.84 × 10−2 1.92 × 10−2 2.74 × 10−2

Logistic_cp+ 6.42 × 10−1 9.16 × 10−3

Maml_img 3.47 × 10−2

(b) Support set size 16
Protonet_cp+ 1.45 × 10−2 5.42 × 10−2 9.36 × 10−4 2.77 × 10−3 2.49 × 10−4 5.34 × 10−5 7.63 × 10−6

Protonet_cp 5.41 × 10−1 1.08 × 10−2 2.21 × 10−2 8.53 × 10−4 5.35 × 10−4 2.63 × 10−4

Multitask_cp 5.22 × 10−4 1.13 × 10−2 2.08 × 10−4 9.54 × 10−5 1.46 × 10−4

Singletask_cp 6.51 × 10−1 1.68 × 10−3 3.49 × 10−2 3.43 × 10−4

Maml_cp+ 2.01 × 10−2 2.98 × 10−3 1.03 × 10−3

Logistic_cp+ 2.48 × 10−1 1.50 × 10−3

Maml_img 1.27 × 10−1

(c) Support set size 32
Protonet_cp+ 8.63 × 10−2 7.97 × 10−3 3.83 × 10−4 1.42 × 10−4 1.46 × 10−4 3.81 × 10−6 3.81 × 10−6

Protonet_cp 6.49 × 10−2 1.46 × 10−3 2.67 × 10−4 2.67 × 10−5 1.74 × 10−4 1.14 × 10−5

Multitask_cp 4.03 × 10−4 4.56 × 10−3 3.81 × 10−6 3.81 × 10−6 3.81 × 10−6

Singletask_cp 3.61 × 10−1 2.80 × 10−3 1.22 × 10−3 2.56 × 10−4

Maml_cp+ 3.69 × 10−2 1.65 × 10−3 5.23 × 10−4

Logistic_cp+ 7.97 × 10−3 1.36 × 10−4

Maml_img 2.55 × 10−1

(d) Support set size 64
Protonet_cp+ 2.62 × 10−1 3.43 × 10−1 6.97 × 10−3 4.40 × 10−4 7.63 × 10−6 3.81 × 10−6 3.81 × 10−6

Protonet_cp 3.88 × 10−1 1.46 × 10−2 6.05 × 10−4 1.91 × 10−5 1.46 × 10−4 7.63 × 10−6

Multitask_cp 2.07 × 10−4 2.47 × 10−4 3.81 × 10−6 3.81 × 10−6 3.81 × 10−6

Singletask_cp 9.31 × 10−2 1.43 × 10−4 3.81 × 10−6 3.81 × 10−6

Maml_cp+ 4.10 × 10−3 1.14 × 10−5 1.14 × 10−5

Logistic_cp+ 2.02 × 10−3 2.11 × 10−4

Maml_img 4.18 × 10−1

(e) Support set size 96
Protonet_cp+ 6.14 × 10−1 2.84 × 10−1 7.73 × 10−2 7.25 × 10−5 3.81 × 10−6 3.81 × 10−6 3.81 × 10−6

Protonet_cp 2.09 × 10−1 6.44 × 10−2 2.29 × 10−4 2.16 × 10−4 3.81 × 10−6 3.81 × 10−6

Multitask_cp 4.00 × 10−2 1.45 × 10−4 3.81 × 10−6 3.81 × 10−6 3.81 × 10−6

Singletask_cp 3.36 × 10−4 1.44 × 10−4 3.81 × 10−6 3.81 × 10−6

Maml_cp+ 1.85 × 10−1 1.14 × 10−5 4.44 × 10−4

Logistic_cp+ 3.21 × 10−4 3.81 × 10−6

Maml_img 2.33 × 10−1

a The test compares mean AUROC (over 100 episodes) of models in 18 test tasks. Marked in bold are signicant p-values at a = 0.01.
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embedding of size 1000. While in some cases it leads to higher
AUROC, as evidenced by the fact that many models use the
enhanced feature, the improvements are somewhat minute. For
example, when comparing protonet_cp+ against protonet_cp,
Table 1 shows insufficient evidence of improvement across
tasks, and as shown in Fig. 3A, the additional features lead to
only small improvements at support set sizes 16, 32 and 64.
However, this still poses an interesting question for future
research: how meaningful embedding from cell images can be
produced using deep learning methods.

