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uer potentials enable scalable and
accurate predictions of forces and energies in
atomistic systems

Claudio Zeni,*ab Andrea Anelli,cd Aldo Glielmo, be Stefano de Gironcolib

and Kevin Rossi *df

In committee of experts strategies, small datasets are extracted from a larger one and utilised for the training

of multiple models. These models' predictions are then carefully weighted so as to obtain estimates which

are dominated by the model(s) that are most informed in each domain of the data manifold. Here, we show

how this divide-and-conquer philosophy provides an avenue in the making of machine learning potentials

for atomistic systems, which is general across systems of different natures and efficiently scalable by

construction. We benchmark this approach on various datasets and demonstrate that divide-and-

conquer linear potentials are more accurate than their single model counterparts, while incurring little to

no extra computational cost.
1 Introduction

Machine learning potentials (MLPs) provide a platform for
computationally efficient and linear-scaling atomistic model-
ling, which (approximately) retains the same accuracy as the ab
initio reference method employed to generate training data. The
technological relevance of this tool has made a tangible impact
in advancing fundamental and/or applied studies across
condensed matter, physical chemistry, chemical physics, and
so matter.1–6

Consequently, a large number of strategies have been
developed towards the making of fast-and-accurate MLPs.
These include linear7–9 or kernel10,11 methods leveraging a xed
atom-density representation and deep learning approaches
where representations are learned by means of non-linear feed-
forward,12 convolutions, attention mechanisms, or message-
passing operations.13,14 In particular, the latter paradigm
recently demonstrated state of the art accuracy and robustness
in realistic tests.15–20

In spite of their lower accuracy, linear models remain
attractive since they are computationally fast both in the
training- and in the prediction-stage. It is however a matter of
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debate whether their exibility can capture the full complexity
of interatomic interactions in systems with non-trivial phase
diagrams, possibly also presenting very different electronic
structure features across their phase space.

This question also holds, to a certain extent, for any non-
specialized MLP, regardless of whether it exploits linear or
non-linear approaches. While MLPs are oen transferable,21–23

reports in the literature show that specically tailored training
sets yield models that are more accurate in predicting the
properties of atomistic congurations mostly similar to the
ones in the training set.24–27

In this manuscript, we discuss the development and appli-
cation of a divide-and-conquer (DC) strategy28,29 to t accurate
linear MLPs. The latter consists in training a committee of
expert models, where each expert is trained on a small, inde-
pendent, and pre-selected subset of the full training set. The
predictions of the specialized members are then combined so
that contributions of the model(s) more likely to be accurate are
dominant.

Previous reports in the literature also hinted at the benet of
breaking down the problem of tting a general model for
atomistic systems, across large and complex training sets.
Deringer et al.30 ne-tuned the regularisation coefficients asso-
ciated with different training-points to construct an accurate
model leveraging a SOAP representation and a Gaussian Process
regressor. Mazouin et al.31 and Lemm et al.32 demonstrated that
the learning of HOMO–LUMO gaps in QM9 molecules is facil-
itated when training on subsets that discriminate conformers
which present a ring, a chain, or other characteristic motifs.
Cheng et al.33,34 showed that a clustering scheme exploiting
chemo-informatics features by-passes the need for human
intervention in the discrimination of molecules with different
Digital Discovery, 2024, 3, 113–121 | 113
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chemistries. They further observed that a regression + unsu-
pervised clustering protocol provides optimal accuracy, trans-
ferability, and learning efficiency when applied to the learning
of molecular energy in a dataset of thermalized drug-like
molecules. Goldsmith et al.35 showed how sub-group discovery
enables the unravelling of specic structure–property relation-
ships within sub-populations of a large material property
database. In the domain of coarse grained force-elds,
a surface-hopping scheme – where different regions of the
conformational space induce the use of different coarse
Hamiltonians – has also been successfully developed by Bereau
and Rudzinski.36

By testing on community benchmarks, we nd that DC linear
models consistently outperform their single linear model
counterparts regardless of the chemistry of the system consid-
ered. This conclusion holds both for the case of small bench-
mark datasets37 (around 300 global congurations each,
comprising bulk cells, surfaces, vacancies, and thermal equi-
libriumMD runs) as well as for a larger andmore complex one30

(around 5000 global congurations comprising liquid, amor-
phous, polymorphic crystals, and layered structures of bulk
phosphorus). The accuracy gain is particularly signicant when
linear potentials are built under the constraint of modelling low
body-order interatomic interactions. The proposed DC
approach thus paves the way to a scalable and efficient strategy
to enhance the accuracy of fast linear models.

