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Reproducible data and results underpin the credibility and integrity of research findings across the sciences.
However, experiments and measurements conducted across laboratories, or by different researchers, are
often hindered by incomplete or inaccessible procedural data. Additionally, the time and resources
needed to manually perform repeat experiments and analyses limit the scale at which experiments can
be reproduced. Both improved methods for recording and sharing experimental procedures in machine-
readable formats and efforts towards automation can be beneficial to circumvent these issues. Here we
report the development of ExpFlow, a data collection, sharing, and reporting software currently
customized for electrochemical experiments. The ExpFlow software allows researchers to systematically
encode laboratory procedures through a graphical user interface that operates like a fill-in-the-blank
laboratory notebook. Built-in calculators automatically derive properties such as diffusion coefficient and
charge-transfer rate constant from uploaded data. Further, we deploy ExpFlow procedures with robotic
hardware and software to perform cyclic voltammetry (CV) experiments in triplicate for eight well-known
electroactive systems. The resulting oxidation potentials and diffusion coefficients are consistent with
validating our approach and demonstrating the utility of robotic
experimentation in promoting reproducibility. Ultimately, these tools enable automated and (semi)
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Introduction

Chemistry has seen a growing emphasis on reproducibility,
driven by the recognition that the credibility and integrity of
scientific findings heavily rely on the ability to reproduce
experimental results.’” However, reproducing published results
is not always straightforward. Procedures described in scientific
literature are often incomplete or ambiguous and may unin-
tentionally lack critical details. This lack of comprehensive and
standardized documentation hampers the ability of other
scientists to reproduce experiments and measurements. Addi-
tionally, experimental data can be tedious and time consuming
to produce, disincentivizing scientists from reproducing pub-
lished results and thus hampering robust scientific
conclusions.
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experimentation, reproducibility, and eventually data-driven electrochemical discovery.

Automation has emerged as a pivotal component in both
enhancing reproducibility and enabling the generation of vast
quantities of data.®™ Automation increases the quantity of
experiments and measurements that can be performed, and can
enable greater experimental precision, accuracy, and consis-
tency, much like robotics systems used in assembly-line-based
manufacturing. Furthermore, the automated generation of
large quantities of experimental data will allow for more big
data analysis; rapid advances in the availability and scale of big
data in chemistry have generated exciting results already.*"”
Interfacing automated data collection with big data approaches
such as machine learning (ML) and trend analysis can be even
more promising.'*>

Achieving scientific reproducibility and advancing automa-
tion will require the convergence of data, software, domain
knowledge, and the development of effective data management
frameworks.'*** Specifically, it is essential to develop improved
methods for recording and sharing experimental procedures,
permitting researchers to reproduce and validate results more
effectively. Moreover, these captured experimental procedures
should be machine-readable, allowing for the translation of
human ideas into machine actions. Many research efforts to
capture experiment procedural data,***° automate experiments
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and measurements,*®'#***" and incorporate ML into
automation®* exist. However, only a few recent efforts exist to
systematically capture electrochemistry procedural data and/or
automate electrochemistry experiments.”»**” Yet electro-
chemistry, and especially cyclic voltammetry (CV), holds
a crucial role in chemical research, as fields as diverse as drug
discovery,***® energy and materials,***> process engineering,
and environmental chemistry*® use CV for characterization and
analysis. Thus, software to capture electrochemical procedural
data and subsequent software and hardware to translate these
data into automated CV experimentation and measurements
can have broad impact.

Here, we present ExpFlow, a data collection, sharing, and
reporting software where electrochemists can systematically
encode their laboratory workflows through a graphical user
interface. ExpFlow's graphical user interface allows for the
creation of standardized, machine-readable procedures that
permit both humans and robots to better reproduce datasets.
We then demonstrate the use of ExpFlow in executing CV
experiments with an automated robotic arm, followed by data
processing and results that match well with literature-reported
results.

