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The proliferation of optical, electron, and scanning probe microscopies gives rise to large volumes of
imaging data of objects as diversified as cells, bacteria, and pollen, to nanoparticles and atoms and
molecules. In most cases, the experimental data streams contain images having arbitrary rotations and
translations within the image. At the same time, for many cases, small amounts of labeled data are
available in the form of prior published results, image collections, and catalogs, or even theoretical
models. Here we develop an approach that allows generalizing from a small subset of labeled data with
a weak orientational disorder to a large unlabeled dataset with a much stronger orientational (and
positional) disorder, i.e., it performs a classification of image data given a small number of examples even
in the presence of a distribution shift between the labeled and unlabeled parts. This approach is based
on the semi-supervised rotationally invariant variational autoencoder (ss-rVAE) model consisting of the
encoder—decoder “block” that learns a rotationally-invariant latent representation of data and a classifier
for categorizing data into different discrete classes. The classifier part of the trained ss-rVAE inherits the
rotational (and translational) invariances and can be deployed independently of the other parts of the
model. The performance of the ss-rVAE is illustrated using the synthetic data sets with known factors of
variation. We further demonstrate its application for experimental data sets of nanoparticles, creating
nanoparticle libraries and disentangling the representations defining the physical factors of variation in

rsc.li/digitaldiscovery the data.

Introduction

The proliferation of optical, electron, and scanning probe
microscopies continues to give rise to large volumes of imaging
data."™ For biological systems, this includes objects as diversi-
fied as cells, bacteria, organelles, and pollen.>” In nanoscience
this includes nanoparticles, nanowires, and other nano-
objects.**® In electron and scanning probe microscopy, this
includes atoms and molecules as detected via changes in the
local density of states or nuclei density."***.*** Correspond-
ingly, there is considerable interest in deriving physical infor-
mation and potentially actionable insights from these images,
ranging from the identification and classification of the
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defects,"™"” reconstruction of the statistical and generative'®*®
physical models, or identification of medical conditions and
potential interventions.*

In many cases, the data streams coming from the imaging
systems contain the objects with a strong translational and
rotational disorders, since the objects of interest typically have
arbitrary orientation and position in the field of view.*** For
example, in crystalline materials, the preferred orientation is
determined by the relevant alignment of the crystallographic
axes with respect to the image plane, with potentially small
disorder due to local and global strains and scan distortions. At
the same time, for mesoscale imaging and disordered mate-
rials, the objects of interest can have arbitrary orientation in the
image plane. Analysis of these data streams necessitates rapid
classification and identification of the observed objects. An
often-encountered scenario is the one in which the individual
objects are separable, corresponding to the strong dilution of
original solution,*?* rare defects,”® or easily identifiable
borders of the objects.*~** In these cases, the compound images
containing multiple objects can be separated into the patches
containing individual objects of interest, albeit at arbitrary
orientation, with positional jitter relative to the center of the
patch due to the variability of object shapes. Correspondingly,
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analysis of such data via supervised or unsupervised machine
learning methods needs to account for these factors of
variability.

Supervised learning, known for its ability to learn complex
patterns and achieve precise prediction using labeled data, is
very suitable for tasks such as classification and regression.*
However, supervised learning requires a large amount of
labelled data (time-consuming), and it can also struggle with
generalization with the input data and the training data are
significantly different. In contrast, unsupervised learning is
particularly valuable in terms of unstructured and unlabeled
data by enabling data understanding, which is also inherent
with the limitations in its ambiguity of understanding specific
patterns that are irrelevant to the tasks. Therefore, semi-
supervised learning, in which a small number of labels is
provided, combines the merits of both supervised and unsu-
pervised learning, become necessary.’” The approach of semi-
supervised learning corresponds to the practically encoun-
tered scenarios where prior data in the form of small manually
labeled sets, published papers, catalogs, or other forms is
available. There have already been lots of success in literature
that apply semi-supervised learning to different datasets varying
from dendritic microstructures,* pathology images, and soft
materials.>® The central challenge of such analysis is the
generalization from a small subset of labeled data with a weak
orientational disorder (e.g., manually labeled data or reference
data) to a large unlabeled data set with a much stronger
orientational disorder. In the language of deep/machine
learning (DL/ML), our goal is to generalize to a dataset charac-
terized by distributional shift, which is one of the key challenges
for practical applications of DL/ML models.**

