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Despite its fundamental importance and widespread use for assessing reaction success in organic
chemistry, deducing chemical structures from nuclear magnetic resonance (NMR) measurements has

remained largely manual and time consuming. To keep up with the accelerated pace of automated

synthesis in self driving laboratory settings, robust computational algorithms are needed to rapidly

perform structure elucidations. We analyse the effectiveness of solving the NMR spectra matching task

encountered in this inverse structure elucidation problem by systematically constraining the chemical

search space, and correspondingly reducing the ambiguity of the matching task. Numerical evidence

collected for the twenty most common stoichiometries in the QM9-NMR database indicate systematic

trends of more permissible machine learning prediction errors in constrained search spaces. Results
suggest that compounds with multiple heteroatoms are harder to characterize than others. Extending
QM9 by ~10 times more constitutional isomers with 3D structures generated by Surge, ETKDG and
CREST, we used ML models of chemical shifts trained on the QM9-NMR data to test the spectra
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matching algorithms. Combining both *C and H shifts in the matching process suggests twice as

permissible machine learning prediction errors than for matching based on *3C shifts alone. Performance
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1. Introduction

Current development times of novel molecular materials can
span several decades from discovery to commercialization. In
order for humanity to react to global challenges, the
digitization*® of molecular and materials discovery aims to
accelerate the process to a few years. Long experiment times
severely limit the coverage of the vastness of chemical space,
making the development of self driving laboratories for auton-
omous robotics experimentation crucial for high throughput
synthesis of novel compounds (Fig. 1a)).>** To keep the pace of
automated synthesis, fast and reliable characterization of
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data needs by orders of magnitude.

curves demonstrate that reducing ambiguity and search space can decrease machine learning training

reaction products through spectroscopic methods is required,
an often manual, time intense and possibly error prone task.
One of the most common methods to elucidate the structure of
reaction products are nuclear magnetic resonance (NMR)
experiments.'® Through relaxation of nuclear spins after align-
ment in a magnetic field, an NMR spectrum, characteristic of
local atomic environments of a compound, ie. functional
groups, can be recorded. In particular, 'H and >C NMR exper-
iments are routinely used by experimental chemists to identify
the chemical structure or relevant groups just from the spec-
trum. For larger compounds, however, the inverse problem of
mapping spectrum to structure becomes increasingly difficult,
ultimately requiring NMR of additional nuclei, stronger
magnets, or more advanced two-dimensional NMR
experiments.'”'®

Computer-assisted structure elucidation algorithms aim to
iteratively automatize the structure identification process.'*>
Current workflows include repeated predictions of chemical
shifts for candidate structure inputs through empirical or ab
initio methods.***® Albeit accurate even in condensed phase
through use of plane-waves>” or QM/MM setup,*® the cost of
density functional theory (DFT) calculations severely limits the
number of candidate structures that can be tested, leaving the
identification of unknown reaction products out of reach for all
but the smallest search spaces. Data driven machine learning
models leveraging experimental or theoretical NMR

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Schematic workflow for autonomous chemical discovery as
well as scaling of constitutional isomer space versus data availability in
the QMO (ref. 1) database. (a) After the chemical synthesis of molecular
compounds, reaction products are characterized using spectroscopic
methods such as nuclear magnetic resonance (NMR). The measured
4 and '*C spectra are automatically processed and potential candi-
date structures suggested via machine learning. (b) Number of
constitutional isomers for 20 stoichiometries considered.

databases**** provide orders of magnitude of speedup over ab
initio calculations, reaching 1-2 ppm *C mean-absolute-error
(MAE) w.r.t. experiment or theory, respectively.*"***® However,
while the stoichiometry of the reaction product is usually
known, e.g. through prior mass spectrometry experiments, the
number of possible constitutional isomers exhibits NP hard
scaling in number of atoms, quickly spanning millions of valid
molecular graphs already for molecules of modest size
(Fig. 1b)). As such, the inverse problem of inferring the molec-
ular structure from an NMR spectrum still poses a major chal-
lenge even for rapid solvers.