2 Divide-and-conquer learning

The workow envisioned for DCMLP training, exploitation, and
renement is illustrated in Fig. 1. First we gather a representa-
tive set of congurations in a database and associate features
with each of them according to a given representation (lemost
in Fig. 1). In a successive step, we cluster the database into M
subsets (second panel in Fig. 1) and then train a model for each
subset m (third panel in Fig. 1). The force and energy predic-
tions from each model are nally combined to produce a new
point's estimate (rightmost panel of Fig. 1).

To formalise the DC strategy, we write the relationship
between the potential energy E(S) of a system S and themachine
learning (ML) function that aims at predicting the latter, under
the assumption that it can be decomposed into single atomic
energy contributions 3 dened for interactions within a cut-off
distance, as follows:
Fig. 1 Graphical workflow for distributed learning predictor training, exp
energy is known, (leftmost panel) we first subdivide the whole database i
we then fit specialized linear models on each subset (center-right panel) a
a smooth and continuous manner, (rightmost panel) so as to make the

114 | Digital Discovery, 2024, 3, 113–121
EðSÞ ¼
XM
m

wmðrSÞ
X
n˛S

3mðrnÞ; (1)

where M is the number of ML models, 3m(rn) the atomic energy
contribution of the local atomic environment rn predicted by
model m, and wm(r�S) is the weight of the prediction from model
m for system S. The choice of basing the cluster assignment on
a global structural metric aims at developingmodels specialised
in the physics of each target phase. In particular, wm(r�S) is here
a written function of the average of all local atomic environment

descriptors in S: rS ¼
1
N

X
n˛S

rn; where N is the number of atoms

in S. By denition, the force fi acting on atom i is found by
differentiating the total energy of the system w.r.t. the position
of atom i itself and reads

f i ¼ �vEðSÞ
vri

¼ �
XM
m

wmðrSÞ
X
n˛S

v3mðrnÞ
vri

�
XM
m

vwmðrSÞ
vrS

X
n
0˛S

1

N

vrn0

vri

X
n˛S

3mðrnÞ:
(2)

2.1 DC training and prediction

The supervised learning of forces and energy in each expert
model of a DCMLP takes place via ridge regression. In the latter
framework the target property Y is tted as a function of the
features Q times a weight W.

Y = WQ (3)

For the specic case of a force-and-energy model, Y is a 2D array
with elements Yd, which reads:

Yd = [Ed, f1
x, f1

y, f1
z,., fS

x, fS
y, fS

z], (4)

where fs
c labels the c-component of the force vector for the

atom s in a structure d, which contains a total of S atoms.
Similarly, Q is a 3D tensor with elements Qd

Qd ¼
�
qd; � vqd

vx1

; � vqd
vy1

; � vqd
vz1

;.; � vqd
vxS

;� vqd
vyS

;� vqd
vzS

�
:

(5)
loitation, and refinement. Given a dataset of configuration whose total
nto subsets by means of a clustering algorithm, (center-left panel) and
nd develop an analytical equation to carefully weight their prediction in
contribution of the most likely accurate model dominant.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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The computational cost of a force-energy prediction with
ridge regression is associated with the calculation of the
descriptor Q for the structure d and the single matrix product
WQ. For the case of a divide and conquer potential comprising
M members, the latter step has a cost which is paid M-times,
while the computational cost of the former step remains the
same. Nevertheless, we note that the dominating term is, in
both cases, the calculation of the descriptor Q. The computa-
tional cost of performingMmatrix products in DC potentials is,
therefore, effectively negligible. The linear potential weights W
are found analytically by solving a matrix-inversion problem