Results

To address this challenge, here we develop an approach for
semi-supervised learning based on variational autoencoders
with rotational (and translational) invariance. Variational
autoencoders (VAE) belong to a class of probabilistic graphical
models that can learn the main continuous factors of variation
from high-dimensional datasets.>**° It consists of generative
and inference models of the forms p(x|z)p(z) and g(z|x) usually
referred to as decoder and encoder. The former treats the latent
variable z as a code from which it tries to reconstruct the
observation x using a prescribed prior distribution p(z) (here
chosen as standard Gaussian), whereas the latter is used to
approximate the usually intractable posterior distribution. Both
encoder and decoder are parametrized by deep neural networks.
The low-dimensional latent representations learned by VAE can
be efficiently used for downstream tasks such as classification
even with a limited number of labels. More specifically, to use
VAE in a semi-supervised learning setting, one treats a class
label as one of the latent factors of variation. This latent variable
comes from a discrete distribution and is known a priori only
for a small fraction of the data. The encoding into the discrete
classes for the unlabeled part of data is performed by a separate
neural network (y-encoder in Fig. 1), which also plays a role of
a classifier. The semi-supervised VAE (ss-VAE) has been
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Fig.1 Schematic of ss-rVAE model. Here the partially observed labels
are treated as a part of the latent “code” that generates the data. For the
unlabeled part of the data, the discrete class is encoded using the y-
encoder, which is an MLP with the softmax activation function at the
end. The other latent variables (representing everything but the label)
are separated into two parts: the one associated with rotations and
translations (for simplicity, only the rotation part is shown) and the one
corresponding to the remaining continuous factors of variation. They
are encoded using a standard VAE encoder module denoted here as z-
encoder. The angle latent variable is used to rotate a pixel grid, which is
then concatenated with discrete and continuous latent variables and
passed to the VAE's decoder to reconstruct the input data.

successfully applied to standard benchmark datasets such as
MNIST** where it was able to achieve ~90% accuracy on the
dataset with only ~3% of labels available.

Unfortunately, the classical ss-VAE struggles to perform
accurate classification of the unlabeled data obtained under
conditions different from those of labeled data. For example, as
we show below, even a relatively small increase in the orienta-
tional disorder for the unlabeled portion of data almost
completely throws off the classifier. Simply increasing the
fraction of labeled data does not lead to improved results since
the “new” labeled data still comes from the same distribution.

To overcome this limitation, we partition a continuous latent
space of the ss-VAE into the part associated with orientational
and positional disorders and the part corresponding to the
remaining factors of variation (shear, scale, etc.). The latent
variables from the former are used to rotate (and translate) the
pixel grid associated with input images, which is then concat-
enated with the rest (continuous and discrete) latent variables
and passed to the VAE's decoder to enforce a geometric
consistency*> between rotated (and translated) unlabeled
objects. As far as the choice of the decoder's prior for the angle
latent variable is concerned, we tested both standard normal

© 2024 The Author(s). Published by the Royal Society of Chemistry
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[llustration of the datasets used in this study. (a and b) The representation of the cards dataset as introduced in ref. 28. (a) Typical objects

from the labeled part of the dataset with a weak orientational disorder (the rotational angle is sampled uniformly from the [—4°, 4°] range). (b)
Typical objects from the unlabeled part of the dataset with a strong orientational disorder (the rotational angle is sampled uniformly from the

[—60°, 60°] range). (c) Experimental dataset of the gold nanoparticles.

distribution and intuitively more suitable projected normal
distribution*® (continuous distribution on the circle) and found
no significant difference for the datasets used in this paper. The
weights of the encoders and decoder are trained by optimizing
the standard ss-VAE loss objective with an explicit classification
loss for the labeled data.*

As a model synthetic data set, we have chosen the dataset
with playing card suites as originally introduced in ref. 45. This
choice is predicated on a relatively small number of classes (4),
and interesting full and partial degeneracies with respect to the
affine transforms. For example, upon compression and 90
degrees rotation the diamond will transform into a (smaller)
diamond of the same orientation. For clubs, the rotation by 120
yields an almost identical object shape, allowing to trace the
tendency of a model to get captured in metastable minima.
Finally, spades and (rotated) hearts differ by the presence of
a small tail only.

