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hine learning models from
chemical physics: an energy landscapes approach
(EL for ML)

Maximilian P. Niroomand, a Luke Dicks, b Edward O. Pyzer-Knapp *b

and David J. Wales *a

The study of energy landscapes as a conceptual framework, and a source of novel computational tools, is an

active area of research in chemistry and physics. The energy landscape provides insight into structure,

dynamics, and thermodynamics when combined with tools from statistical mechanics and unimolecular

rate theory. This approach can also be applied to questions that arise in machine learning. Here, the loss

landscape (LL) of a machine learning system is treated in the same way as the energy landscape for

a molecular system. In this contribution we summarise and discuss applications of energy landscapes for

machine learning (EL4ML). We will outline how various physical properties find analogues in machine

learning systems, and show how these properties can be employed to both increase understanding of

the machine learning ‘black-box’ and enhance the performance of machine learning models.
1 Introduction

In the physical sciences, energy landscapes1 provide
a computational framework to predict structure, thermody-
namics, and dynamics.2 Exploring the energy landscape
means computing the potential energy E for a given atomic
conguration, dened by the coordinates of the individual
atoms in ℝ3. The potential energy surface (PES) gives the
energy for any combination of coordinates of the individual
atoms. The PES is a continuous, non-convex function, in
which local minima correspond to locally-stable states of the
system, and potentially interesting congurations. The Mur-
rell–Laidler theorem states that the lowest barrier between
local minima involves a pathway mediated by index one
saddle points (transition states).3 These transition states are
essential to describing the dynamics of a physical system. An
illustrative PES is shown in Fig. 1, where the zero-gradient
transition state separates two minima. The global minimum
corresponds to the lowest potential energy achievable for
a given system, which corresponds to the equilibrium state at
low temperature.

In machine learning, the problem posed is analogous to
optimising atomistic arrangements inmolecular systems. Given
a set of variables (weights, hyperparameters etc.), a loss function
is minimised to provide the best possible solution to the
problem. As for molecular systems, machine learning is an
optimisation problem, with the aim to minimise the cost
mistry, Cambridge, UK. E-mail: mpn26@

PyzerK3@uk.ibm.com

the Royal Society of Chemistry
function and identify the lowest-lying solution. In a (supervised)
machine learning system, this solution is the set of weights/
hyperparameters describing an arbitrary function that best ts
some input data to known outputs.

In ML there is an additional consideration, requiring
a model generalising well to unseen data. For a given machine
learning algorithm and some data, the loss landscape
describes the quality of each possible weight/hyperparameter
combination. Importantly, these models are only conditioned
on the training data, hence the LL cannot make a statement
about generalisation to unseen testing data. Numerous loss
functions exist, from simple mean squared error losses to
cross-entropy, contrastive, or approximate AUC loss functions.
Thus, the correlation between loss value and performance of
the minimum must be viewed with caution. The global
minimum of the LL is the best guess as to which set of weights
may be optimal for the specic problem, but optimality cannot
be guaranteed. Train-test generalisability is not the focus of
this contribution, but the reader should keep this issue in
mind.

To characterise the loss landscape (LL) of a machine learning
system, only the training data is relevant. Hence, the global
minimum is the set of weights that minimise the loss (energy)
for a given cost/loss function and training data. Note that this
setup implies that, for a standard loss function, overtting the
model to training data is encouraged by the formulation of the
problem. Thus, ideally, the model would perfectly predict the
correct output for each input, irrespective of performance on
unseen data. In Table 1, we have summarised the most
important features to describe an energy landscape, and what
they mean when translated to a ML setting.
Digital Discovery, 2024, 3, 637–648 | 637
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Table 1 Comparison of energy landscapes features in molecular systems and their analogue in ML systems

Feature Molecular PES ML LL

Energy Potential energy Loss value
Temperature Physical temperature Fictitious parameter
Coordinates Atomistic coordinates Weights/hyperparameters
Local minimum Locally-stable molecular isomer Locally optimal weights
Global minimum Energetically most favourable molecular isomer Best weights for given loss function

Fig. 1 A simplified potential energy landscape. Each value of the red line is the potential energy at a specific set of atom coordinates. Hence, the
red line is an energy function f for some molecule.
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2 Motivation: EL4ML

Machine learning has become one of the most active elds in
science due to its impact across a broad range of applications.
These applications range from games, such as chess,4 Go,5 or
the collaborative Dota 2 6 to autonomous driving (covered
extensively in ref. 7), protein structure prediction8mathematical
proofs,9 chat bots,10,11 image generation12,13 and many more.
Applications to the physical sciences, including force-eld
parametrisation are discussed in ref. 14. This list is far from
exhaustive, and novel machine learning models are developed
and open-sourced every day. The basic foundation of the
machine learning approach is that, given enough data and
computational resources, the tting and prediction problem is
solvable in principle. In fact, it can be shown that, given enough
parameters, any dataset can be tted perfectly by a machine
learning model.15 However, we seek a deeper understanding of
why and when machine learning works, and the fact that there
exists a function to map given input to output does not provide
understanding or interpretation of which features from the
input lead the model to a given output choice.