Recent machine learning approaches tackle the inverse
problem using a combination of graph generation and subse-
quent chemical shift predictions for candidate ranking.***'
First explored by Jonas,* a Top-1 ranking with 57% recon-
struction success-rate was achieved using deep imitation
learning to predict bonds of molecular graphs. Sridharan et al.**
used online Monte Carlo tree search to build molecular graphs
resulting in a similar Top-1 ranking of 57.2%. Huang et al.*®
relied on substructure predictions from which complete graphs
can be constructed, reaching 67.4% top-1 accuracy by ranking
substructure profiles instead of shifts. A commonality between

© 2024 The Author(s). Published by the Royal Society of Chemistry
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all algorithms is the subsequent ranking of candidates using
spectra matching or other heuristics. Consequently, even
though the correct query compound could be detected early,
similar candidates might be ranked higher, making the ranking
process as critical as the candidate search itself.

In this work, we analyse the effectiveness of the NMR spectra
matching task encountered in the inverse structure elucidation
problem. As stagnating improvements*® in chemical shift
predictions due to limited public NMR data aggravate candidate
rankings, results suggest that both the prediction error of
machine learning models and the number of possible candi-
dates are crucial factors for elucidation success. By systemati-
cally controlling the size of chemical search space and accuracy
of chemical shifts, we find that higher error levels become
permissible in constrained search spaces. Moreover, results
indicate that increasing the uniqueness through including both
3C and 'H shifts in the matching process, rather than relying
on a single type of shift, significantly reduces ambiguity and
enhances error tolerance. To evaluate the spectra matching task
throughout chemical compound space, we systematically
control the accuracy of 1D "*C and "H chemical shifts of the 20
most common stoichiometries in QM9-NMR"*" by applying
distinct levels of Gaussian white noise. Note that while we focus
on DFT based 1D NMR in this work, future studies could
include experimental data and 2D NMR information. Compar-
isons amongst stoichiometries suggest that chemical spaces
with increasing amounts of heteroatoms and number of
constitutional isomers are harder to characterize than others.
To test the spectra matching method on a large search space, we
extended QM9-NMR to 56 k C,O,H;, constitutional isomers.
Controlling the chemical shift accuracy through machine
learning models trained at increasing training set sizes,
performance curves again indicate a trade-off between search
space and accuracy. Hence, as less accurate shift predictions
become useful, results show that machine learning training
data needs can be reduced by multiple orders of magnitude.

2. Theory & methods

2.1. NMR spectra matching

Consider a query "*C or 'H spectrum with a set of N possible
candidate constitutional isomer spectra. We chose the squared
euclidean distance as a metric to rank candidate spectra against
the query spectrum (see ESI Fig. 31 for comparison against
other metrics):

n

d(éméi) = Z (5(,,/ - 5,:/')27 (1)

J=1

With 6 being a sorted spectrum of n chemical shifts (**C or
'H), q being the query, i being the i-th of N candidates, and j
being the j-th chemical shift in a spectrum, respectively. To use
both *C and 'H shifts simultaneously for spectra matching,
a total distance can be calculated as follows:

deomisined = d (08, 6P°°) + v-d (0,011, @)
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with y = 64 being a scaling factor determined via cross-
validation (see ESI Fig. 11) to ensure similar weighting. Final
rankings are obtained by sorting all candidates by distance. The
top-1 accuracy is calculated as the proportion of queries
correctly ranked as the closest spectrum, respectively.

