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We investigate feature selection algorithms to reduce experimental time of nanoscale imaging via X-ray
Absorption Fine Structure spectroscopy (nano-XANES imaging). Our approach is to decrease the
required number of measurements in energy while retaining enough information to, for example, identify
spatial domains and the corresponding crystallographic or chemical phase of each domain. We find
sufficient accuracy in inferences when comparing predictions using the full energy point spectra to the
reduced energy point subspectra recommended by feature selection. As a representative test case in the
hard X-ray regime, we find that the total experimental time of nano-XANES imaging can be reduced by
~80% for a study of Fe-bearing mineral phases. These improvements capitalize on using the most
common analysis procedure — linear combination fitting onto a reference library — to train the feature
selection algorithm and thus learn the optimal measurements within this analysis context. We compare
various feature selection algorithms such as recursive feature elimination (RFE), random forest, and
decision tree, and we find that RFE produces moderately better recommendations. We further explore
practices to maintain reliable feature selection results, especially when there is large uncertainty in the
system, thus requiring a more expansive reference library that results in high linear mutual dependence

Received 4th August 2023 L L ) .
Accepted 5th December 2023 within the reference set. More generally, the class of spectroscopic imaging experiments that scan
energy by energy (rather than collecting an entire spectrum at once) is well-addressed by feature

DOI: 10.1035/d3dd00146f selection, and our approach is equally applicable to the soft X-ray regime via Scanning Transmission X-

Open Access Article. Published on 21 December 2023. Downloaded on 1/9/2026 4:14:53 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

rsc.li/digitaldiscovery

Introduction

As high-throughput experiments rise in prominence in all fields
of science,' advanced processing techniques - such as image
overlay analysis - allow both humans and machines to utilize all
information available.> While the large amounts of data
collected in these studies generate more opportunity for insight,
these experiments often require quality control® or feature
selection tools* to be both reliable and manageable. Feature
selection is a machine learning technique that takes a set of
observables, called features, corresponding to experimental
parameters and determines the relative importance of the
features in the context of targeted inference. In other words, the
goal is to determine what measurement conditions (dictated by
the experimental parameters) are needed to strongly retain the
targeted information. Feature selection has the advantage of
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ray Microscopy (STXM) experiments.

minimizing experimental time while simultaneously encour-
aging generalizability of learned predictions.>*

Here, we perform feature selection to choose the best
measurements for a type of high-dimensional spectral imaging
technique called nanoscale X-ray Absorption Near Edge Struc-
ture (nano-XANES).”"* Nano-XANES is a scanning probe tech-
nique that contains a XANES spectrum at every pixel (with
nanometer precision), by collecting 2D images usually at 50 to
100 energy points. While XANES experiments are popular in
many fields of science,”™ the prevalence of XANES imaging,
especially in the hard X-ray regime, is on the rise due to
synchrotron advances such as increased beam brightness,' fast
monochromator motors,"” and better spatial resolution® due to
fabrication of better nano-focusing optics.' On the other hand,
nanometer-scale XANES imaging in the soft X-ray regime, such
as with Scanning Transmission X-ray Microscopy (STXM), is
already a common experimental technique at synchrotrons.

However, hard X-ray spectroscopic imaging experiments are
highly time-intensive (over 8 hours) and thus run into conflict
with beamtime allocation limitations in addition to having risk
of beam damage due to prolonged exposure to the X-ray beam.
These time constraints limit expanding the measurement to
higher dimensions - for example, expanding into a fourth
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dimension for in situ time-dependence studies of chemical
kinetics.

A common bottleneck for XANES imaging studies is the
number of energy measurements in each spectrum, contingent
upon the specific experimental beamline. Given this difficulty,
we hypothesize that feature selection can help reduce the
number of energy points necessary in nano-XANES studies
while retaining scientific purpose, such as statistically reliable
inferences about the spatial distribution of mineral phases.
This approach differs from previous work®>** that has instead
selected spatial regions of interest to gather full spectra, thus
compromising global spatial information rather than spectral
information. Even though there have been recent advances that
accelerate XANES imaging®* from an implementation
perspective, we find that feature selection can, for the repre-
sentative test case of mineral phase identification of Fe-rich
compounds, decrease total measurement time by ~80%.