Interpretability in ML has received increasing attention16–18

with the realisation that in many elds, an understanding of
why a certain prediction is being made, is as important as the
accuracy. Unfortunately, interpreting a high-dimensional and
complex function is difficult.19 Recent efforts in interpretability
have been summarised in Zhang et al.16 Usually, these
approaches revolve around understanding the gradients of the
loss function with respect to the input, to understand how
changes in the input affect the output, as in Davies et al.9

However, given the relatively high complexity of machine
learning models such as neural networks, this analysis is oen
insufficient and does not provide a complete picture.19

To better understand the foundations of machine learning
capabilities, the loss landscapes of machine learning
638 | Digital Discovery, 2024, 3, 637–648
systems20–22 can be analysed. For reasons of computational cost,
it is common practice in machine learning to start from a given
set of initial weights, chosen either randomly or by some initi-
alisation scheme,23 minimise the loss as far as possible with
a greedy algorithm, and accept this result for the trained
weights. Perhaps unexpectedly, this procedure seems to work
well, and various explanations for this fortuitous situation have
been suggested.24,25 The most prominent suggestion derives
from Goodfellow et al.26 They report what they call the Mono-
tonic Linear Interpolation (MLI) property, the fact that there
usually exists a monotonically decreasing path between some
initial set of parameters qi and some minimum qo identied by
some method such as stochastic gradient descent. The insight
that this property exists, despite non-convex loss functions and
non-linear training sets raises questions, but might be
explained by the fact that, given enough data, many problems
simply are not that difficult. These results received considerable
attention in the eld, and the matter is likely to be more
complicated. Lucas et al.27 are able to create counterexamples to
the MLI property and others have observed different results to
Goodfellow et al.26 when revisiting the work on more modern
architectures and data sets.28 Further doubt that ‘Machine
learning may just be simple’ is cast in ref. 29 showing that the
MLI does not always hold and must be considered with caution.
In general, simply considering a linear interpolation from an
initial set of weights to the identied minimum may be insuf-
cient and all the aforementioned papers agree that further
study and consideration of the ML-LL is of critical importance.
Other work has shown that convergence to a global minimum
for overparameterised networks under certain, somewhat
restrictive conditions, is provable.30 These interpretability
approaches share the commonality that large areas of the LL
and its complex geometric features remain unexplored. In
practice is not always guaranteed that the global minimum is
identied, and no consideration is given to the shape of the LL
© 2024 The Author(s). Published by the Royal Society of Chemistry
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or the existence of other local minima. While such results may
be sufficient in terms of performance, it is not helpful in terms
of interpretability. Understanding the LL has the potential to
provide some of the missing understanding.31 Specically,
understanding the topography of a loss landscape can allow
novel insights into the convergence process or optimiser path
taken towards the global minimum.

Another suitable task for global optimisation based LL
exploration is the efficient enumeration and analysis of various
minima. Using generic tools, surveying large areas of the loss
landscape is expensive and time consuming, while the explo-
ration tools outlined below substantially simplify the problem.

Energy landscapes are reasonably well understood for
molecules and condensedmatter, and the hope exists that some
of the associated methodology could help to better understand
machine learning. Importantly, since a loss function is ubiq-
uitous in any machine learning system, consideration of the LL
is applicable in a broad range of elds. While most work has so
far considered neural networks,20,31 LLs have also been analysed
in the context of clustering methods, such as K-means32 or for
Gaussian processes33 in Bayesian machine learning.34 These
contributions suggest another useful property of the energy
landscapes view of machine learning. Entirely different models
can now be compared with each other, not just for output
metrics such as accuracy, but for the solution landscapes.
Understanding how many minima exist for a given model, how
they are connected, their relative volumes in parameter space,
and how quickly an optimiser converges for them, may provide
important insights into model selection.21

3 LL exploration

There are a variety of methods developed in chemical physics
for exploring potential energy landscapes. Some of these
methods are commonly referred to as enhanced sampling,
including meta-dynamics,35 umbrella sampling,36 and replica-
exchange molecular dynamics;37 a recent review is given by
ref. 38. An alternative approach suitable for both potential and
loss function surfaces is the energy landscape framework.

Global optimisation algorithms aim to nd the lowest
minimum, amongst the (possibly) many local minima and
funnels. In global optimisation for physical systems popular
algorithms are basin-hopping39–41 and genetic algorithms.42 In
ML, it is common to simply use various random initialisations
and local minimisation, which has limited use in physical
systems.43 Examples of random, or pseudo-random, initialisa-
tion and minimisation are seen in K-means,44–46 Gaussian
processes,47 and neural networks. All these methods rely upon
minimisation algorithms to locate local minima of the cost
function surfaces, and common choices are limited-memory48,49

quasi-Newton Broyden,50 Fletcher,51 Goldfarb,52 Shanno53 (L-
BFGS) routine and its variants with box-constraints54,55 for
bounded problems such as tting Gaussian processes. Conju-
gate gradient approaches can leverage matrix multiplication
tricks to address larger datasets,56,57 and stochastic gradient
descent scales well with dataset size due to only considering
a portion of the data.58,59 The choice of minimiser should not
© 2024 The Author(s). Published by the Royal Society of Chemistry
change the landscape, but can signicantly modify the rate of
exploration.