2.2. Elucidation performance curves

To analyse the spectra matching elucidation accuracy, we
systematically control the number of possible candidates N and
the accuracy of chemical shifts, respectively. For each constitu-
tional isomer set, we choose 10% as queries and 90% as search
pool, respectively. Next, we randomly sample N spectra from the
search pool, including the query spectrum. Each sample size is
drawn ten times and the top-1 accuracy averaged across all runs.
To control the accuracy of chemical shifts, we apply Gaussian
white noise (up to 1 or 10 ¢ for 'H and ">C, respectively) or use the
machine learning error as a function of training set size (c.f. ESI
Fig. 51 for learning curves). For each N and chemical shift
accuracy, results are presented as elucidation performance
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curves, showing the elucidation success as a function of chemical
shift accuracy in terms of mean absolute deviation (MAD) for
Gaussian noise (c.f. Fig. 2a and b)) or mean absolute error (MAE)
for machine learning predictions (c.f Fig. 4).

2.3. Chemical shift prediction

We relied on kernel ridge regression (KRR) for machine
learning "*C and "H chemical shifts as presented in ref. 31 and
commonly being used in learning NMR properties from
quantum chemical calculations.?”****¢ We use a Laplacian
kernel and the local atomic Faber-Christensen-Huang-Lil-
ienfeld (FCHL19 (ref. 47)) representation with a radial cutoff** of
4 A. The kernel width and regularization coefficient have been
determined through 10-fold cross-validation on a subset of
10’000 chemical shifts of the training set. Note that while we
relied on KRR within this work, other NMR shift estimation
methods could have been used such as Hierarchically ordered
spherical environment (HOSE) codes** or neural network
based approaches.”**
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Fig. 2 Elucidation performance curves of C;0,H;q, CsN3OH7, CgOHj4 spectra using Gaussian noise to control chemical shift accuracy in terms

2
of mean absolute deviation (MAD) corresponding to \/;T = 0.8 of the standard deviation.? (a) and (b) **C and H spectra matching. Individual

points were obtained by calculating the percentage of queries where noisy and noise free query spectra have the lowest distance. All points have

been fitted using egn (3). Solid curves correspond to candidate numbers Ngmg from QM9.* Dashed curves are an extrapolation to candidate

numbers Nsrqe as obtained via graph enumeration* The legend corresponds to both (a) and (b), respectively. (c) Spectra matching using both H
and 3C shifts. Dashed lines correspond to the accuracy required to correctly elucidate 95% of queries when only *H or C spectra are being

used, respectively.
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2.4. Data

The QM9-NMR"*" dataset was used in this work, containing
130’831 small molecules up to nine heavy atoms (CONF) with
chemical shieldings at the mPW1PW91/6-311+G(2d,p)-level of
theory. We used the 20 most common stoichiometries (Fig. 1b)),
having a minimum of 1.7 k constitutional isomers available in
the dataset.

To extend the QM9-NMR C,0,H;, constitutional isomers
space, we used the systematic graph enumeration software
Surge® to generate 54’641 SMILES. 3D geometries of all SMILES
have been generated using the ETKDG** method in RDKit.
Lowest lying conformer structures were sampled using the
CREST* algorithm, using the GFN2-xTB/GFN-FF composite
method in a meta-dynamics based sampling scheme, with
a final relaxation at the GFN2-xTB level. Adding all successfully
generated structures to QM9, a total pool size of 56.95 k
C,0,H;, isomers was obtained.

For the training of chemical shift machine learning models,
we selected CgOH;,, CgOH;,, CgOH,,, C;O0,Hg and C,O,H;,
constitutional isomers, yielding a total of 143 k *C and 214 k 'H
training points, respectively.