43,34

Methods

ExpFlow and robotic software

The software ecosystem consists of an experiment data
management software with a Python-based web-interface (Exp-
Flow) and an interface between ExpFlow and the automation
hardware with a desktop application. ExpFlow uses the Django*®
web-framework with a MongoDB* database to store the exper-
imental information and is hosted on an Apache*® web server.
The interface to the automation hardware uses the Kinova API*
and Fireworks® Python packages and is wrapped into a desktop
app with Tkinter.>

System hardware

The robot-enabled CV hardware consists of a Kinova®* Gen 3
robotic arm with six degrees of freedom. A grid vial stand and
vial elevator were designed, 3D-printed, and assembled in-
house. A BioLogic SP-50e potentiostat is integrated into the
system for cyclic voltammetry measurements. More informa-
tion on the hardware can be found in ESI Section 2.t

CV experiments

The electrolyte used for CV experiments was comprised of
0.25 M tetraethylammonium tetrafluoroborate (TEABF,) in
acetonitrile (ACN). Ferrocene (Fc), N2-(2-methoxyethoxy)ethyl]-
phenothiazine (MEEPT), dimethylphenazine (DMPZ), 4-
methoxy-2,2,6,6-tetramethyl-1-piperidinyloxy (4-MeOTEMPO),
1,4-di-tert-butyl-2,5-dimethoxybenzene (DBB), 1,4-di-tert-butyl-
2,5-bis (2-methoxyethoxy)benzene (DBBB), thianthrene (TH)
and N-ethylcarbazole (ECZ) (Fig. S7t1) were individually dis-
solved at 10 mM in 0.25 M TEABF,/ACN (10 mL) in screw capped
scintillation glass vials. All solutions were freshly prepared for
each trial.
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CV experiments were performed on the electro-active solu-
tions using a three-electrode system under ambient conditions.
The cell was comprised of a screen-printed electrode fabricated
on a ceramic substrate (Pine Research®) and an Ag pseudo-
reference electrode (Pine Research®). The screen-printed elec-
trode contains a 2 mm diameter Au working electrode and
a large surface area U-shaped Au counter electrode. The refer-
ence electrode was freshly prepared by immersing silver wire in
a fritted tube (Pine Research®) containing 10 mM silver tetra-
fluoroborate (AgBF,) dissolved in 0.25 M TEABF,/ACN. The
electrodes were held in place using a grip mount (Pine
Research®®) and a cell cap (Pine Research, fits scintillation vial
and grip mount), and connected to the potentiostat using
a universal specialty cell connection kit (Pine Research®®). The
electrodes were used as received. A new screen-printed electrode
and glass frit for reference electrode was used for each of the
eight, three-repeat, experimental trials. CV measurements were
performed and data were collected using the BioLogic SP-50e
potentiostat. The voltammograms were recorded at scan rates
of 25, 50, 75, 100, 200, 300, 400 and 500 mV s~ '. No solution
resistance compensation (iR correction) was applied.

Results and discussion
ExpFlow: encoding experimental procedures

To tackle the challenges of collecting and analyzing experi-
mental electrochemical data, we created ExpFlow, a data
sharing and reporting software targeting electrochemistry that
enhances data reusability and facilitates analysis. The proce-
dural and experimental data are divided into three categories
for organization and reuse: Template, Experiment, and Run
(Fig. 1). The customizable Template allows researchers to
document experimental steps, Experiment specifies experiment
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Fig.1 Schematic showing ExpFlow data organizational structure.
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reagents and apparatus, and Run works like a fill-in-the-blank
lab notebook, where chemists record measurements and
attach data files. Built-in calculators perform calculations (e.g.,
peak splitting, peak potentials, reversibility, diffusion coeffi-
cient, charge transfer rate, etc.) (Table S1t). Additionally, an
existing Template can be cloned, modified, and shared (either
among ExpFlow users or via download). Each of these pieces are
hosted on a web user interface.** Procedural and experimental
data stored in ExpFlow are comprehensive and machine-
readable (specifically via the JSON** format) so as to enhance
reproducibility and enable translation of experiment proce-
dures to robotic experiments.

An ExpFlow Template converts experimental procedures into
graphs that contain data provenances. The Template has cate-
gories for reagent (e.g., redox material, solvent), apparatus (e.g.,
beaker, electrode) and instrument (e.g., potentiostat, spectrom-
eter). In a Template graph, nodes (the reagent, apparatus, and
instrument categories) are connected by edges that correspond to
actions (e.g., dispense, heat). Each action contains a start posi-
tion, an end position, and action parameters (e.g., volume for
dispensing liquid, temperature for heating, etc.). As the actions
are sequenced, ExpFlow graphs capture the action provenances.