The energy landscape approach is feasible if the number of
variables in the tting space is not too large (up to perhaps 104),
and the hope is to develop understanding that is transferable to
the much larger problems oen employed in deep learning
models. To analyse the LL using the energy landscape frame-
work, global optimisation is performed initially, the set of low-
valued minima are stored, and their connected transition states
are located. In a rst step, the global minimum of the LL is
identied, which is commonly done using basin-hopping global
optimisation.39,40 Starting from any initial values for the
parameters, this procedure progresses by local minimisation.
Steps to new minima are accepted or rejected, commonly using
a Metropolis-type60 condition, and steps are proposed by per-
turbing the parameters corresponding to the current minimum
in the chain. Local minimisations are usually performed using
the LBFGS routine. For a Metropolis accept/reject scheme,
a new minimum is always accepted if its energy (loss function)
is lower, and is also accepted if the energy is higher with
probability

Pfexp

 
� D ~E

kBT

!
(1)

where D~E is the difference in energy between the newminimum
and the old minimum in the chain, kB the Boltzmann constant
and T a ctitious temperature. If the energy difference between
the old and new minima is large and positive, the move is less
likely to be accepted. Uphill steps are needed to escape from
traps in the landscape, and the value of the kBT parameter is
chosen to balance local and global exploration.

Local minima do not constitute a landscape. To understand
the organisation of solution space, transition states, dened as
saddle points with Hessian index one3 need to be located.
Transition states mediate the pathways between minima with
the lowest barriers according to the Murrell–Laidler theorem.3

Here, double-ended searches are usually employed to connect
each selected pair of minima, using the doubly-nudged61,62

elastic band63–66 method to identify likely candidates for accu-
rate renement using hybrid-eigenvector following.67–69 These
methods require continuous rst and second derivatives, but
even for loss functions without these properties, such as K-
means, landscapes can still be explored using algorithmic
adaptations.32 These geometry optimisation tools have been
rened for a wide range of problems over several decades, and
are implemented in the GMIN,70 OPTIM71 and PATHSAMPLE72

programs,73 all available for use under the GNU General Public
License.

Global optimisation and subsequent transition state
searches provides the foundations for a full characterisation of
the energy landscape/LL of a particular system. This approach is
clearly muchmore computationally expensive than only a single
optimisation pass, but the objective here is to understand the
structure of the solution space, not to seek predictions for any
particular problem. The LL itself is generally unbounded from
above. Regularisation methods or other constraints are usually
Digital Discovery, 2024, 3, 637–648 | 639
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employed to reduce overtting problems,74,75 which tends to
keep the tting parameters within a sensible range.
4 Physical properties and analogues
for ML

Machine learning loss landscapes are analogous to energy
landscapes and can be interrogated to extract the analogues of
thermodynamic and kinetic properties, which constitute the
key observables for molecular systems. When characterising
a landscape, we can loosely distinguish two sets of metrics:
global and local. Global metrics characterise overall properties
of the landscape, and local metrics distinguish different types of
solutions (i.e. minima). The former metrics allow for a charac-
terisation of the whole solution space for archetypal datasets,
and provide a better understanding of the nature of the opti-
misation problem. The distinction is fuzzy and several metrics
have important features in both classes. A discussion of some of
the most useful properties is given below, and summarised in
Table 2.
4.1 Global landscape metrics

4.1.1 Frustration index. The frustration index is a metric
that was designed to report on the existence of low-lying
minima separated from the global minimum by high
barriers.76 This metric reects the difficulty of relaxation to the
equilibrium occupation probabilities, which will likely corre-
spond to the difficulty of global optimisation on the surface. An
important difference between the frustration index, F ðTÞ, and
the Shannon entropy,77 S ðTÞ, is that F ðTÞ accounts for transi-
tion states and barriers, while the Shannon entropy considers
only the equilibrium thermodynamic properties of local
minima. The Shannon entropy is given by

S ðTÞ ¼ �
X
a

peqa ðTÞ ln peqa ðTÞ; (2)

at some temperature, T, and equilibrium occupation proba-
bility, peqa , for minimum a. In contrast, the frustration metric
has the form

F ðTÞ ¼
X

asg min

peqa ðTÞ
�
L †

a � L g min

L a � L g min

�
(3)

where L a is the loss value of minimum a, and L †
a is the loss

value of the highest transition state of the lowest energy path
between minimum a and the global minimum. The loss val-
ue of the global minimum is denoted L g min. To compare
between systems, we can consider ~F ðTÞ dened in terms of
Table 2 Interpretation of physical characteristics for molecular energy l

Feature Molecular PES

Basin volume Entropic contribution to occupation probability
Heat capacity Change in occupied minima as a function of