W = (QTQ + lI)−1QTY, (6)

where D ¼ fYi; Qig i ¼ 1;.;D; labels the training set data and
l is the ridge parameter.
2.2 DC weight calculation

DC potentials possess two main additional degrees of freedom
with respect to other linear MLPs: the choice of the clustering
scheme and of the weight assignment algorithm. Here we
discuss a possible choice of model weight assignment linked to
the use of k-nearest neighbours as a clustering algorithm.
Within this approach, we rst cluster the training data set via
a k-nearest neighbours scheme. We then write wm(r�S) as
a function of the distance between r�S and the centroid of each
cluster mm, weighted by the standard deviation of each cluster
sm and by the square root of the number of training structures
belonging to each cluster gm. We apply a somax function so
that the sum of weights over all models m is 1. The nal
equation for the assignment of model weights therefore reads

wmðrSÞ ¼
edmðrSÞPM

i ediðrSÞ
; (7)

where dm is

dmðrSÞ ¼
sm

ffiffiffiffiffiffi
gm

p

ðrS � mmÞ4
: (8)

We empirically nd that using a fourth power in the
denominator of eqn (8) yields smooth transitions between
clusters, while not reducing the accuracy of potentials.

The choice of the number of expert models, M, is a key
variable in a DC strategy, which may also lead to overtting. In
practice, we treat M as an additional model hyper-parameter
and select the value which maximises the following score:

gMðXtrainÞ ¼ SUPglobalðXtrainÞ
SUPM

DCðXtrainÞ
; (9)

where gM(Xtrain) measures the ratio between the worst error
incurred by the global potential on a training set (SUPglobal(-
Xtrain)) and the corresponding value obtained using a DC model
using M clusters (SUPMDC(Xtrain)).

Another free parameter in the DC MLP t is the regulariza-
tion term of each expert model. In principle this hyper-
parameter could be optimized for each specialized model. In
© 2024 The Author(s). Published by the Royal Society of Chemistry
practice we observe negligible gain and employ the same reg-
ularization term for each expert model, during each case study.

While the current implementation performs the evaluation
of wm according to a distance criterion, we do not exclude that
other approaches, e.g., supervised ones, could provide room for
improvements in accuracy. Similarly, we do not exclude that
more sophisticated approaches to combine the predictions of
the different expert models could further enhance the perfor-
mance of a DC MLP.

To conclude, we note a parallelism between our DC approach
and the one inherent to linear decision trees (where linear
models are tted to the data in each leaf of a decision tree), with
the caveat that continuity in our predictions is ensured by the
DC model weighting scheme (eqn (1)). By the same token, we
highlight that eqn (1) could be also interpreted as a perceptron
model. In this view, wm acts as an activation function, which
depends on the global structure of the system, while the single-
atom contributions are calculated using linear ML units.
Furthermore, we observe that one could also consider the DC
weight evaluation as a classication step, through which a most
suitable linear model (among a set of available one) is selected,
given a certain test point.
3 Results

The method section introduced the DC framework in a general
form, i.e., without referring to a specic representation of the
local atomic environment. In this section, we instead discuss its
specic application for the case of an atomic cluster expansion
(ACE) representation, which is computed using a custom-made
Python interface to the ACE.jl package.9,38 The choice of this
representation stems from its success in enabling linear
regression of forces and energies across systems with diverse
and complex chemistries.39–41
3.1 Zuo et al. Benchmark

To benchmark the accuracy of the proposed DC approach we
rst refer to the Li, Mo, Ge, Si, Ni, and Cu dataset by Zuo et al.37

This database collects DFT PBE energies and forces for ground
state crystalline bulk structures, strained crystals, low Miller
index surfaces, crystalline bulk congurations and vacancy
diffusion sampled over nite temperature ab initio MD for six
different mono-elemental systems (Cu, Ni, Li, Mo, Si, and Ge).
Congurations are randomly separated, according to a 90 : 10
split, into a training and testing set.