3. Results & discussion

3.1. Spectra matching accuracy with synthetic noise

To analyse the influence of noise and number of candidates on
the elucidation success, we applied Gaussian noise to **C and
'H shifts of C,0,H;,, CsN;OH, and CyOH,, constitutional
isomers, respectively. Fig. 2a and b) depicts a sigmoidal shaped
trend of top-1 elucidation performances as a function of mean

- . 2
absolute deviation (MAD) corresponding to \/:z 0.8 of the
™

standard deviation® caused by applying the Gaussian noise.
Note that increasing the maximum candidate pool size Nomo
leads to an offset of the trend towards less permissible errors. A
possible explanation is the correlation of the density of chem-
ical space with increasing numbers of candidate spectra N.*® As
shift predictions need to become more accurate, limiting N
through prior knowledge of the chemical space could be
beneficial. Similar findings have been reported by Sridharan
et al.,* noting that brute force enumerations of chemical space
lead to worse rankings than constrained graph generation. Note
that while the trends in **C and "H elucidation are similar, less
error is permissible when using 'H shifts.

To further reduce the ambiguity, we include both *C and "H
shifts into the matching problem as per eqn (2). Results suggest
50% and ~150% more permissible *C and *H errors when both
spectra are considered in the matching process (Fig. 2c)).
Similar to how chemists solve the elucidation problem, the
inclusion of more distinct properties increases the uniqueness
and can improve the elucidation success.

3.2. Extrapolating the search space

Due to the limited amount of constitutional isomers in databases
compared to the number of possible graphs faced during inverse
design (Fig. 1b)), assessing the chemical shift accuracy for

© 2024 The Author(s). Published by the Royal Society of Chemistry
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successful elucidation is severely limited. As such, we extrapolate
elucidation performance curves to obtain estimates about
chemical shift accuracies in candidate pool sizes larger than
QMO. We fit each elucidation performance curve (Fig. 2a and b)),
respectively, using a smoothly broken power law function:

fx) = (1 () ) ©)

With x, controlling the upper bend and offset, d changing the
curvature and « changing the tilt of the function (see ESI Fig. 27),
respectively. The parameters of eqn (3) as a function of N can
again be fitted using a power law function (see ESI Fig. 21) and
extrapolated to the total number of graphs Ngyrge, respectively.

Results of the extrapolation (Fig. 2a and b) dashed) indicate
significant differences in elucidation efficiency among stoichi-
ometries. For instance, CgOH;4 queries are potentially easier to
elucidate than C;N;OH- structures. Possible reasons are the
limited number of CgOH,, graphs compared to millions of
C5;N3;0H, isomers. Moreover, the number of heteroatoms of the
C5N;OH; stoichiometry might hamper the characterization
when only relying on '*C or 'H, respectively. Hence, to solve the
inverse structure elucidation problem using experimental data
of compounds larger than QM9, reducing ambiguities through
including both *C and 'H shifts as well as to reduce the
candidate space is critical for elucidation success.

3.3. Trends in chemical space

To analyse the elucidation efficiency throughout chemical space,
we applied the Gaussian noise and extrapolation procedure to the
20 most common stoichiometries in QM9 (Fig. 1b)). Fig. 3a) shows
the MAD required for 95% elucidation success as a function of
Ngurge- Results suggest that less error is permissible for stoichi-
ometries with large Ngyree and fewer carbon atoms. As such, using
only "*C shifts might not be sufficient to fully characterize the
compound. Again, similar to how chemists use multiple NMR
spectra to deduct chemical structures, additional information
such as 'H shifts are beneficial to extend the information content.

In Fig. 3b), the error permissiveness of spectra matching
using only *C (see ESI Fig. 41 for "H) versus combining both **C
and 'H is being compared, revealing a linear trend between
both. Note that the C,NOH; stoichiometry shows the smallest
benefit from adding additional 'H information. Interestingly,
a hierarchy for C;NOHy stoichiometries of different degrees of
unsaturation is visible, indicating an inverse correlation
between number of hydrogens and "*Cginge MAD (Fig. 3b)
green). Similar hierarchies are also observed for other stoichi-
ometries such as C,0,Hy and CsOHy (Fig. 3b) blue and orange).
On average, the combination of *C and "H for spectra matching
increases the error permissiveness of *C and 'H by 85% and
261% (see ESI Fig. 47), respectively.