temperature
Frustration Propensity for broken ergodicity

640 | Digital Discovery, 2024, 3, 637–648
~peqa (T) = peqa (T)/(1 − peqgmin(T)). As discussed above, the effective
temperature T is simply a parameter to interrogate the land-
scape in machine learning systems. Studying S ðTÞ or F ðTÞ over
a range of values for T at the system temperature corresponding
to the peaks in heat capacity curves reveals features of the
landscape comparable to the analysis of molecular and
condensed matter systems in,76 where various metrics are
compared. An example is given in Fig. 2. Here, the landscape on
the le is an ideal single funnel, where locating the global
minimum is straightforward over a wide range of temperatures.
In contrast, locating the true global minimum for the landscape
on the right is more difficult. However, if alternative low-lying
minima provide good solutions then it will be straightforward
to locate a member of this set. Importantly, the alternative
minima will probably have different properties, and perhaps
provide slightly different predictions. Nevertheless, this struc-
ture may be more robust to initialisation noise and multiple
such minima could be combined in ensembles to improve
overall accuracy. In machine learning applications, ~F ðTÞ has
important effects on training reproducibility and may correlate
with batching effects. Since the sameminimum ismore likely to
be found repeatedly in unfrustrated landscapes, training these
systems is more reproducible and variation in output is less
likely to come from initialisation noise. High-frustration
surfaces may further be more prone to batch effects, or at
least have increased variance with batch effects. Like above, this
is due to the high likelihood of individual minima being overt
to specic aspects of the input data.

4.1.2 Heat capacity. The heat capacity of a system is
dened as the amount of energy (heat) that has to be added to
achieve a unit change in temperature. Wales78 describes
a theoretical framework that enables features of the heat
capacity to be connected to particular local minima in the
energy landscape. Normal mode analysis for each minimum
allows a harmonic superposition approximation to the vibra-
tional density of states. Given the partition function for some
minimum a

ZaðTÞ ¼
2
Q
s

Ns!

oa

�
kBT

hna

�k

e�Va=kBThna

�
kBT

hna

�k

e�Va=kBT ; (4)

where k = 3N − 6 is the number of vibrational degrees of
freedom for N atoms, kB the Boltzmann constant, �na the
geometric mean normal mode vibrational frequency, a measure
of basin geometry, oa the order of the molecular point group, T
the temperature and Vg the potential energy of minimum g, the
corresponding internal energy E and heat capacity CV can be
derived. By dening the harmonic superposition partition
andscapes and machine learning LLs

ML LL

Connection to robustness
Identication of minima with complementary properties

Implications for optimisation and training

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Examples for two distinct loss landscapes, visualised using disconnectivity graphs, with drastically different frustration indices. The
landscape on the left is an ideal single funnel, while the landscape on the right has many low-lying minima (acceptable solutions), which are
equally accessible, potentially making this landscape more robust.
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function, and using some elementary identities, a novel
formulation of the heat capacity can be derived.78 Peaks in the
heat capacity curve can be interpreted by looking at the
contribution of minima with positive and negative temperature
derivatives

CV¼kkBþ
XggðTÞ. 0

g

ggðTÞ�Vg�hVimin

�þ XggðTÞ\0

g

ggðTÞ�Vg � hVimin

�
hkkB þ CþðTÞ þ C�ðTÞ (5)

This analysis tells us how the occupation probability shis
between local minima as a function of the temperature
parameter. Around specic peaks in the heat capacity, some
minima contribute positively (increased occupation proba-
bility), while others contribute negatively (lowered occupation
probability). This effect is visualised in Fig. 3, where the posi-
tively and negatively contributing minima for two peaks in the
heat capacity curve are visualised. Note that substantially more
minima contribute around the larger peak in the CV curve.

In molecular systems, peaks in the heat capacity correspond
to solid–solid or solid–liquid phase transitions, where the
system moves between qualitatively different sets of local
minima, associated with different energy and entropy. For ML
systems, the analogue of the heat capacity reveals how the
occupation of minima changes with the temperature param-
eter. The temperature in an ML problem is ctitious (Fig. 3), but
serves as a parameter to scan the properties of the landscape
and report on changes that highlight qualitatively different
solutions (local minima). Minima separated by a high energy
barrier may be very different,79 although degenerate solutions
can also exist due to symmetries of the loss function.80 In fact, it
has been shown in one example that different minima may
© 2024 The Author(s). Published by the Royal Society of Chemistry
‘specialise’ in different parts of the input data, so that better
predictions can be obtained by employing alternative solutions
from the LL for different input. The heat capacity provides a way
to identify these ‘different’minima with contrasting properties.
In applications such as ensemble learning, this capability is
highly relevant. Combining different minima enhances
ensemble methods signicantly beyond randomly choosing
a subset of minima.80

4.1.3 Network properties. The representation of the
continuous surface by a weighted graph, or kinetic transition
network81–84 allows graph algorithms to be applied to generate
physical insight. One useful class of algorithms address
community detection, and when applied to kinetic transition
networks generate a set of solutions that are dynamically
distinct.85,86 Members of the same community interconvert on
a timescale much shorter than those in different communities.
Understanding the partitioning of solutions based not on
Euclidean distance, but the topography, gives a more accurate
picture of the time evolution of a physical system, and the
distinctness of different solutions. The ability to move beyond
Euclidean distance in evaluating the distinctness of models may
be promising for developing ensemble models that capture all
the relevant information.