For example, a CV experiment to determine the diffusion
coefficient might include redox-active molecule and solvent
reagents, a beaker/vial apparatus, and a potentiostat (Fig. 2).
Workflow actions might include transferring the liquid solvent
and solid solute to the beaker, heating and stirring the solution,
measuring the working electrode surface area, and collecting

Simplified CV Experiment
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CV data. In this example, the user might add five collect-CV-data
actions because the experiment includes five CV scans, each
performed at a different scan rate. Although the Template can
take time and effort to produce, it can be reused for all related
and subsequent experiments.

A single Template can be used for multiple Experiments where
materials (reagents, instruments, etc.) are specified. For instance,
the aforementioned Template can parent three Experiments, each
using a different solvent (e.g., water, acetonitrile, and propylene
carbonate). When collecting data, a user runs a given experiment
any number of times. During an experiment Run, the researcher
is prompted to fill in embedded run parameters for each action.
For example, the liquid-transfer action type prompts the
researcher to record the liquid volume, while the heat-and-stir
action type prompts the researcher to record the temperature
and the stirring time. Data collection action types prompt the
researcher to upload a raw data file, in this case, the potentiostat
output file. For more information about the ExpFlow data
structure, see ESI Section 1.}

A Template can also be adapted to a Robotic Workflow. After
selecting a Template, the researcher indicates default measure-
ments for all preparation steps and specifies parameters for all
data collection steps. Then, the researcher selects one or more
parameters to vary. These variable parameters become the
columns of a table with n rows, where the researcher specifies the
variable parameter values for each of n experiments (Fig. S77).
ExpFlow then produces a machine-readable workflow for 7 iden-
tically structured experiments where one or more measurement

BN |nstruments
B Apparatus

Reagents
mmm Actions

() General
@ srecific

[ Redox-active | 7 : ‘
Solvent MPO >
molecule
\ 7 \ /
?Transfer solid Transfer liquid I ?Transfer solid Transfer liquid I

Beaker
/ Vial

Heat and
Stir

5
Collect CV Data |x 5

Potentiostat

Measure working
electrode area

Template

More S

Beaker
/ Vial

5
Collect CV Data |x 5

BioLogic SP-50e
Potentiostat

Experiment

Measure working
electrode area

pecific

e ————————————————————————————————

Fig. 2 Schematic demonstrating a simplified CV experiment graph as an ExpFlow Template, Experiment, and Run.
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parameters varies for each experiment. These machine-readable
workflows can be downloaded for use in robotic experimenta-
tion (more details in the next section).

After an experiment is run in ExpFlow, data parsers from the
D*TaLES API*® extract data from the uploaded experiment files
(Table S1t). Additionally, key metadata are extracted from the
Run parameter data. For example, the solution temperature is
extracted from the heat-and-stir action, and the solution
concentration is calculated from the solid-transfer and liquid-
transfer actions. All extracted data are displayed on the web
user interface where the researcher can inspect and approve the
Run data. This user interface also contains the ExpFlow calcu-
lators (e.g., diffusion coefficient and charge transfer rate
constant) for Runs with relevant data.

Proof of concept: automated cyclic voltammetry

ExpFlow provides a platform for researchers to encode the
procedure for their electrochemical experiments and measure-
ments. Here, we demonstrate the utility of these machine-
readable procedures by translating them into automated CV
measurements. First, we assembled the robotic hardware infra-
structure needed to run a CV measurement from a pre-mixed
solution (Fig. 3). More details about all hardware are provided
in ESI Section 2.f We also built the software infrastructure
necessary to connect the researcher-created ExpFlow experiment
procedures to robotic actions and then communicate collected
data back to the researcher (Fig. S5T). Once a researcher creates an
ExpFlow Template and converts it into a Robotic Workflow, the
researcher downloads the Robotic Workflow to the local robotics
computer. Here, through a desktop application, the researcher
loads the workflow and assigns reagent locations in the robot
space. This step requires human actions as a safety measure to
ensure that robotic experiments have human supervision. Finally,
a robotics API translates the loaded workflow into robotic actions.
Through the local robotics app, the researcher may launch robotic
actions to perform the electrochemistry experiment and complete
subsequent data processing.