Fig. 1a shows how we incorporated feature selection into our
pipeline. Details on the processing can be found in the Methods
section, but of importance, we chose a subset of energies to
measure in the context of a reference library. We also compare
several different feature selection algorithms, namely recursive
feature elimination (RFE), decision tree, random forest, and

(a) Feature selection pipeline
1. Collect reference library

R = {ry, ..., r;}; R =reference set,
n = size of reference library
2. Construct linear combinations
X; = oy . F o, s Za =1 & o [0, 1]
3. Perform PCA
x; < PC, + B, PC, +... + B,,PC,, ; PC, = mean,
m = number of PCs to explain 97% variance
4. Get subset of energies (E) to measure
E= {e,, ... e} = feature_selection({PC,, ..., PC,}),
k = number of energies to keep

(b) Recursive Feature Elimination (RFE)
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Fig. 1 (a) Set-up for feature selection. We chose a subset of energies
to keep in the context of a reference library. (b) Recursive feature
elimination (RFE) optimizes the feature subset to measure, in this case
energies, by training a base machine learning model - such as linear
regression — to predict target variables from spectra.
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linear regression. Specifically, we find advantageous perfor-
mance and heuristic merits for RFE,** a wrapper-based super-
vised method, as our feature selection routine. Thus, Fig. 1b
demonstrates RFE, which we highlight in this manuscript.

As the name suggests, the RFE model decides which input
features are the most important by recursively pruning the
feature space such that the least important features are
removed first. The algorithm decides the importance of each
feature by using one of a few possible options. For example, the
RFE can correlate a subset of features to the accuracy of pre-
dicted target labels by training a base machine learning esti-
mator on that specific feature subset. Or, in the case of linear
regression, the RFE can rank the model weights which corre-
spond to each input feature such that the feature with the
largest weight is deemed most important and the feature cor-
responding to the smallest weight is least important. The RFE
algorithm will then recursively retrain the base machine
learning model on smaller and smaller feature subsets until
a desired number of features remains. The recursive nature of
RFE has potential benefits over linear regression, random
forest, and decision trees if the importance of features change
when fewer of them are considered.

In this work, we find that feature selection algorithms
provide energy measurement recommendations that produce
reduced energy point spectra, which we call subspectra, with
enough information to maintain sufficient analysis accuracy.
However, when training the feature selection algorithms, we
found unwanted sensitivity to spectral correlations and thus
pre-processing the spectral training set with principal compo-
nent analysis (PCA) stabilized the feature selection algorithms
(Fig. 1a). Additionally, appropriate normalization of subspectra
is critical for accurate results. While our results are generally
applicable for any supervised regression feature selection
algorithm, we emphasize results using recursive feature elimi-
nation (RFE) for which there are conceptual benefits that
suggest its modest superiority here may be generic for this class
of application.

Methods

The sample and experimental data is the same as it appeared in
A. Pattammattel, et al.>* and S. Tetef, et al.*® See those works for
the experimental details. Briefly, the sample was composed of
stainless steel (SS), lithium iron phosphate (LFP), pyrite (Pyr),
and hematite (Hem) nanoparticles. We prepared this sample
with prior knowledge to optimize data analysis workflows for
spectromicroscopy analysis. Fe K-edge XANES mapping data
were collected in about 24 hours at the Hard X-ray Nanoprobe
(HXN) Beamline at National Synchrotron Light Source II (NSLS-
II) at Brookhaven National Laboratory.*®* Our reference library
is the same as in A. Pattammattel, et al.** and S. Tetef, et al.,*®
which includes the four known phases - stainless steel, LFP,
pyrite, and hematite - and seven additional ones - HFO
(hydrous ferric oxyhydroxide), goethite, maghemite, magnetite,
Fe;P, Fe(u)PO,, and Fe(ur)SO,.

Training data for the feature selection and machine learning
models was generated by linear combinations of reference

© 2024 The Author(s). Published by the Royal Society of Chemistry
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spectra (Fig. 1a), where a random dropout was included such
that after the concentrations were sampled, some contributions
were then randomly set to zero and the collection of concen-
trations were renormalized to sum to one. This dropout
parameter enforced sparsity, allowing us to favor fewer refer-
ences contributing to any one generated spectrum. We then
generated validation sets using the same method - random
linear combinations of the reference spectra. Because gener-
ating each set uses the same dropout parameter, we do not
enforce uniqueness, as well as the draws being random, the sets
should fall within the same space, and thus our validation set is
equivalent as setting aside part of the training dataset.