To build linear and DC linear models, we represent local
atomic environments up to the cut-off radii indicated by Zuo
et al.37 (Mo= 5.2 Å, Si= 4.7 Å, Ge= 5.1 Å, Cu= 3.9 Å, Ni= 4.0 Å,
and Li= 5.1 Å) and employ a xed total radial and angular basis
set expansion order Nmax + Lmax = 12 for the ACE descriptors.
We x force and energy regularisations at 10−6, while the
number of specialised models is optimized for each dataset
according to the criterion of eqn (9) and isMMo= 7,MSi= 2,MGe

= 3, MCu = 5, MNi = 6, and MLi = 2.
In the le panel of Fig. 2 we report MAEs on energy predic-

tions with a 2-, 3-, or 4-body descriptor (top to bottom graphs).
Digital Discovery, 2024, 3, 113–121 | 115

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3dd00155e


Fig. 2 Box plot for test error on atomic energies (left column) and forces (right column) yielded using linear models (blue) and DC models
(orange) for the Zuo et al.37 dataset. The first row refers to 2-body ACE descriptors, the second row to 3-body and the fourth row to 4-body ones.
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In the right panel of Fig. 2 we present the same information but
for the force MAEs. We observe that DC models consistently
outperform the accuracy of linear ones. The accuracy gain is
marginal (few percent) in the case of systems which were
already accurately predicted by the linear model, i.e., Cu, Ni,
and Li. The improvement is instead quite sizeable for the two
other systems, namely, Mo and Ge. The case of force-and-energy
predictions in Si is the only one where a balanced competition
between the two approaches is observed: the linear model is
slightly more accurate in energy predictions, while the DC
model displays a better performance in force predictions.
116 | Digital Discovery, 2024, 3, 113–121
An analysis of the DC accuracy, as a function of the chosen
interaction body-order, shows that more signicant (relative)
accuracy gains take place at lower body-orders. We note that low
body-order MLPs are also the fastest to compute and, in turn,
DC approaches provide a promising route in the deployment of
low-resource, accurate, and interpretable MLPs.

Additionally, the proposed DC approach provides a relative
improvement which is larger for energy predictions than for
force predictions. We rationalize this trend in light of the fact
that we cluster data points according to global features. This, in
turn, is likely to facilitate the learning of global properties, such
© 2024 The Author(s). Published by the Royal Society of Chemistry
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as the system total energy. While not explored in the present
manuscript, we note that the DC approach could be modied so
as to cluster data based on local atomic features rather than on
summary statistics of those quantities.
3.2 P dataset

To showcase the application of DC potentials in a richer dataset,
we consider the multi-phase phosphorus dataset gathered by
Deringer et al.30 to chart the phase diagram of P. The database
comprises 4798 congurations whose energy has been calcu-
lated at the DFT + MBD level. Congurations in the database
appear in many different phases, namely, network and molec-
ular liquid P, white P, Hittordf P, rhombohedral P, tubular
parallel brous P, black bulk P, black bilayer P, black monolayer
P, and black P ribbons. For consistency with the discussion
regarding the Zuo et al.37 dataset, we split available data into
a training and a testing set. Model hyperparameters are opti-
mized during training, i.e., solely utilising training data.

We t a linear and a linear DC potential using the ACE
representation with a radial cut-off of 5 Å, a maximum basis set
size of 12, and considering correlations up to the 5-body order.
A regularisation parameter of 10−7 is used for both the linear
and the DCmodel ts. The DC potential tting nds an optimal
number of M = 6 clusters, following the approach detailed in
eqn (9).

In Fig. 3, we report the distribution of errors incurred in
energy (le panels) and force (right panels) prediction for the
linear (top panels) and DCmodels (lower panels). A parity plot in
the inset shows the relationship between true and predicted
values. We observe that, also in the case of a more complex
benchmark, the DC accuracy is consistently higher than the
Fig. 3 Error distribution in energy (left panels) and forces (right panels)
a linear (blue – upper panel) and a DC (orange – lower panel) model. The
colour coded according to the density (yellow = high density and blue =

© 2024 The Author(s). Published by the Royal Society of Chemistry
linear model's one. In particular, the accuracy gain is, again,
mostly observed in the energy tting (LP MAE = 0.128 eV per
atom vs. DC MAE = 0.060 eV per atom), while forces improve by
a thinner margin (LP MAE= 0.250 eV Å−1 vs. DCMAE= 0.238 eV
Å−1). Crucially, the partitioning of the tting into smaller models
has the largest effect on the tails of the force and energy error
distributions, which are less populated for the DC models.