3.4. Comparison to machine learned shift predictions

To test the elucidation performance using machine learning
predictions, we trained >C and '"H KRR models at increasing

Digital Discovery, 2024, 3,136-144 | 139
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Fig. 3 Trends in QM9 (ref. 1) chemical compound space to correctly
elucidate queries at 95% accuracy. The mean absolute deviation (MAD)

2
ﬁ = 0.8 of the standard deviation.? (a) Extrapolated MAD at candidate

numbers Ngrge Of the 20 most common stoichiometries in QM9.* (b)
MAD using only C spectra (*Cgngie) against *C and noise-free *H
spectra combined (BCeompined) at candidate numbers Ngmo from
QM9.*

training set sizes (see ESI Fig. 5t for learning curves) and pre-
dicted chemical shifts of 56 k C;0,H;, constitutional isomers.
Note that within this proof of concept application we rely on
XTB-GFN2 relaxed geometries as queries, which on average are
within 0.06 A RMSD of C,0,H;, B3LYP level of theory struc-
tures.”” Results again show similar trends as observed with
Gaussian noise (Fig. 4a and b)), however, indicate more
permissive accuracy thresholds. For instance, KRR "*C predic-
tions at 2 ppm MAE can identify 64% of queries rather than only
17% suggested by the Gaussian noise experiment. The differ-
ence could be explained due the systematic, non uniform nature
of the QM9 (ref. 1) chemical space, influencing the shape and

140 | Digital Discovery, 2024, 3, 136-144
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extrapolation of elucidation performance curves in Fig. 2.
Moreover, Gaussian noise is applied to all shifts at random
compared to possibly more systematic machine learning
predictions. Note that the trade-off between error and N is
consistent and that the exact parameters will depend on the
machine learning model and the finite sampling of constitu-
tional isomer space.

To model possible experimental noise on query spectra, we
apply Gaussian noise to query spectra and evaluate the elucida-
tion performance of the best performing machine learning model
(see insets in Fig. 4a and b)). Results indicate a halving of eluci-
dation accuracy when the query spectrum contains up to 2 ppm
MAE in "°C and 0.15 ppm MAE in "H error, respectively. Thus, in
the presence of experimental measurement noise even higher
prediction accuracies might be necessary. Combining both »*C
and 'H spectra for matching improves the elucidation perfor-
mance up to 90% (Fig. 4e)). Again, the combination of spectra for
elucidation highlights the effectiveness of reducing the ambiguity
of the matching problem by including additional properties.

Investigating potential strategies to reduce the constitutional
isomer search space, we constrained N based on functional
groups (see ESI Table 11). Randomly selecting functional groups
present in each query, N can be reduced by 50% and 62% on
average (see Fig. 4d) inset for distributions), respectively.
Results in Fig. 4c and d) indicate an increase of the elucidation
accuracy by 5% in **C and up to 10% for "H, respectively, in
agreement with the elucidation performance in Fig. 4a and b).
Note that the knowledge of two functional groups only led to
marginal improvements. However, fragmentation could be
more beneficial for larger compounds than present in QM9," as
reported by Yao et al.*® Using both >C and 'H shifts on the
reduced search space only lead to marginal improvements of
0.5% over the results of the full search space.

3.5. Balancing search space and accuracy

We use performance curves to analyse the relationship between
the elucidation performance of C,O,H,, queries, machine
learning prediction errors and candidate pool sizes N. Similar to
learning curves, showing the systematic decay of out-of-sample
machine learning prediction errors as a function of training
data, elucidation performance curves show for a specific eluci-
dation threshold, e.g. 90%, the machine learning prediction
error as a function of pool size. Note that while learning curves
of chemical shift predictions only show the predictive accuracy,
e.g. in terms of MAE, the addition of elucidation performance
allow a multifaceted evaluation of new spectra estimation
algorithms, considering data efficiency as well as pool size. The
systematic decay of performance curves (Fig. 5 red and blue)
again demonstrates that constraining N with prior knowledge
allows for less accurate shift predictions to be applicable.
Extrapolating the 13CSingle performance curves indicates
a machine learning MAE of 0.93 ppm to correctly rank 90% of
queries out of 56 k possible candidates (Fig. 5 red), 0.02 ppm
lower than suggested by Gaussian noise. To reach an MAE of
0.93 ppm, four million training instances are required (Fig. 5
orange). Using both ’C and 'H shifts requires two orders of