All feature selection methods, including recursive feature
elimination (RFE), random forest (RF), decision tree (DT), and
linear regression (LR), are implemented using the sklearn
python package. The RFE algorithm was trained on a dataset
composed of 1000 linear combinations of references (without
additional noise) and with linear regression as the base esti-
mator. We then apply principal component analysis (PCA) to the
reference library and project the 1000 generated linear combi-
nations using the principal component vectors obtained from
the reference library; the number of principal components was
determined such that the principal components explained 99%
of the variance in the reference spectra. The PCA-projected
spectra were similarly given as training input to the feature
selection models, with the PCA-projected coefficients as the
target (or output) variables.

We keep the most important energies, which were selected
as most important from a dataset of 50 000 linear combinations
of reference spectra that were subsequently PCA-projected,
where the RFE ranked all energies (it stopped when only one
energy was left). The number of energies kept was largely based
on the degrees of freedom in the reference library, which we
determined by the number of principal components it took to
explain 97% of the variance in the reference set. We then choose
three additional energies ad hoc to ensure proper normalization
of spectra - two in the far pre-edge (maximally spaced) and one
in the post-edge (highest energy available). Using normalization
and test LCF results, we ultimately kept a total of 16 energies
from the original 74 energies experimentally measured - 13
chosen by feature selection and 3 added as hoc for normaliza-
tion. See results and discussion for more details.

To normalize subspectra, we fit a line to the first two energies
in each spectrum (energies which we added for that purpose)
and subtracted that line. We then fit another background post-
edge line to all energies above 7150 eV; this value created the
most consistent normalized spectra, and it was selected based
on the post-edge spectral features in the reference set. We found
the maximum of the subspectra to determine edge location
(rather than the maximum in the derivative, as is commonly
done with full spectra) and generated “flattened” spectra by
dividing by the post-edge line in the region past the edge so that
the post-edge features on average fall along the wu(E)x = 1 line.

As a baseline, we obtain “true” linear combination fitting
(LCF) results using the full-energy experimental spectra by
performing pixel-by-pixel non-negative least squares linear
combination fitting (NNLS-LCF) onto a smaller reference library

© 2024 The Author(s). Published by the Royal Society of Chemistry
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composed of only the four known phases (SS, Hem, Pyr, LFP).
The standard LCF utilizes stepwise regression (regression on
enumeration of subsets of the reference library) on every pixel.
Instead, here we utilize least absolute selection and shrinkage
operator (LASSO) regression to encourage sparsity in fits, as
originally presented in Jahrman, et al.*” Details of the alterna-
tive LCF approach - LASSO-LCF via manifold projection image
segmentation (MPIS) - are in S. Tetef, et al.*>® In short, we use
Uniform Manifold Approximation and Projection (UMAP)*® and
dbscan clustering® to globally group spectra together and then
perform LCF on the cluster-averaged spectra rather than pixel-
by-pixel analysis.

Results and discussion

Recursive feature elimination (RFE) training,
recommendations, and validation

Because RFE is a supervised feature selection routine, we
synthesize a training dataset of linear combinations of refer-
ence spectra corresponding to possible mineral phases in our
sample. Moreover, this training dataset incorporates prior
knowledge of our system and mirrors post-experimental anal-
ysis, particularly by inverting the analysis process of linear
combination fitting (LCF) onto a reference library. However, the
accuracy of this library's composition is, of course, subject to
the experimenter's prior knowledge. Here, we knew our sample
was made of stainless steel (SS), lithium iron phosphate (LFP),
pyrite (Pyr), and hematite (Hem) - see the Methods section.
However, to represent a typical user uncertainty, we add other
iron-containing mineral phases to the reference library.
Specifically, we supplement the library with HFO (hydrous ferric
oxyhydroxide), goethite, maghemite, magnetite, Fe;P, Fe(ur)PO,,
and Fe(m)SO,.">**

The size of the reference library is well known to be
a nontrivial issue in linear combination fitting (LCF), or any
other method of inference, when working with XANES data.”
Specifically, as the number of spectra in the reference library
increases, the relative linear independence of the ensemble of
spectra almost always decreases; often, the decrease is
dramatic. This poses a core dilemma - if the spectra in the
reference library have only weak linear independence, then any
LCF fit results will be highly degenerate as there will be multiple
solutions with almost identical goodness of fit parameters.