The complexity of the P database and the remarkable errors
incurred by the linear and the DC models in certain regions of
the phase space motivate a more detailed discussion. To this
end, we analyse in Fig. 4 the relationship between the energy
errors incurred by the linear and the DC models for each test
structure in the P database, the minimum distance of each test
point from the DC cluster centroids, and the L2 norm of the DC
model weights.

The Fig. 4 le panel shows the kernel density estimate of the
distribution of the (DC and LP) errors, where the straight line is
a guide to the eye indicating equal accuracy between the
predictions of the linear and DC potentials. All the points lying
above (below) the line correspond to a conguration where the
DC energy prediction is more (less) accurate than the one of the
linear model. The plot thus highlights, from an additional
perspective, how the DC model accuracy is more accurate than
the linear one, for the majority of the test points.

The Fig. 4 central panel illustrates the relationship between
the error incurred in energy prediction on the phosphorus
dataset by the DC model and the minimum scaled distance of
r(�S) from cluster centroids. A (positive) correlation between the
two quantities emerges when looking at the behaviour of the 90-
th percentile of the atomic energy error incurred by the DC
model as a function of the minimum distance from cluster
prediction for the phosporus dataset by Deringer et al.30 incurred by
inset shows parity plots between true and predicted values. Points are
low density) in that region.

Digital Discovery, 2024, 3, 113–121 | 117
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Fig. 4 (Left panel) Kernel density estimate of the prediction errors incurred on atomic energies by a LP (x axis) or a DC (y axis) model for the
phosphorus dataset. The black line is a guide to the eye, which highlights how the large majority of data falls above the parity line implying that
errors incurred by the LP are, in general, larger than the one of the DC model. (Central panel) Kernel density estimate of the minimum distance
from a cluster centroid (x axis) and the prediction errors (y axis) incurred on atomic energies by a DC model for the phosphorus dataset. (Right
panel) Kernel density estimate of the L2 norm of the DC weights (x axis) and the prediction errors (y axis) incurred on atomic energies by a DC
model for the phosphorus dataset. The black dots in the central and right panels indicate the 90-th percentile of the distribution of energy errors
for 8 logarithmically equi-spaced bins on the x axis.
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centroids (black line and dots). We deduce that the (scaled)
minimum distance from cluster centroids minm‖(r(�S) − mm)/
sm‖2 can provide an upper bound to the error incurred on
energy predictions, as structures whose representations are far
from every model centroid are also likely to be out of the
training distribution. This nding is in line with previous
observations25 about the interplay between linear model error
and the degree to which a test point lies in a well-sampled
region of the representation space.

Fig. 4 right panel displays DC errors as a function of the L2
norm of the DC weights. The latter is generally close to 1, sug-
gesting that for each prediction only a single expert model
Fig. 5 Parity plot of the prediction errors incurred by a linear model fit o
dataset. Points are colour coded according to the weight of the expert

118 | Digital Discovery, 2024, 3, 113–121
largely contributes to the overall DC model outcome. While
good accuracies are witnessed when a single model is found to
dominate the predictions within the DC potential, signicant
errors may nonetheless be registered even when a (presumed)
expert model dominates the committee prediction. We ratio-
nalize this observation in terms of the possible detrimental
effect of the so-max regularization of the DC weights (eqn (7)
and (8)) on the correlation between DC error and distance from
the closest cluster centroid, as the single closest model will be
chosen with high certainty even in cases where the structure is
far from every DC model centroid.
n the full training set and each single expert model for the phosphorus
model in the DC prediction at that test point.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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To further characterize the working mechanisms of a DC
model, we report in Fig. 5 the error incurred by each member
m in the DC model, against the error incurred by a linear
model trained on the full dataset, and colour-code points S
according to the weight wm(r�S) of the expert model m in the
overall DC prediction. Fig. 5 shows that sizeable changes in
the prediction error take place when different sets of training
congurations are considered. In particular, each expert
model offers accurate predictions, which are on average
superior to the one of the linear model trained on the full
dataset, in specic regions of the phase space. These corre-
spond to points where the expert model's relative contribution
to the DC prediction is sizeable (i.e., above 0.5). Signicantly,
there exist congurations for which neither the expert models
nor the full linear model are truly equipped to provide an
accurate prediction. On these occasions, a single expert model
may be elected as the most specialized one in offering a given
prediction; this behaviour follows from the geometric crite-
rion elicited in eqn (7) and (8).