Furthermore, the degree of each minimum, i.e. the number
of direct connections to other minima via a single transition
state, is a useful property. Nodes with a high degree constitute
hubs, associated with small world properties. These minima are
usually easy to locate during optimisation, and they are key to
moving between different regions of the space. For physical
systems it tends to be low-valued solutions that act as hubs,
which can explain whether they are easy to locate.87,88 The
degree of a node can also highlight its importance to
Digital Discovery, 2024, 3, 637–648 | 641
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Fig. 3 Heat capacity curve for a machine learning loss landscape. The loss landscape is visualised using disconnectivity graphs. Both graphs
show the same landscape, highlighted are the positive and negative contributions to the heat capacity curve for the smaller (left) and larger (right)
peak in blue and red respectively.
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optimisation algorithms in physical systems and abstract cost
functions. Furthermore, the distribution of node degrees,
which is a global property of the system, can be used to
understand the organisation of the landscape.89

4.2 Local landscape metrics

4.2.1 Rates. Rates are an essential quantity in computing
the time-evolution of physical systems. The rate constant
between two minima that are directly connected by a transition
state is computed using unimolecular rate theory.90,91 From
these elementary steps one can build a global view of dynamics
by combining them. Rates between sets of minima are calcu-
lated for a complete network using the graph transformation
algorithm.92,93 Rates have been used to analyse time evolution of
many solid-state94 and biomolecular95,96 systems, and rate
calculations have been extended to K-means clustering.32 A
recent review of numerical rate calculations is given in ref. 97

In ML systems, rates have no physical analogue, but they
nevertheless provide a useful estimate of the difficulty in
moving between different regions of solution space. The rates,
642 | Digital Discovery, 2024, 3, 637–648
calculated with the contributions of all known solutions,
account for both intervening barriers in the loss function and
the number of intermediate minima. Both properties have
physical meaning for understanding the solution space, and
contain important additional information not present in
distance calculations. Small rates indicate that two given
minima are highly distinct, where interconversion requires
either many, or large, changes in model parameters.

4.2.2 Monotonic sequence basins. Monotonic sequence
basins (MSBs) are minima not directly connected to any lower-
valued minima. Reducing a landscape to its monotonic
sequence basins allows a signicant reduction in complexity. In
complex systems, hundreds of minima may be well represented
by only a handful of states. This representation contains all
optimal solutions within their surrounding regions of space.
Furthermore, the number of MSBs can be seen as a proxy for the
number of funnels, which are distinct regions of the landscape
associated with different molecular congurations or weights/
hyperparameters.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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4.2.3 Catchment basin volume. The basin of attraction,1,98

for any given minimum, is the set of points for which steepest-
decent paths converge to that structure. This region has a well-
dened volume in conguration space. A Taylor expansion to
second order in the vicinity of a local minimum enables the
corresponding partition function to be computed in terms of
the log product of positive Hessian eigenvalues (LPPHE) for the
Hessian matrix of second derivatives. The corresponding
conguration volume (or density of states) is related to the
harmonic vibrational entropy in an atomic system, and the log
product of positive eigenvalues is a convenient measure of the
‘width’ associated with a local minimum for a loss landscape.
The occupation probability for a given minimum as a function
of the temperature parameter depends on the balance between
the energy (loss function), which appears as a Boltzmann factor,
and the entropy, which is determined by the (generally anhar-
monic) density of states in the catchment basin. The rate at
which this equilibrium value is achieved, if we dene the
analogue of chemical kinetics, depends on the barriers between
minima and the global organisation of the landscape.

Accurate values for the analogue properties of LL minima are
not required to diagnose the existence of qualitatively different
solutions, and hence the harmonic value reported by the LPPHE
is sufficient for diagnostic purposes. The conguration volume
for a basin of attraction may also have useful interpretations in
ML problems. One of the most important features of a machine
learning model is that is should be robust. The LPPHE provides
a harmonic measure of the basin volume31 which allows
minima to be selected based on some intuition of how robust
they might be, as well as training accuracy. We emphasise once
again, that the value of the effective heat capacity is not
important here, but peaks in this function enable us to identify
local minima with distinct classication properties in an effi-
cient manner.

4.3 Further possibilities

The machine learning community has only recently begun to
explore the analogues of physically observable thermodynamic
and kinetic properties for machine learning loss landscapes. In
particular, little work has been done to determine whether
dynamical analogues might be useful. As for thermodynamic
quantities, such as the heat capacity, there could be useful
insight to be gained from understanding how such quantities
report on the nature of the machine learning solution space.

4.4 ML model metrics

Above, we have discussed various metrics that are relevant when
considering the energy landscape of an atomistic system, and
how these may be applied to ML systems. We now want to
briey discuss metrics that are considered in machine learning,
implicitly characterising ML LLs. As described above, the LL is
at best a surrogate of quality: since it is only based on training
data, the ability to generalise to testing data is not easily
obtainable. The same imperfect correlation between loss func-
tion and quality is seen in unsupervised clustering methods,
such as K-means, even without the presence of test data.
© 2024 The Author(s). Published by the Royal Society of Chemistry
In practice, ML models are largely scored for accuracy and
robustness, i.e. test accuracy. A practitioner may be interested in
how the loss value changes on training data, and perhaps also
in training loss. Yet, results are usually reported on test data-
sets. A helpful review of machine learning evaluation can be
found in ref. 99. In general, the relevant metrics in machine
learning models are largely results-focused and only to a lesser
degree incorporate an understanding of the system. As long as
the test accuracy in terms of MSE, AUC, or top-k loss is suffi-
cient, the practitioner rarely cares about interpretation in terms
of the Hessian eigenvalues of the underlying loss landscape.
Such physical quantities have a clear meaning in energy land-
scapes, and they are routinely analysed. We hope that by
translating some of these metrics into practical machine
learning understanding, more attention will be paid to these
metrics in the future.
5 Applications of EL4ML