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Elucidation accuracy of C;O,H;o spectra using machine learning 13C and H shift predictions. Mean absolute error (MAE) refers to the
predictive accuracy of the machine learning models, respectively. (a) and (b) **C and *H spectra matching at increasing search pool sizes N. The
inset depicts the decay of the elucidation accuracy of the best performing machine learning model at increasing levels of Gaussian noise on
query spectra (MAEg). (c) and (d) Spectra matching accuracy when restricting the search pool to contain only known functional groups. The inset
n (d) depicts the search pool size N restricted to compounds with similar functional groups as the query, respectively. (e) Spectra matching using
*H and 13C shifts combined. (f) Accuracy required to reach 85% correct elucidation at increasing N when using both *H and **C shifts combined.

magnitude less training data (Fig. 5 blue). As such, facing
expensive experimental measurements and ab initio calcula-
tions, more effective inverse structure elucidation could be
achieved by balancing machine learning data needs through
reduced search spaces and incorporation of additional
properties.

10. Elucidation
1?’Ccombined u 90%
A 80%
5 gj *  70%
g Ny +  60%
L
S 2]
1 13Csingle
T T T T N, T
10° 100 10 10° 10

Fig. 5 Performance curves (red, blue) of the MAE permissible to
correctly identify 60, 70, 80, 90% of C;O,H;o query spectra at a given
pool size N using machine learning shifts predictions, respectively.
BCqingle (red) only uses *C shifts for elucidation, whereas *Ccompined
uses *C and H spectra combined, assuming a *H MAE of 0.15 ppm.
The learning curve (orange) indicates the systematic improvement of
QMO (ref. 1) BC chemical shift predictions as a function of training set
size Nyain Using KRR with the FCHL19 (ref. 47) representation.

© 2024 The Author(s). Published by the Royal Society of Chemistry

4. Conclusion

We have presented an analysis of the effectiveness of the NMR
spectra matching task encountered in the inverse structure
elucidation problem. By systematically controlling the predic-
tive accuracy of ">C and "H chemical shifts, we found consistent
trends throughout chemical compound space, suggesting that
higher errors become permissible as the number of possible
candidates decreases. Note that while we relied on 1D ab initio
NMR data, similar analysis could be performed using 1D or 2D
experimental spectra. Applications to the most common
constitutional isomers in QM9 highlight that chemical spaces
with many heteroatoms are harder to characterize when only
relying on a single type of chemical shift. Using both *C and "H
chemical shifts increases the error permissiveness by 85% and
261% on average, respectively. Machine learning predictions for
56 k C,0,H;, compounds showed that using both '*C or 'H
shifts increased elucidation success to 90% compared to only
64% and 36% when used alone, respectively. The usefulness of
the analysis is expressed via performance curves, showing that
training demands can be reduced by orders of magnitude
compared to relying on specific shifts alone.

We believe that as the accuracy of machine learning models
to distinguish spectra is limited, constrained search spaces or
inclusion of more distinct properties are necessary to improve
candidate rankings. Rather than solely relying on more accurate
models, future approaches could deal with estimating the
applicability of machine learning models to successfully
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elucidate unseen chemical spaces, as well as including explicit
knowledge of chemical reactions, functional groups or data
from mass spectrometry, infrared- or Raman spectroscopy,****
respectively.

Finally, explicitly accounting for atomic similarities and
chemical shift uncertainties via the DP5 probability might
further increase the confidence in structure assignments.>
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