The same issue of the lack of linear independence in the
reference library also impacts any feature selection algorithm.
The choice of reference spectra, or generically the choice of
basis vectors that are used to generate linear combinations for
a training dataset, plays a critical role in the reliability of the
feature selection results. For example, we randomly selected 50
experimental spectra as a basis set to generate linear combi-
nations for the training data to simulate real-time feature
selection during an experiment in the case entire spectra are
collected at a time. However, using experimental spectra as
a basis creates too little linear independence for the RFE algo-
rithm to discern a solution; the base machine learning model at
the center of the RFE learns unreliable solutions. We find that,
in this case, the RFE produces recommendations that are
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contrary to our intuition by selecting energies (features) with
low spectral variance (Fig. S1t). By contrast, the RFE results
match our intuition - identifying regions with high variance as
important — when the basis vectors are chosen to be linearly
independent (shown below). For illustrative purposes, the RFE
matches human intuition for the synthetic case where distinct
Gaussian distributions act as the basis vectors for training the
RFE (Fig. S27). This pattern is equivalently present for the other
feature selection algorithms we compared: linear regression,
decision tree, and random forest.

However, if we relax the goal of inferring only from linear
combinations of compositions but instead focus on informa-
tion retention for the feature selection algorithms, we can
circumvent the lack of linear independence issue. To do so, we
recommend applying principal component analysis (PCA)* to
the reference library and then projecting the generated linear
combination spectral training dataset onto these principal
components. This pre-processing step forces feature inputs and
target outputs to be linearly independent and thus obtain
unique solutions for the feature selection model to learn. To be
precise, the resulting unique solutions will be in terms of
weighting coefficients of the principal components, not the
reference spectra. Mathematically, we generate the linear
combination spectra via

X‘:alfl_._"'_‘_anf; (1)

where each 7; is a normalized spectrum in a reference library of
size n, and where ) ;a; = 1. We then project spectra using PCA
as

. — —_—
§=06,PCy + - 4+ BsPCs, (2)

where the number of principal components (PC), six in this
work, was determined to explain 99% of variance in the refer-
ence spectra, and the principal components themselves are
obtained from the reference library. Because the principal
components are linearly independent, predicting the correct §;
values is more computationally stable because the solution is
unique.

It then remains the experimentalist's task to address the lack
of linear independence in the reference library when perform-
ing linear combination fitting on the final experimental data
(taken with a reduced number of energy points), even though
enforcing linear independence helps for feature selection. The
distinct task of speeding up the experiment with feature selec-
tion is separate from performing analysis via linear combina-
tion fitting. The goal here is to perform feature selection that
retains sufficient information. The subsequent data analysis
gets no easier, but if we succeed in retaining (nearly) all infor-
mation, then the analysis does not get more difficult, yet the
experiment is accelerated.

To illustrate the benefits of the PCA-based training dataset,
Fig. 2 compares the RFE recommendations using the linearly
dependent reference spectra versus the linear independent
principal components as the basis for training data. Similar
results occur with the other feature selection algorithms.
Specifically, the first row uses the reference library (Fig. 2a) to
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(a) Basis (References) (b) Spectral Dataset (c) Importance (10 RFEs)

7100 7125 7150 7175
Energy (eV)

7100 7125 7150 7175
Energy (eV)

7100 7125 7150 7175
Energy (eV)

(d) Basis (6 PCs) (e) PC Projected Dataset (f) Importance (10 RFEs)

7100 7125 7150 7175
Energy (eV)

7100 7125 7150 7175
Energy (eV)

7100 7125 7150 7175
Energy (eV)

Fig.2 Comparing RFE results on the full reference library versus using
forced linear independence in the basis set and thus the training
dataset. (a) The spectral reference library. (b) Training dataset of linear
combinations of references. (c) The RFE results, trained on the spectral
linear combinations. The black basis vectors are the same as in (a)
(reference spectra). (d) Spectra are instead represented using a basis
set comprised of the first six principal components (PCs) to force linear
independence. Thus, the linear combination solutions are unique. (e)
The same training data as before, which are also projected using PCA.
(f) The RFE results trained on the PCA projections. The black basis
vectors are the same as in (d) (PCs).