We generated a data set of M = 12 000 cards (3000 per each
card suite) having the varying angular, translation, shear, and
size disorders. In addition, we generated a small number, N =
800 (200 per each card suite), of the labeled examples. Impor-
tantly, the labeled examples do not have a positional disorder
(the objects are fixed at the center of image) and are charac-
terized by only a negligible orientational disorder part (the
objects are rotated in the range between —4° and 4°) compared
to the unlabeled part (see Fig. 1a and b). The ss-rVAE training
aims to simultaneously address three targets: (i) to reconstruct
the data set, (ii) to establish the structure in the latent space,
and (iii) to assign the labels to the individual elements of the
data set characterized by a distributional shift. Finally, the
evaluation of the trained model accuracy was performed on

© 2024 The Author(s). Published by the Royal Society of Chemistry

a separate dataset generated using the same disorder parame-
ters as the unlabeled part of the training data but with
a different pseudo-random seed. The exploration of ss-VAE with
desired invariances can be performed in the provided Jupyter
Notebook. The better performance of ss-VAE with rotational
invariance can also be observed in ESI Videos S1 and S2,T which
show the training processes of ss-VAE without and with rota-
tional invariance, respectively. The corresponding latent space
distributions are also shown in Fig. 1, along with the confusion
matrices in Fig. S2,T which also indicate the better performance
of ss-VAE with rotational invariance. We note that the perfor-
mance of ss-VAE with rotational invariance can be improved by
increasing the ratio of supervised data, as seen in ESI Video S3.7

The classification accuracies of the trained ss-VAE (without
rotational invariance) and ss-rVAE (with rotational invariance)
are shown in Fig. 3a for different orientational disorders in the
unlabeled dataset. Here, the labels on horizontal axis show
a range from which the angles for the unlabeled data were
uniformly sampled. For the sake of brevity, we will refer to each
distribution by the value of « that forms the [—«, «] interval. The
angles for the labeled data were sampled from a uniform
distribution with « = 4° for all the cases. The classification is
performed with a y-encoder (see Fig. 1). Clearly, the ss-VAE fails
to generalize to the unlabeled data with different orientations of
the same objects, with most of the prediction accuracies just
slightly above a random guess. Nor it could learn any mean-
ingful latent representation of the data (Fig. 3b). On the other
hand, the ss-rVAE applied to the exact same datasets shows
a robust classification performance (>75% accuracy) for a rela-
tively broad range of the orientational disorder (4° < & < 90°).
Furthermore, the ss-r'VAE is capable of learning the correct
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Fig. 3 Performance of the ss-VAE (without rotational invariance) and ss-rVAE (with rotational invariance) on the cards dataset. (a) Comparison of
the classification performance between the regular (ss-VAE) and rotationally invariant (ss-rVAE) models on the unlabeled test datasets char-
acterized by a distributional shift in the form of increasing orientational disorder. The horizontal axis labels show an interval from which the
rotation angles for the unlabeled data were sampled uniformly. The labeled part used in training remained the same in all the cases and cor-
responded to the data described in Fig. 2a. (b and c) Class-conditioned latent space traversals of the ss-VAE (b) and ss-rVAE (c) learned from the
unlabeled data with rotation angles sampled from [-60°, 60°] interval. Note that the first continuous latent variable (top row in (c)) captures
variation in scale whereas the second continuous latent variable (bottom row in (c)) corresponds to a shear strain.
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Fig. 4 Performance of the trained ss-rVAE on cards dataset. (a) The dependence of prediction accuracy on shear (s) and angular («) disorders.
Here, s denotes the [0, s] range from which values of shear deformation are sampled for image transformation. Similarly, « denotes the [—a, a]
range from which the rotation angles are sampled. The model is trained on labeled dataset with s = 23% and a = 4°, whereas the unlabeled part
for model training had s = 23%, a = 60°, and random offsets between 0 and 0.1 (in fractions of an image). (b and c) Confusion matrix for test
dataset with (b) s = 23%, « = 60°, and (c) s = 30%, « = 100°. The random offsets are the same as during the training. (d) Examples of data
contaminated with two types of noise. (e) The dependence of accuracy on background noise intensity for the test dataset with s = 23%, a = 60°.
(f) The dependence of accuracy on contamination level for the test dataset with s = 23%, o = 60°.
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factors of variation for this range of angular disorder (Fig. 3c).
Indeed, the first continuous latent variable (z;) clearly captures
a variation in scale whereas the second one (2,) encoded a vari-
ation in shear deformation. We note that the accompanying
Jupyter Notebook allows readers to explore different ranges of
the disorder parameters as well as to tune the architectures (e.g.,
change a number of layers in the encoder and decoder modules)
of the VAE models.