Here we will discuss applications where knowledge of the LL
has been used to understand or improve machine learning.
Fig. 4 provides an overview of the four application areas we
consider as most promising for loss landscape methods.
5.1 Robustness

Incorporating knowledge of the loss landscape has become
increasingly common in machine learning. Most prominently,
several new optimisation methods have been developed that
include some degree of information about the gradient of the
LL.100–103 Including information about the LL in optimisation
seems to lead to improved robustness of the solution. Robust-
ness in machine learning refers to the ability of a particular
model to generalise well to unseen testing data. A more robust
model will perform better on testing data than a model that is
overt on the training data and does not generalise well. Flatter
minima, geometrically characterised by Hessian eigenvalues
(curvatures) with smaller magnitudes, are expected to be more
robust.104–106 This result seems intuitive, since it means that if
slightly different training data displace the minimum from its
given position, it will still be close to the original position for
a ‘atter’ landscape, whereas the resulting displacement may be
larger when the local curvatures are greater.

Mathematically, given a minimum at position P with energy/
loss E , a small displacement of P + p, caused by slightly different
training data, will have an effect on E depending on the

curvatures around P, i.e. DE ¼ 1
2
pTHðPÞp, where H(P) is the

Hessian at P. Hence, if the Hessian, and more specically its
eigenvalues, are larger, the minimum is ‘narrower’ and the
difference in E , DE between positions P and P + p is greater, the
minimum is less robust. Foret et al.101 have included knowledge
about the shape of the loss function and managed to nd more
robust minima. Overall, robustness is one of the most impor-
tant concepts in machine learning.107 A completely overt
model, one that has perfect training accuracy, but does not
generalise at all to testing data, is useless in practice. Thus,
Digital Discovery, 2024, 3, 637–648 | 643
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Fig. 4 Four applications areas of energy landscapes methods in machine learning with specific examples. (a) Robustness: insights into the
relative curvature around minima can be generated from a landscapes perspective, providing a quantification of model robustness. (b)
Ensembles: qualitatively differentminima can be identified from the loss landscape and selected for ensemblemodels. (c) Interpretability: identify
weights conserved acrossminima and visualisemodel training descent path. (d) Parameter selection: landscape geometry and number of funnels
can be used as a method for parameter selection in algorithms such as K-means.
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considering geometric features of the loss landscape may be an
important way in combating this problem.
5.2 Ensemble methods

Knowledge of the loss landscape may help improve prediction
accuracy for a given model. Ensemble methods, combining or
averaging multiple predictors for a single task, is a well estab-
lished approach.108–111 One reason why ensemble methods have
become so important over previous years is the imperfect
correlation of performance and loss resulting from limited
training data. The single best minimum is oen not sufficient
and hence, a combination of so called weak learners is required
to outperform a ‘better’ minimum. Related challenges arise in
batch selection for Bayesian optimisation, where the key chal-
lenge is determining a diverse set of samples for the task of
maximising an expensive ‘black-box’ function.112–116 Two of the
critical design choices in ensemble learning are, which classi-
ers to combine, and how to combine them. Common
approaches include bagging and boosting methods, which are
well described in ref. 117. The possible approaches to combine
predictions of different minima range from simple majority
644 | Digital Discovery, 2024, 3, 637–648
votes, to complex weighting schemes for the contribution of
individual classiers. The same methods can be applied to
unsupervised learning, where clustering solutions can be
combined to improve separation, without the separation into
training and testing data.118 The value of ensemble learning
arises when different classiers are good at classifying different
subsets of the data, or prioritise different parts of the input.
Recently, the idea of combining multiple minima of the LL,
obtained via energy landscapes methodology,80 has been
examined. Each minimum can be viewed as an individual
classier, where all models have the same architecture, but very
different parameters. Combining classiers, all obtained from
one LL, provides the distinct advantage that the classiers are
known to be qualitatively ‘different’, which is the key feature in
ensemble learning. Specically, for some LL, standard
measures based on analogue properties from the physical
sciences, such as the heat capacity, can be analysed to increase
the likelihood that the minima are complementary. Landscape
guided ensemble learning is another example of how physics-
inspired machine learning can outperform common methods,
and hence provide signicant additional performance.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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5.3 Interpretability

Understanding the black box of machine learning systems is
one of the greatest challenges to the eld today. Various
gradient and perturbation based methods exist,119 yet their
usefulness and accuracy is debated, and is not generally agreed
to be sufficient.120 Hence, alternative ways to improve our
understanding of decision-making by a particular model are
desirable. Studying individual funnels of the landscape, as seen
in disconnectivity graphs, may provide a promising way to
increase interpretability. This approach is commonly exploited
in the molecular sciences121,122 where a multifunnelled land-
scape is analysed to understand which structural differences of
a molecule constitute a group of solutions in a specic funnel.
The machine learning analogue is that for a multi-funnelled
landscape, one can compute the sets of parameters that char-
acterise a particular funnel, as in ref. 123. These parameters,
conserved across multiple minima, are therefore likely to be
important in the model, and may guide interpretability.
5.4 Selecting overall parameters