make linear combinations (Fig. 2b) to train an ensemble of 10
RFE models and obtain a collective importance of every energy
(Fig. 2c). On the other hand, the second row uses the first few
principal components as a basis (Fig. 2d) for both the references
and training dataset (Fig. 2e), to achieve RFE results (Fig. 2f).
The RFE recommendations for both focus on the rising- and
post-edge regions and result in similar prediction accuracies
even though the energies are not the same. Fig. S31 quantita-
tively compares the results of training the RFE on the linear
dependent versus linearly independent pairs of basis and target
variables. The key observation is that the linear independence
of both the input basis vectors and output coefficients help.

While an appropriate choice in a small but comprehensive
reference library might mitigate the effects of linear depen-
dence of the basis set when training the RFE model, applying
PCA first is a flexible procedure that allows for inclusion of
a larger reference library, thus providing robustness against
incorrect or incomplete priors for composition. Again, it
remains the experimentalist's task to address the lack of linear
independence in the reference library when performing linear
combination fitting on the final experimental data (taken with
a reduced number of energy points), even though enforcing
linear independence helps for feature selection; there is a clear
separation of tasks between speeding up the experiment with
feature selection and performing analysis via linear combina-
tion fitting. The goal here is to perform feature selection that
retains sufficient information. The subsequent data analysis
gets no easier, but if we succeed in retaining (nearly) all infor-
mation, then the analysis does not get more difficult yet the
experiment is accelerated.

Continuing our analysis based on the PC-constructed
training dataset, Fig. 3a shows the results for four different
feature selection models, i.e., RFE, random forest (RF), decision

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Characterization and validation of RFE algorithm. (a) Collection of energies chosen by different feature selection algorithms: random
selection (Rand), recursive feature elimination (RFE), random forest (RF), decision tree (DT), and linear regression (LR). The dark bars include the
three default energies (white) to ensure normalization. (b) Corresponding errors in LCF predictions on both a generated test dataset and the
experimental spectra for all models. (c) Energies consecutively removed by the RFE as fewer energy points are kept, which shows consistency in
training. The last energy, or set of energies, kept by the RFE are denoted in purple. (d) Error in reconstructing spectra using normalization
parameters from reduced energy point subspectra of different sizes compared to normalized full energy spectra. (e) R? score of the linear
regression (LR) base estimator in the RFE. (f) Error in LCF predictions versus subspectra size on both simulated test data and the experimental

spectra.

tree (DT), and linear regression (LR), and compares them to
a random selection of energies. We show the combined results
of an ensemble of 10 instances (each with a corresponding
randomly generated training dataset to demonstrate changes in
results based on different input data) for each feature selection
model (including 10 random draws), where each model selects
the top 10 (arbitrarily chosen number) energies. We then add
the same three energies to ensure normalization, as indicated
by white points in the dark gray regions, for a total of 13 ener-
gies kept. We chose 10 instances of each model to show the
variation of each model to different random samplings of the
training data.

Fig. 3b shows the corresponding average and standard
deviation of LASSO-LCF predictions given the energy selections
for each feature selection model, where LCF is predicting the
a coefficients corresponding to the reference spectra rather
than the g coefficients corresponding to principal components.
We compare the errors on both the simulated LCF (using
a generated test dataset of linear combinations of references)
and the actual experimental spectra. For the experimental
spectra, we determine the “true” coefficients by performing
non-negative least squares (NNLS) onto the four known refer-
ence spectra using the full energy point spectra. For each
reduced energy point subspectrum, we perform LASSO regres-
sion onto the references (also reduced in energy points) to

© 2024 The Author(s). Published by the Royal Society of Chemistry

obtain the predicted coefficients. We focus on RFE in this paper
since it produces moderately better subspectra with lower errors
in predictions, likely due to the recursive nature of the algo-
rithm, but the other feature selection algorithms may also be
worth considering when exploring other systems.

Fig. 3c shows the consecutive energies discarded by the RFE
as fewer energies are kept. Of note, the same energies are kept
during each retraining of the RFE, where in each retraining the
RFE picks fewer energies. This pattern is demonstrated by the
purple stopping points and indicates that the RFE recommen-
dations are consistent, regardless of the hyperparameter
determining the number of features (or energies) to keep.