ey -

Kinova
Robotic Arm

Fig. 3 Image of robotic setup.
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To test and validate the system, we performed CV experi-
ments for eight electro-active systems®”*** (Fig. S87): ferrocene
(Fc), N-2-(2-methoxyethoxy)ethyl]-phenothiazine (MEEPT),
dimethylphenazine (DMPZ), 4-methoxy-2,2,6,6-tetramethyl-1-
piperidinyloxy (4-MeOTEMPO), 1,4-di-tert-butyl-2,5-
dimethoxybenzene (DBB), 1,4-di-tert-butyl-2,5-bis (2-methox-
yethoxy)benzene (DBBB), thianthrene (TH), and N-ethyl-
carbazole (ECZ). First, we constructed an ExpFlow Template for
the following process: run one CV scan on a supporting elec-
trolyte solution to confirm electrode cleanliness, select a redox-
active solution, perform one benchmark CV scan at 100 mV s
and determine the optimum voltage range, collect eight cyclic
voltammograms (each at a different scan rate with the optimum
voltage range), and process all data. From this Template, we
generated a Robotic Workflow for performing this experiment on
the eight distinct solutions (Fig. S6 and S71). While this proof-
of-concept experiment Template utilized the robotic arm only
to transfer the solution vials to and from the potentiostat
system, it successfully tests the ExpFlow Template building
interface, the robotic software and hardware, and the auto-
mated ExpFlow data processing (see Methods section for more
information on solution preparation and experiment proce-
dure). Robotic experiments were then performed from this
workflow, and the workflow was completed three times (three
trials) with new solutions and electrodes each trial, so the
experiment was run in triplicate for each electro-active system.
Starting with pre-mixed solutions, one trial of CV experiments
and automatic data processing for all eight systems (80 CV's
total) took approximately 90 minutes. While the time per
measurement is comparable to the time required to perform the
measurements manually, the automated data processing
(nearly instantaneous) is significantly faster than manually
exporting, analyzing, and plotting the data. Moreover, both the
measurements and calculations need minimal human
oversight.

The scan-rate dependent voltammograms for all eight
systems are provided in Fig. 4 and S9.7 All compounds except

Microelectrode

¥

Local Robotics
Computer
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Exp 1: Ferrocene (Fc) CVs
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Exp 2: N-[2-(2-Methoxyethoxy)ethyl]-phenothiazine (MEEPT) CVs
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Fig.4 CV plots produced by the embedded data processors for all trials of Fc (top) and MEEPT (bottom) at 0.01 M in 0.25 M TEABF4/acetonitrile
electrolyte at room temperature and are reported using IUPAC convention. More information about experimental conditions and all other CVs

(Fig. S127) are located in methods and ESI Section 3.1

ECZ exhibit reversible first oxidation in 0.25 M TEABF,/ACN
electrolyte and the peak potentials are invariant with the scan
rate. DMPZ showed reversible first and second oxidation
potentials. Notably, the data processors correctly identified
both the first and second oxidations for DMPZ and flagged ECZ,
which has a known irreversible first oxidation,®*® as irreversible
(Fig. S91). The average peak to peak separation for reversible
oxidations at different scan rates is 0.104 V, which is wider than
the ideal peak separation for a reversible process. A major factor
contributing to wider peaks is the lack of {R compensation in
our experiments.

For each system, the embedded data processing determined
(among other properties) the oxidation potential(s) and cathodic
diffusion coefficient, and these were compared with literature-
reported values. For example, the measured half-wave redox
potential (at 100 mV s™') for Fc of 0.082 + 0.001 V vs. Ag/Ag"
aligns well with the literature-reported® potential of 0.086 V vs.
Ag/Ag". Additionally, the measured diffusion coefficient of 1.73
+0.06 x 107> cm® s~ ' is consistent with the literature-reported®”
coefficient of 2.10 x 10™° cm® s~ ", Similar results were observed
for MEEPT, another well studied redox-active system known for
its high stability and solubility.®*”® The measured half-wave
redox potential for MEEPT is 0.396 V vs. Ag/Ag', which is
comparable with the potential (0.41 V vs. Ag/Ag")™* reported for
N-methylphenothiazine. Since there are no literature-reported
oxidation potentials for MEEPT vs. Ag/Ag’, the potential is esti-
mated relative to Fe/Fe' using the potential gathered for Fc in the
robotic experiments as the standard. The measured oxidation

© 2024 The Author(s). Published by the Royal Society of Chemistry

potential of 0.314 V vs. Fc/Fc" aligns very well with the literature-
reported® potential of 0.310 V vs. Fe/Fc'. The measured diffusion
coefficient of 0.93 + 0.06 x 10> cm® s~ is also close to the
literature-reported® coefficient of 1.16 x 10~> cm” s~ .