ML algorithms can involve choosing a parameter that is not
itself part of the optimisation problem. A prominent example is
the choice of cluster number, K, in K-means. Each K denes
a distinct cost function surface that must be optimised to
generate low-valued clustering solutions. The choice of the
appropriate cluster number is usually made using one, or
a small set, of solutions at each K,124–127 reviewed in ref. 128.
However, it is possible to make this decision using the topog-
raphy of the whole solution space, rather than a small number
of solutions. The use of landscapes, composed of many solu-
tions, increases the reproducibility, as there is less dependence
on locating certain minima, amongst a vast number, when
computing metrics. The presence of certain landscape structure
is indicative of an appropriate number of clusters, as observed
for clustering gene expression data to identify cancer
subtypes.129 Such an analysis is signicantly more expensive
than characterising single minima, but for many applications,
the quality and reproducibility of the solution are essential.
6 Future work

Many applications of energy landscapes remain unexplored in
the context of machine learning. In this section, we will outline
a few interesting areas of future work that would build
substantially on the energy landscapes methodology. Firstly, it
will be interesting to see advances in understanding the
physics-inspired analogues of machine learning. For example,
understanding in more detail the relationship between minima
contributing to the heat capacity and the importance (both in
terms of accuracy and robustness) of these minima in an
inference task. Furthermore, many other concepts, such as the
dynamical analogues in machine learning systems, remain
largely unexplored. Understanding the usefulness of such
metrics may give further insights from the physical sciences to
the more abstract, black-box world of machine learning. In
general, physics-inspired machine learning seems to be a good
© 2024 The Author(s). Published by the Royal Society of Chemistry
candidate for improving our understanding of machine
learning, by transferring knowledge from a relatively mature
eld, to a newer one.

Another area in which the energy landscape approach may
prove very helpful is Bayesian inference using Gaussian
processes (GPs). An inherent challenge within these methods is
identifying suitable hyperparameters. Most commonly, a loss
function, usually the log marginal likelihood, is maximised and
a single point estimate is taken for the hyperparameters.
However, single-point estimates may be insufficient when there
are multiple competing ts.130 A common method to overcome
the limitations of single point estimates is Monte Carlo (MC)
sampling of the hyperparameter distribution.131–133 Previous
work has used sequential MC sampling,130,134 Bayesian MC
sampling,135 and Hamiltonian MC sampling.136 Additionally,
slice sampling,137 adaptive importance sampling,138 and
entropy-based methods139 have been used within Bayesian
optimisation, where there is interest in moving beyond single-
point estimates to fully-Bayesian approaches.140,141 The main
drawback with these methods is the high computational cost,
and ideally they should only be employed when it will provide
a substantial advantage over single point estimates. However,
this condition cannot be known a priori. Looking at the loss
landscape may provide an answer. There may be a direct rela-
tionship between the number of funnels in the landscape,
perhaps characterised by monotonic sequence basins, or the
frustration index, and the effect that MC sampling has on
improving accuracy and generalisability over single point esti-
mates. Thus, knowledge of the landscape, obtained via appro-
priate sampling, could lead to a substantial reduction in
compute cost by identifying when a fully-Bayesian approach is
required. Moreover, the additional information present in
landscapes may extend existing variational inference
methods142,143 by allowing more accurate approximate distri-
butions to be generated and sampled.

7 Conclusions

Important relationships exist between physical molecular
energy landscapes and abstract machine learning loss land-
scapes. In this contribution we have highlighted some of the
recent work on physics-inspired machine learning and how
theoretical methods from one eld may be applied to the other.
We have discussed how various metrics, such as the heat
capacity, catchment basin volume, or frustration index can help
to improve and explain robustness, accuracy, and importantly
interpretability in machine learning. Many of the connections
between these two elds remain to be explored and exploited.

Energy landscapes provide important insight to answer
questions in machine learning, irrespective of the underlying
model, because they focus on the structure of the solution
space. More generally, exploiting a well understood method-
ology is a promising approach to vastly increase the set of
problems that machine learning can be applied to. The hope is
that methods from the physical sciences can work in conjunc-
tion with machine learning methods to give practitioners more
trust and condence in their predictions, as well as greater
Digital Discovery, 2024, 3, 637–648 | 645
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understanding of what a given model is actually doing. Ulti-
mately, this approach could facilitate further growth in the
inuence that machine learning has on society as a whole.
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N. Tomašev, R. Tanburn, P. Battaglia, C. Blundell, A. Juhász,
et al., Nature, 2021, 600, 70–74.

10 P. Budzianowski and I. Vulić, arXiv, 2019, preprint
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38 J. Hénin, T. Leliévre, M. R. Shirts, O. Valsson and

L. Delemotte, Living J. Comput. Mol. Sci., 2022, 4, 1583.
39 Z. Li and H. A. Scheraga, Proc. Natl. Acad. Sci. U. S. A., 1987,

84, 6611–6615.
40 D. J. Wales and J. P. K. Doye, J. Phys. Chem. A, 1997, 101,

5111.
41 D. J. Wales and H. A. Scheraga, Science, 1999, 285, 1368–

1372.
42 E. S. Henault, M. H. Rasmussen and J. H. Jensen, ChemRxiv,

2020, DOI: 10.26434/chemrxiv.12152661.v1.
43 C. J. Pickard and R. J. Needs, J. Phys.: Condens.Matter, 2011,

23, 053201.
44 D. Arthur and S. Vassilvitskii, Proc. of the 18th Ann. ACM-

SIAM Symp. on Discrete Algorithms, 2007, pp. 1027–1035.
45 A. H. Mohammad, C. Vineed, S. Saeed and

J. Z. Mohammed, Pattern Recognit. Lett., 2009, 30, 994–1002.
46 O. Bachem, M. Lucic, S. H. Hassani and A. Krause, Proc. of

the 30th Int. Conf. on Neural Information Processing Systems,
2016, pp. 55–63.