Fig. 3d shows the error in normalizing XANES spectra using
the reduced energy point subspectra. Specifically, the normal-
ized root mean squared error (RMSE/number of energies
chosen) is shown, where the error is calculated between sub-
spectra that are normalized after energy cuts from the raw
experimental spectra and the spectra normalized first using the
full energy spectra and then sliced by energy to make the sub-
spectra. Because there is no spectral variation in the far pre-
edge, the RFE does not choose energies in that region.
However, normalization of real experimental data requires
fitting a line in that region to account for stray elastic and
Compton scattering of the primary beam or tails of fluorescence
from other elements, for example. Thus, we add two default
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energies in the far pre-edge (to ensure this line can be appro-
priately determined) as well as another high energy point to
similarly help with normalization. We see the error in normal-
ization is reasonably small when more than 15 total energies are
kept (12 chosen by the RFE plus the three default ones).
However, we recommend taking further care to determine the
number of energy points needed to ensure normalization.

Fig. 3e shows the score (coefficient of determination, or R?)
of the base estimator inside the RFE, in this case linear
regression (LR), as more and more energies are chosen by the
RFE. Because each spectrum has six degrees of freedom (DOF) -
one for each of the principal components the spectra are pro-
jected onto - the score for the base estimator is imperfect when
fewer than six energies are kept, exactly because the system of
equations is underdetermined in that regime. Thus, we
recommend keeping enough energy points such that number of
energies is greater than the number of principal components
required to explain 99% variance of the reference set. Increasing
uncertainty in the system by including a larger reference
library** slowly affects the number of principal components
needed to reach 99% variance, see Fig. S4.f Finally, Fig. 3f
compares errors in LCF predictions (on both the simulated
linear combinations and experimental data) using different
number of energies in the subspectra. Again, we have added
three default energies to ensure normalization, so the RFE
algorithm is recommending between 4 and 23 energies for
a total of 7 to 26 energies kept, as shown. We see that errors in
LCF predictions on the experimental spectra converge once 11
energies total are kept, providing a lower bound on our sub-
spectra size. The slight drop in error at 9 and 10 energies kept is
likely due to differences in normalization.

Reliability of inferences using measurements chosen by RFE

As emphasized above, the goal of feature selection is to reduce
the number of measurements while retaining sufficient infor-
mation for the desired analysis. We now transition to inferences
on the reduced energy point experimental subspectra and
demonstrate that the inferences are consistent when performed
on the subspectra dataset guided by feature selection and the
original dataset with all energy points.

Following the recommendations above, we select the 13
most important energies recommended by the RFE algorithm
and then add three ad hoc energies to ensure normalization,
thus keeping a total of 16 energy points in our subspectra. We
then take energy cuts of the experimental and reference spectra
using these 16 energies and renormalize all subspectra inde-
pendently. We attempt to combat any systematic errors in
normalization in the experimental subspectra by renormalizing
the reference subspectra as well. The full experimental spectra
and 16-energy subspectra are shown in Fig. 4, with the solid gray
lines indicating the RFE recommended energies and the dashed
lines indicating the energies we added for normalization.
Fig. S5t shows correlation matrices for both the full reference
spectra and reference subspectra and Fig. S61 shows scree plots
for the experimental dataset for the full spectra and subspectra.
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Spectra with all energics measured
|

Subspectra with encergics from RFE
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Energy (eV)
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Fig. 4 Fully measured experimental XANES spectra (left) compared to
the reduced energy point subspectra (right), with energies recom-
mended by the RFE algorithm (vertical gray lines). The dashed lines
indicate energies we subsequently added for normalization purposes.

Both of those figures support our assertion that most of the
information in the full spectra is retained in our subspectra.

Next, we apply manifold projection image segmentation
(MPIS) to cluster spectra in the nano-XANES image and then
performed linear combination fitting (LCF) via LASSO-LCF, as
detailed in S. Tetef, et al.* and originally presented in Jahrman,
et al.”” Briefly, MPIS applies PCA to the spectra and then
nonlinear dimensionality reduction, in the form of UMAP, to
the projections onto the principal components. Then dbscan
clustering groups spectra together such that cluster-average
spectra are used to perform LASSO-LCF. See Fig. S7-S9} for
the first four principal components, PCA triangle plot, and
dbscan clustering on the UMAP space.