Next, we investigated the performance of the trained ss-rVAE
model on datasets with varying disorder and noise levels. We
note that such “stress tests” are critical for deploying the ML
models online (i.e., during the actual experiments) where one
may not have time to retrain a model every time there are
changes in the data generation process. Fig. 3b shows a depen-
dence of ss-rVAE prediction accuracy on angular and shear
disorder. Here, we use s to denote the [0, s] range from which
values of shear deformation are uniformly sampled. The ss-
I'VAE was trained on the dataset with s = 23% and « = 60°.
One can see that ss-TVAE shows a remarkable robustness even
when the shear deformation strength exceeds the maximum
shear level used in the training dataset. For the orientational
disorder, the accuracy is expectedly decreasing for « > 60°,
consistent with observations in Fig. 3. Nevertheless, it remains
at acceptable levels (>70%) even at the very high rotation angles
(up to o = 180°) for the low and moderate shear values. This is
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remarkable because even though we didn't explicitly enforce the
rotational invariance on our classifier (y-encoder), it was learned
by the “proximity” to the rVAE part (z-encoder and decoder) of
the model. Finally, for the large shear (>30%) and strong
orientational disorder (« > 100°) the model struggles to provide
accurate predictions. The confusion matrix analysis of the test
datasets (Fig. 4b and c) revealed that the misclassification
originates mostly from mislabeling hearts to spades, whereas
the assignments of all other cards (club, spade, and diamond)
remain robust.

To explore noise effects, we introduced two kinds of noise to
simulate practical experimental results as demonstrated in
Fig. 4d. The first one is a simple Gaussian noise. This type of
noise is common in experimental measurements and is some-
times referred to as background noise. Fig. 4e shows the
dependence of the ss-TVAE prediction accuracy on the intensity
of the background noise dataset. We can see that ss-rVAE
predictions are robust to noise with intensities below 0.4.
Moreover, even if the noise intensity reaches 1.0, the ss-rVAE
still has an accuracy above 70% (the insets in 4e show exam-
ples of how the data looks like for noise intensities of 0.4 and
1.0). Noteworthily, we believe that most practical experimental
data can maintain a noise intensity below 1.0 or even below 0.4,
suggesting that ss-rVAE can have a robust performance in
practical use. In addition, we note that this ss-r'VAE model is

4
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Fig. 5 VAE and rVAE analyses of the nanoparticle dataset. (a) VAE latent space. (b) rVAE latent space. (c) VAE latent variables distribution with
color corresponding to class. (d) VAE latent variables distribution with color corresponding to class. Note that in (c) and (d) the class was not
inferred but simply plotted from the known labels, providing a visual guide as to how VAE analysis without labels would perform.
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trained on a clean dataset, and therefore its performance on
noisy data can be further improved if the model is trained with
using data augmented by noise.

For the second type of noisy data, we added an extra signal
intensity to random pixels of the clean data. This type of noise is
analogous to measuring experimental samples with contami-
nation, so we refer to this data as contaminated data. We
defined two parameters to control the contamination level: one
is contamination density that is determined by the ratio of
pixels with contamination signal; the other is contamination
intensity that is determined by the intensity of the added signal.
Shown in Fig. 4f is the dependence of ss-r'VAE analysis accuracy
on contamination level and density. We can see that the ss-rVAE
shows good accuracy when the contamination density is below
10%.

We further extended this approach to experimental data,
namely the analysis of the gold nanoparticle (GNPs) assemblies.
The GNPs were salted with NaCl solution to an indium-tin oxide
(ITO) substrate. The process of salting was observed using dark
field microscopy to make sure enough GNPs are on the ITO
substrate. Then, we performed imaging on the same area using
scanning electron microscopy. The nanoparticle dataset is
automatically created from the electron micrographs and then
hand-labeled manually by us using the number particles in each
image as “class”.

class 1

05 05
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class 2

0.0
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Here, we limited ourselves only to classes that have no less
than 30 “samples” (images). This left us with four classes cor-
responding to 1-, 2-, 3- and 4-particle agglomerations, with 304,
93, 49, and 31 images in each class. We took 15 samples from
each class to prepare the labeled dataset, whereas the remain-
ing ones went into the unlabeled dataset. Note that this created
a significant class imbalance against which we are going to test
our ss-r'VAE model.