From the analysis of Fig. 4 and 5, we conclude that the
functional form in eqn (1) provides a grounded route to weight
the predictions of expert models, so as to elect the most accu-
rate ones as the most signicant in the DC prediction. Never-
theless, the DC approach offers no guarantee of improvement in
the robustness of predictions in regions of the phase space,
which have not been densely sampled during the construction
of the training set.
4 Outlook
4.1 DC uncertainty estimate

The ability to endow force and energy prediction with an
uncertainty estimate represents a key feature of machine
learning potentials and machine learning for atomistic
systems.42–44 In this work we have shown that the distance from
the centroid of the expert model clusters provides information
on the likelihood of incurring large errors. This is in fair
agreement with previous observations of distance metrics for
uncertainty quantications25,43 Future studies could explore the
denition of rigorous frameworks for directly estimating the DC
prediction uncertainty. This estimate could leverage sub-
sampling approaches, in the spirit of committee methods,
with the challenge of devising the correct uncertainty (re)cali-
bration procedure.

Alternative approaches could otherwise leverage the DC
weights' estimate stage to further introduce anomaly detection
or one-class classication and readily detect datapoints for
which a model trained on the available dataset is more likely to
provide unfaithful predictions.
4.2 Data efficient learning

The success of ML models applied to materials modelling has
also largely beneted from two simple yet extremely effective
approaches, namely, D-learning45,46 and active learning.47–49 We
speculate that a DC strategy can be readily and effectively
integrated with the above two approaches.
© 2024 The Author(s). Published by the Royal Society of Chemistry
As with all linear and kernel-based methods, the re-training
of a DC ensemble of potentials can be performed analytically
and computationally efficiently, without performing costly
gradient-based optimisation of parameters. Moreover, since
potentials within the DC approach are localized in the space of
descriptors, only models for which new incoming data is rele-
vant need to be updated during the active learning loop, thus
further reducing the computational resources required.

By the same token, the proposed DC strategy can be further
naturally evolved to support D-learning45,46 schemes. In the
assumption that a fairly accurate and largely transferable force-
eld (see, e.g., ref. 50 and 51) or MLP (see e.g., ref. 17, 26, 52 and
53) exists, we then envision a strategy where the latter is used as
a baseline, and a number of expert model corrections, whose
learning is efficient by virtue of transfer learning,26 may act on
the general model to further improve its accuracy.

One could also write a DC correction to an existing baseline
energy model as

EðSÞ ¼ EbaselineðSÞ þ
XM
m

w
0
mðrSÞ3mðrnÞ: (10)

where w
0
m labels weights that respect

PM
mw

0
m˛½0; 1�; depending

on whether the suggested DC correction shall or shall not be

trusted (whereas
PM

mwm ¼ 1 for eqn (7)). This approach nds
a parallelism with the one formulated by Imbalzano et al.,54

which employed the prediction uncertainty, evaluated through
an ensemble model, to weight the D-ML correction of a baseline
model.
5 Conclusion

In this manuscript, we discussed in detail the application of
a divide-and-conquer (DC) approach to the development of fast-
and-accurate machine learning potentials (MLPs). DC MLPs
leverage small partitions of a larger database – here automati-
cally identied via a clustering algorithm – to train multiple
expert models on restricted regions of the phase space, whose
predictions are weighted according to a geometric distance
criterion from the test data points at inference time. By
benchmarking the accuracy of the proposed method on both
restricted and larger datasets for materials with different
chemistries, we showcase that DC potentials are more accurate
than linear potentials exploiting the same representation.