The end results for LASSO-LCF via MPIS are shown in Fig. 5.
We calculate the “true results” (Fig. 5a) via pixel-by-pixel non-
negative least squares linear combination fitting (NNLS-LCF)
regression using just the four known phases as our reference
library. We then compare the standard analysis procedure -

(b) Full spectra (c) Subspectra
NLFPHESS WLFP ESS

5
o Pyr " Hem| Pyr Hemo-
Il

= .
- ’(?
3 |2
- e =]
o L2 LS
MError ¥ MError L ©
=)

Pixel-by-pixel LCF

(d) Full spectra (e) Subspectra
WLFP WSS WLFP WSS

Pixel-by-pixel LCF

=
Pyr " Hem)| Pyr Hemi\;
Pixel-by-pixel LCF °®© e i
(]
=
- 5 &
+ © S
L 4 L 4 °
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Fig. 5 Linear combination fitting (LCF) results via standard pixel-by-
pixel analysis and manifold projection image segmentation (MPIS). (a)
The "true” results, using the full energy spectra via pixel-by-pixel
NNLS-LCF onto the four known reference phases. (b) Pixel-by-pixel
NNLS-LCF applied to the full energy spectra; black dots in this panel
and later in the figure indicate erroneous inference by the analysis. (c)
Pixel-by-pixel NNLS-LCF applied to the reduced energy point sub-
spectra. (d) LASSO-LCF via MPIS applied to the full energy spectra. (e)
LASSO-LCF via MPIS applied to the reduced energy point subspectra.
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pixel-by-pixel NNLS-LCF - using the full reference library on the
full-energy spectra (Fig. 5b) versus the 16-energy subspectra
(Fig. 5¢). The dark speckles in these images are pixels where
NNLS-LCF reported phases that were not one of the true phases,
i.e., where it was distracted by the lack of linear independence
in the reference set. The percentage of pixel difference between
Fig. 5b and c is about 6.5%.

Finally, we compare these results instead using LASSO-LCF
via MPIS on the full-energy spectra (Fig. 5d) and the 16-energy
point subspectra (Fig. 5e). The results for the MPIS on the
subspectra (Fig. 5e) are almost identical to the full-spectra
results (Fig. 5d) - the percent difference is about 3.9% - indi-
cating the 16-energy subspectra retained enough information to
maintain accurate inferences of composition. Moreover, using
the MPIS before performing LASSO-LCF removed the NNLS-LCF
errors in Fig. 5b and c.

However, other experiments with larger noise would be more
sensitive to incorrect results when fewer energy points are
measured. To further reduce sensitivity to noise, we encode two
additional modes of information into the MPIS analysis - the
spatial location of each spectrum as well as the elemental
composition of every pixel, specifically sulfur, phosphorus, and

(a) Full spectra
Noise = 10%
XRF =2

Space = 0.1

(b) Subspectra
Noise = 10%
XRF=2
Space = 0.1

(c) Subspectra
Noise = 10%
XRF=0
Space = 0

Pixel-by-pixel
Standard NNLS-LCF

UMAP Space
Color by Cluster

2D Phase Map
Color by Cluster

LASSO-LCF
via MPIS

Fig. 6 MPIS and LASSO-LCF results using (a) the full spectra and
multimodal encoding, (b) the subspectra and multimodal encoding,
and (c) the subspectra by themselves without augmented information.
Here, the total XRF intensity of sulfur, phosphorus, and chromium and
the spatial location of pixels are multimodal information.
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chromium using the X-ray fluorescence (XRF) intensities. The
benefits of this approach are shown in Fig. 6, where Fig. 6a has
the results for noisy full energy spectra (Gaussian noise with
a standard deviation of 10% of the spectral intensity at each
energy is added to the experimental spectra). We include
augmented information by tuning the strength of the encoding
of the XRF data and spatial location of every pixel using the
“XRF” and “Space” weighting hyperparameters, respectively.
The detail of this encoding is explained in S. Tetef, et al.>® To
view the overall effects of varying the two hyperparameters in
MPIS that control spatial segregation - strength of the encoding
of spatial location and the number of neighbors in UMAP - see
Fig. S10.1 In summary, the UMAP space is a two-dimensional
representation of the spectra and shows clustering of the
experimental data; the details of the morphology of those
clusters are not important here.