47 C. E. Rasmussen and C. K. I. Williams, Gaussian processes
for machine learning, MIT Press, 2005.

48 D. C. Liu and J. Nocedal,Math. Program., 1989, 45, 503–528.
49 J. Nocedal, Math. Comput., 1980, 35, 773–782.
50 C. G. Broyden, J. Inst. Math. Its Appl., 1970, 6, 76–90.
51 R. Fletcher, Comput. J., 1970, 13, 317–322.
52 D. Goldfarb, Math. Comput., 1970, 24, 23–26.
53 D. F. Shanno, Math. Comput., 1970, 24, 647–656.
54 R. H. Byrd, P. Lu, J. Nocedal and C. Zhu, SIAM J. Sci.

Comput., 1995, 16, 1190–1208.
55 C. Zhu, R. H. Byrd, P. Lu and J. Nocedal, ACM Trans. Math.

Sow., 1997, 23, 550–560.
56 K. A. Wang, G. Pleiss, J. R. Gardner, S. Tyree,

K. Q. Weinberger and A. G. Wilson, NeurIPS, 2019.
57 J. Wenger, G. Pleiss, P. Hennig, J. Cunningham and

J. Gardner, Proc. Mach. Learn. Res., 2022, 162, 23751–23780.
58 D. P. Kingma and J. L. Ba, 2015, preprint, arxiv:1412.6980,

DOI: 10.48550/arXiv.1412.6980.
59 L. Bottou, F. E. Curtis and J. Nocedal, SIAM Rev., 2018, 60, 1.
60 N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth,

A. H. Teller and E. Teller, J. Chem. Phys., 1953, 21, 1087–
1092.

61 S. A. Trygubenko and D. J. Wales, J. Chem. Phys., 2004, 120,
2082–2094.

62 D. Sheppard, R. Terrell and G. Henkelman, J. Chem. Phys.,
2008, 128, 134106.

63 G. Mills, H. Jónsson and G. K. Schenter, Surf. Sci., 1995, 324,
305–337.

64 H. Jónsson, G. Mills and K. W. Jacobsen, Classical and
quantum dynamics in condensed phase simulations, World
Scientic, Singapore, 1998, ch. 16, pp. 385–404.

65 G. Henkelman, B. P. Uberuaga and H. Jónsson, J. Chem.
Phys., 2000, 113, 9901–9904.

66 G. Henkelman and H. Jónsson, J. Chem. Phys., 2000, 113,
9978–9985.
© 2024 The Author(s). Published by the Royal Society of Chemistry
67 L. J. Munro and D. J. Wales, Phys. Rev. B: Condens. Matter
Mater. Phys., 1999, 59, 3969–3980.

68 G. Henkelman and H. Jónsson, J. Chem. Phys., 1999, 111,
7010–7022.

69 Y. Kumeda, L. J. Munro and D. J. Wales, Chem. Phys. Lett.,
2001, 341, 185–194.

70 GMIN: A program for basin-hopping global optimisation,
basin-sampling, and parallel tempering, http://www-
wales.ch.cam.ac.uk/soware.html.

71 OPTIM: A program for geometry optimisation and pathway
calculations, http://www-wales.ch.cam.ac.uk/soware.html.

72 PATHSAMPLE: A program for generating connected stationary
point databases and extracting global kinetics, http://www-
wales.ch.cam.ac.uk/soware.html.

73 pyl: A Python package to survey LFLs in ML models.
74 G. C. Cawley and N. L. C. Talbot, J. Mach. Learn. Res., 2007,

8, 841–861.
75 J. Chen, K. de Hoogh, J. Gulliver, B. Hoffmann, O. Hertel,

M. Ketzel, M. Bauwelinck, A. Van Donkelaar,
U. A. Hvidtfeldt, K. Katsouyanni, et al., Environ. Int., 2019,
130, 104934.

76 V. K. De Souza, J. D. Stevenson, S. P. Niblett, J. D. Farrell and
D. J. Wales, J. Chem. Phys., 2017, 146, 124103.

77 C. E. Shannon, Bell Syst. Tech. J., 1948, 27, 379–423.
78 D. J. Wales, Phys. Rev. E, 2017, 95, 030105.
79 A. V. Bradley, C. A. Gomez-Uribe and M. R. Vuyyuru, Mach.

Learn.: Sci. Technol., 2022, 3, 045002.
80 M. P. Niroomand, J. W. R. Morgan, C. T. Cafolla and

D. J. Wales, Mach. Learn.: Sci. Technol., 2022, 3, 025004.
81 D. J. Wales, Int. Rev. Phys. Chem., 2006, 25, 237–282.
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