While the accuracy of DCMLPs leveraging linear models may
not be on par with models exploiting learned representations,
DC models display a substantial accuracy gain, in exchange for
a negligible computational burden, against linear potentials.
This result makes them an attractive tool when speed and effi-
ciency in training and prediction are key gures of merit.

At a speculative level, we discuss how the DC approach could
be extended to integrate uncertainty estimates and efficiently
integrated into D-learning and active-learning strategies.

By showing that a committee of experts strategy can be
successfully leveraged for MLP development, our work opens
a new avenue for the design of accurate and scalable MLmodels
for materials.
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Data availability

The package for training ridge regression potentials is freely
available under the Apache 2.0 license at https://github.com/
ClaudioZeni/Castle, and a copy of the repository accessed on
07/10/2023 is stored at 10.5281/zenodo.8416687. The Zuo
et al.37 materials dataset is freely available in the data directory
at https://github.com/materialsvirtuallab/mlearn, and was
accessed on date 20/01/2022. The Deringer et al.30 P dataset is
freely available in the data directory at https://zenodo.org/
record/4003703#.YyiMOKTMJmM, and was accessed on date
05/03/2022.
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M. Ceriotti, M. Wilson, D. A. Drabold and S. R. Elliott,
Nature, 2021, 589, 59–64.

7 A. P. Thompson, L. P. Swiler, C. R. Trott, S. M. Foiles and
G. J. Tucker, J. Comput. Phys., 2015, 285, 316–330.

8 A. V. Shapeev, Multiscale Model. Simul., 2016, 14, 1153–1173.
9 R. Drautz, Phys. Rev. B, 2019, 99, 014104.
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50 A. K. Rappé, C. J. Casewit, K. S. Colwell, W. A. Goddard and
W. M. Skiff, J. Am. Chem. Soc., 1992, 114, 10024–10035.

51 C. Bannwarth, S. Ehlert and S. Grimme, J. Chem. Theory
Comput., 2019, 15, 1652–1671.

52 W. Ye, H. Zheng, C. Chen and S. Ong, Scr. Mater., 2022, 218,
114803.

53 B. Deng, P. Zhong, K. Jun, J. Riebesell, K. Han, C. Bartel and
G. Ceder, Nat. Mach. Intell., 2023, 5, 1031–1041.

54 G. Imbalzano, Y. Zhuang, V. Kapil, K. Rossi, E. A. Engel,
F. Grasselli and M. Ceriotti, J. Chem. Phys., 2021, 154,
074102.
Digital Discovery, 2024, 3, 113–121 | 121

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3dd00155e

	Divide-and-conquer potentials enable scalable and accurate predictions of forces and energies in atomistic systems
	Divide-and-conquer potentials enable scalable and accurate predictions of forces and energies in atomistic systems
	Divide-and-conquer potentials enable scalable and accurate predictions of forces and energies in atomistic systems
	Divide-and-conquer potentials enable scalable and accurate predictions of forces and energies in atomistic systems
	Divide-and-conquer potentials enable scalable and accurate predictions of forces and energies in atomistic systems

	Divide-and-conquer potentials enable scalable and accurate predictions of forces and energies in atomistic systems
	Divide-and-conquer potentials enable scalable and accurate predictions of forces and energies in atomistic systems
	Divide-and-conquer potentials enable scalable and accurate predictions of forces and energies in atomistic systems

	Divide-and-conquer potentials enable scalable and accurate predictions of forces and energies in atomistic systems
	Divide-and-conquer potentials enable scalable and accurate predictions of forces and energies in atomistic systems
	Divide-and-conquer potentials enable scalable and accurate predictions of forces and energies in atomistic systems

	Divide-and-conquer potentials enable scalable and accurate predictions of forces and energies in atomistic systems
	Divide-and-conquer potentials enable scalable and accurate predictions of forces and energies in atomistic systems
	Divide-and-conquer potentials enable scalable and accurate predictions of forces and energies in atomistic systems
	Divide-and-conquer potentials enable scalable and accurate predictions of forces and energies in atomistic systems