As initial test, we attempted the simple VAE and rVAE
approaches (i.e., z-encoder and decoder only, without (VAE) and
with (rVAE) partitioning of the continuous latent z-space). Fig. 5
shows the latent space and distribution of the encoded latent
variables of VAE and rVAE analyses. In this case, the training is
completely unsupervised and no classification is performed
(albeit the distribution of the data in the latent space can
provide indication on feasibility of the latter). One can see an
evolution of particle numbers along the vertical direction in
both Fig. 5a and b. In addition, by encoding the entire dataset
into the latent space, we can see a cluster(s) of points in the
latent space corresponding to images with a single particle,
indicating the successful classification of the latter (Fig. 5¢ and
d). However, for VAE analysis (Fig. 5c), all other labels are
mixed, suggesting a failure of further distinguishing other
classes. In this regard, the rVAE, which has a rotational invari-
ance, performs slightly better (Fig. 5d) but this performance
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Fig. 6 ss-rVAE analysis of the nanoparticle dataset. (a—d) Class-conditioned latent space of the ss-rVAE trained on partially labeled GNP dataset.
(e) Latent variables distribution with color corresponding to the class variable. Note that the discrete class and continuous latent variables are
encoded with two different encoders (y-encoder and z-encoder) and therefore the class variable forms a separate dimension, which in this case
is collapsed onto the 2D plane of the continuous latent representation. (f) Confusion matrix for the predictions of the trained classifier on the

unlabeled part of the dataset.
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remains insufficient to classify other images. In addition, it is
observed that the reconstruction performance of both the VAE
and rVAE for the images with 3 and 4 GNPs is very poor, as seen
in the bottom part of Fig. 5a and b.

Hence, we applied the ss-r'VAE to the GNPs dataset. In this
case, the training is semi-supervised and the classification is
performed via the y-encoder by encoding the data into a discrete
latent variable. Then, other information, such as particle size
and background signal intensity, is encoded into the standard
continuous latent variables that contain information on phys-
ical factors of variability in data. The class-conditioned
continuous latent spaces shown in Fig. 6a-d indicate good
performance of ss-rVAE in the classification task as well as in
discovering the main factors of variation for the images asso-
ciated with each individual class. Indeed, both particle number
and particle shapes are well identified in the latent space of the
first three classes (Fig. 6a—c). The blurring of the latent space for
the fourth class is due to the large number of possible config-
urations and (very) small numbers of examples. We also observe
a variation of particle size and background information, sug-
gesting that the physical meaning of the conventional latent
variables is related to the particle size and background. Fig. 6f
shows the confusion matrix of ss-r'VAE on the nanoparticle
dataset and the accuracy is higher than 0.6 for each class. The
existing machine learning, including decision tree classifier,
random forest classifier and XGBoost classifier, on the nano-
particle dataset perform poorly in the classification task
(Fig. S371). The comparison of VAE, rVAE, and ss-rVAE clearly
indicates the superior performance of the ss-rVAE.

Conclusion

To summarize, we have introduced a semi-supervised
rotationally-invariant variational autoencoder (ss-rVAE) as
a universal approach that allows generalizing from a small
subset of labeled data with a weak orientational disorder to
a large unlabeled dataset with a much stronger orientational
disorder. This approach both allows recovering missing labels
for a dataset and disentangling continuous factors of variation
for each class. Finally, the classifier part of the trained ss-rVAE
inherits the rotational (and translational) invariances and can
be deployed independently of the other parts of the model. The
performance of the ss-rVAE was illustrated using synthetic data
sets with the known factors of variation and was further
extended to experimental data sets of clusters of gold nano-
particles. Hence, this approach provides a universal framework
for the analysis of imaging data in areas as diversified as
biology, medicine, condensed matter physics and materials
science, and techniques ranging from optical to electron and
scanning probe microscopies. In particular, it directly maps the
common situation when small amounts of labeled data are
available, in the form of prior published results, image collec-
tions and catalogs, or even theoretical models. It also can
significantly reduce the need for labeled data. Finally, we note
that VAE approach is naturally extendable for defining complex
physical phenomena such as causal relationships (in the form
of directed acyclic graphs connecting latent variables),

© 2024 The Author(s). Published by the Royal Society of Chemistry
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topological structure of the data (via invariances of the latent
space), opening the pathway towards exploring these
phenomena based on observational data.

Data availability

The detailed methodologies of semi-supervised rotationally-
invariant variational autoencoder (ss-rVAE) on both synthetic
and experimental datasets are established in Jupyter Notebooks
and are available from https://github.com/ziatdinovmax/Semi-
Supervised-VAE-nanoparticles. The source code for (ss-)rVAE is
available via the pyroVED software package for invariant
representation learning from imaging and spectral data:
https://github.com/ziatdinovmax/pyroVED.
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