Better performing models have a larger spread of AUROC
across test tasks, as shown in Fig. 3B, indicating that model
performances are fairly dependent on tasks. This is further
724 | Digital Discovery, 2024, 3, 719–727
demonstrated in Fig. 3C, where some tasks (e.g. CHEMBL2114784)
consistently show high AUROC across models and some (e.g.
CHEMBL2354287) are not predictive at all. Additionally, for some
tasks protonet_cp+ is the best method, but in a few other cases
multitask_cp or singletask_cp is the better method.

Fig. 3C also gives insight on how much pretraining on
auxiliary tasks benets prediction. Again, this is highly task-
dependent. Some tasks benet greatly from pretraining
(CHEMBL3562136 and CHEMBL2114807), as seen from the
improvements of the two pretraining models over the single-
task models. However, pretraining can offer no improvement,
or even be detrimental in tasks such as CHEMBL1738598 and
CHEMBL1738312.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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4 Discussion

We have presented FSL-CP, a dataset for small molecule activity
few-shot prediction using cell microscopy images. This few-shot
challenge mimics a screening process in early stage drug
discovery, where the aim is to identify potent compounds tar-
geting a specic protein from high-content cell images with little
data. Previous efforts have been made to benchmark few-shot
methods on molecules as graph-structured data.22 But in
machine learning, the primary focus of few-shot learning has
been in the computer vision and natural language processing
domains. The fact that our dataset uses cell images as a molec-
ular representation opens up opportunities to adapt state-of-the-
art ideas from computer vision to enhance modeling.

This dataset allows us to establish benchmarks that compare
the performances of different few-shot learning paradigms. Our
result indicates that the feature-based prototypical network and
multitask FNN pretrained on auxiliary tasks generally perform
well across all support set sizes. We also observe improvement
in performance slowing down for meta-learning methods at
high support set size, in contrast to single-task methods, which
greatly benet from the availability of more available data.
However, more labelled compounds and their cell painting data
are needed in order to accurately point out whether eventually
single-task models outperform pretrained models, and if yes, at
what support set size.

Image-based models underperform on our benchmark, and
the fact that each datapoint consists of six high-denition ve-
channel images makes it tremendously computationally
expensive to train. We had to use only one randomly cropped,
downsized image to train the models in a reasonable time-
frame with our infrastructure, and this leads to high informa-
tion loss. Training on full-resolution cell images has been
shown to offer better performance than that on CP features in
some settings.25 However, in realistic drug discovery projects,
larger-size images are used, and there are typically more
compounds and more prediction tasks. These make pretraining
on full-resolution images difficult, especially if the model needs
to be regularly retrained.

A less expensive way to leverage the power of computer vision
is to enhance the CP feature with the embedding of an image
using a pretrained model such as ResNet or Inception. We tried
a simple approach with ResNet50 as an embedding generator,
which yielded small improvements. Since most vision models
are pretrained on ImageNet, this suggests that there is some
transferable knowledge obtained from training on a large
unrelated image database, but not enough to make a signicant
improvement. We expect that a more informative embedding
can be achieved by pretraining the embedding generator end-to-
end on cell images with a more relevant pretraining task, such
as multi-task or contrastive learning.39,40

The benchmark also provides insight on how effective
transferring knowledge from pretraining models on auxiliary
tasks is to new tasks. Mostly, new tasks benet from such
a pretraining scheme, but the degree to which different tasks
© 2024 The Author(s). Published by the Royal Society of Chemistry
improve varies. To what degree a new task benets from pre-
training is still an open question for research. As a general
observation, it seems that already predicted tasks tend to
benet more from pretraining. Companies aiming to pretrain
their models on auxiliary tasks can use a combination of tasks
from public sources as well as their own databases to benet
from as much data as possible.

FSL-CP offers a promising and interesting research question,
though not one without unique challenges of its own. Through
this study, we hope to encourage further research in few-shot
and computer vision methods in the domain of cell imaging.
The code for generating the dataset, model training, inference,
and tutorials is publicly available on GitHub.
Data availability

The dataset, model codes, plots and results are all publicly
available on Github: https://github.com/czodrowskilab/FSL_CP.
In addition, since the FSL-CP dataset is curated from two larger
public databases: ChEMBL and Broad Institute, the code for
data processing and curation is also available on Github https://
github.com/czodrowskilab/FSL_CP_DataPrep.
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