The collected electrochemical data for all eight systems,
compares well with literature-reported results (Fig. 5, see Tables
S2 and S3t for raw data).”®%%7#%777 The robotic experiment
oxidation values have an almost perfect one-to-one correlation
with literature-reported values. The robotic experiment diffu-
sion coefficients are consistent with the range of values
observed for redox-active molecules in ACN-based electro-
lytes®>%7%%7278 and correlate well with the literature-reported
values. We hypothesize that the slight differences observed
here when compared with literature-reported values are
primarily due to the differences in conditions used for esti-
mating these values. For example the diffusion coefficient of
1.73 x 10~° cm? s * observed for Fc at 10 mM in 0.25 M TEABF,/
ACN at 22 °C in our experiment is compared to literature-
reported value of 2.10 x 10> ecm” s~ ' obtained for Fc at
10 mM in 0.1 M TEABF,/ACN at 25 °C. Similarly, for MEEPT
(10 mM in 0.25 M TEABF,/ACN; experimentally observed 0.93 x
107° em® s7') it is compared to conditions (1 mM in 0.1 M
TEABF,/ACN; literature-reported 1.16 x 10 ° cm?® s ') where
both the redox-active molecule and salt concentrations are
different. Electrolyte composition and temperature play an
important role for these calculations.®® Accounting for these
variations, our results validate our robotic setup and data pro-
cessing, and demonstrate the potential for machine-readable

Digital Discovery, 2024, 3,163-172 | 167
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Fig. 5 Comparison of values produced during robotic experimenta-
tion and literature-reported values for oxidation potential (top) and
diffusion coefficient (bottom). Robotic experimental values are re-
ported as the average value across the three trials where the error bars
are twice the standard deviation. The gray line represents an ideal one-
to-one correlation between the robotic and literature-reported values.
All robotic potentials are measured vs. Ag/Ag*. For all raw data, see
Tables S2 and S3. For comparison, literature-reported oxidation
potentials are reported referenced to Ag/Ag™, except for MEEPT and
DBBB (as denoted by the *); the oxidation potentials for MEEPT and
DBBB are estimated relative to Fc/Fc* using the potential measured for
Fc in the robotic experiments as the standard.

procedures and automation to facilitate high-throughput
experiments.

Conclusions

Here we present ExpFlow, a software that allows systematic
encoding of laboratory workflows through a graphical user
interface. These encoded workflows standardize experimental
practices to capture all experiment metadata with the aim of
enhancing reproducibility. Currently, ExpFlow supports data

parsing for CV experiments. Machine-readable ExpFlow
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procedures also facilitate the translation of human-developed
laboratory procedures to robotic experimentation, as we demon-
strate for robotic electrochemistry experiments. We used an Exp-
Flow Template and a robotic hardware and software setup to
perform automated electrochemistry experiments in triplicate for
eight well-known electroactive systems. The resulting oxidation
potentials and diffusion coefficients are consistent with literature-
reported values, validating the setup and demonstrating the utility
of robotic experimentation in promoting reproducibility.

While this proof-of-concept robotics phase demonstrates the
software and basic hardware needed for translating human-
conceived electrochemistry experiments to robotic actions,
there is still room for improvement. Future additions may
include liquid dispensing and solution mixing as well as addi-
tional characterization metrics such as viscosity, solubility, and
spectroscopic characterization. We also plan to fine-tune the
potentiostat data collection methods (e.g., incorporate iR
compensation and argon flushing) to ensure that the robotic
experiments produce high quality data on par with current
literature standards.**” Ultimately, the advances demonstrated
here will facilitate reproducibility, automated labs, and eventu-
ally autonomous design of experiments®*® for electrochemistry.

Data availability

The ExpFlow software and interface can be found at https://
d3tales.as.uky.edu/expflow/. Documentation can be found at
https://d3tales.as.uky.edu/expflow/docs. Further details on
ExpFlow operation, the robotic data flow,
descriptions, the ExpFlow template used to run the robotic
experiments, properties determined as a function of cyclic
voltammetry (CV) processing, and all materials and data from
the CV experiments can be found in the ESL}
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