Fig. 6b shows the results for the same augmented informa-
tion except using the 16-energy point subspectra. The MPIS
generates similar phase maps for both the full spectra and
subspectra with the additional information encoded. However,
performing MPIS on the subspectra without the augmented
information (Fig. 6¢) fails to appropriately separate out two of
the four phases (plus a small cluster of outliers), indicated by
the UMAP space only containing three large clusters rather than
four. Thus, the extra information encoded into the MPIS pipe-
line helped to recover the extra cluster, distinguishing hematite
from stainless steel when noise levels are high. Also of note, the
black dots represent incorrect LCF results at that pixel. The
pixel-by-pixel LCF on the subspectra likely has fewer incorrect
pixels because of the decrease in correlation of the reference
subspectra (Fig. S51), due to the increase in information density
of the subspectra compared to the full spectra.

In general, feature selection, such as RFE, can be highly
beneficial for any high-throughput experiment that produces
high-dimensional spectra, not just nano-XANES imaging. For
example, as an extension of our work here, feature selection
would be applicable to imaging experiments in the soft X-ray
regime, called Scanning Transmission X-ray Microscopy
(STXM); similar to nano-XANES imaging in the hard X-ray
regime, STXM scans over a sample energy by energy rather
than taking full spectra at every spatial location. Moreover,
while we applied feature selection to a system with a relatively
small reference library here, it can also be applied on a repre-
sentative set of collected experimental spectra rather than
reference spectra, although more analysis and validation would
be required. For example, the experimenter might perform
a quick, coarse-grained study of the sample using all energies
and use feature selection before performing a higher resolution
scan with fewer energy points. However, feature selection
requires careful evaluation, especially how the constrained
experiment effects spectral normalization, so that reliable
results can be maintained before performing the constrained
experiment. We also recommend a variety of feature selection
algorithms to be explored, not just RFE, even though we
demonstrated feature selection results with RFE here. Further-
more, while we achieved 80% reduction in experimental time
for this system, for other systems where variations are smaller
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and less distinct, such as 4d K-edge and 5d L;-edge rather than
the 3d K-edge nano-XANES here, more energies will likely be
needed to maintain sufficient accuracy and thus there will be
less improvement in experimental efficiency.

Conclusions

We have shown that feature selection can be used to select the
most important measurements in a nanoscale X-ray Absorption
Near Edge Structure (nano-XANES) imaging study; this selection
can accelerate high-dimensional spectroscopy experiments that
spatially image a sample one energy at a time. We demonstrate
the utility of feature selection, highlighting recursive feature
elimination (RFE) to introduce this algorithm to the field, on
a nano-XANES image of iron-containing mineral phases.
However, the benefits of feature selection can equivalently be
applied to other imaging spectroscopy techniques such as
Scanning  Transmission  X-ray = Microscopy  (STXM)
experiments.*

We observed that there are three key considerations to
determining the minimum number of energy points to
measure. First, ensuring energies are chosen such that proper
normalization can occur is critical in maintaining reliable
analysis results, specifically linear combination fitting (LCF).
Second, we recommend keeping the number of additional
energies to measure at least equal to the degrees of freedom of
the reference library, where principal component analysis (PCA)
can be utilized to parameterize the number of linearly inde-
pendent components in the library and thus quantify the
uncertainty in the system. Finally, when implementing RFE or
any feature selection algorithm, we recommend pre-processing
the training dataset of linear combinations of references with
PCA to ensure that input and output vectors are linearly inde-
pendent and thus the learned solutions are unique. The PCA
pre-processing step for feature selection, in this context, creates
more robust recommendations for larger reference libraries,
which are inherently more prone to linear dependence within
the set and can thus cause a feature selection algorithm to make
unreliable recommendations. Given these considerations, we
were successfully able to use feature selection to maintain
sufficient information in greatly reduced energy point sub-
spectra, decreasing experiment time by 80% while maintaining
similar analysis results.

Data availability

Data and processing scripts for this paper, including XANES
and XRF images as well as the reference library, are available at
https://github.com/stetef/nano-XANES-microscopy-of-Fe at
https://doi.org/10.5281/zenodo.8209040.
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