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Despite its fundamental importance and widespread use for assessing reaction success in organic

chemistry, deducing chemical structures from nuclear magnetic resonance (NMR) measurements has

remained largely manual and time consuming. To keep up with the accelerated pace of automated

synthesis in self driving laboratory settings, robust computational algorithms are needed to rapidly

perform structure elucidations. We analyse the effectiveness of solving the NMR spectra matching task

encountered in this inverse structure elucidation problem by systematically constraining the chemical

search space, and correspondingly reducing the ambiguity of the matching task. Numerical evidence

collected for the twenty most common stoichiometries in the QM9-NMR database indicate systematic

trends of more permissible machine learning prediction errors in constrained search spaces. Results

suggest that compounds with multiple heteroatoms are harder to characterize than others. Extending

QM9 by ∼10 times more constitutional isomers with 3D structures generated by Surge, ETKDG and

CREST, we used ML models of chemical shifts trained on the QM9-NMR data to test the spectra

matching algorithms. Combining both 13C and 1H shifts in the matching process suggests twice as

permissible machine learning prediction errors than for matching based on 13C shifts alone. Performance

curves demonstrate that reducing ambiguity and search space can decrease machine learning training

data needs by orders of magnitude.
1. Introduction

Current development times of novel molecular materials can
span several decades from discovery to commercialization. In
order for humanity to react to global challenges, the
digitization4–8 of molecular and materials discovery aims to
accelerate the process to a few years. Long experiment times
severely limit the coverage of the vastness of chemical space,
making the development of self driving laboratories for auton-
omous robotics experimentation crucial for high throughput
synthesis of novel compounds (Fig. 1a)).9–15 To keep the pace of
automated synthesis, fast and reliable characterization of
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reaction products through spectroscopic methods is required,
an oen manual, time intense and possibly error prone task.
One of the most common methods to elucidate the structure of
reaction products are nuclear magnetic resonance (NMR)
experiments.16 Through relaxation of nuclear spins aer align-
ment in a magnetic eld, an NMR spectrum, characteristic of
local atomic environments of a compound, i.e. functional
groups, can be recorded. In particular, 1H and 13C NMR exper-
iments are routinely used by experimental chemists to identify
the chemical structure or relevant groups just from the spec-
trum. For larger compounds, however, the inverse problem of
mapping spectrum to structure becomes increasingly difficult,
ultimately requiring NMR of additional nuclei, stronger
magnets, or more advanced two-dimensional NMR
experiments.17,18

Computer-assisted structure elucidation algorithms aim to
iteratively automatize the structure identication process.19–23

Current workows include repeated predictions of chemical
shis for candidate structure inputs through empirical or ab
initio methods.24–26 Albeit accurate even in condensed phase
through use of plane-waves27 or QM/MM setup,28 the cost of
density functional theory (DFT) calculations severely limits the
number of candidate structures that can be tested, leaving the
identication of unknown reaction products out of reach for all
but the smallest search spaces. Data driven machine learning
models leveraging experimental or theoretical NMR
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Schematic workflow for autonomous chemical discovery as
well as scaling of constitutional isomer space versus data availability in
the QM9 (ref. 1) database. (a) After the chemical synthesis of molecular
compounds, reaction products are characterized using spectroscopic
methods such as nuclear magnetic resonance (NMR). The measured
1H and 13C spectra are automatically processed and potential candi-
date structures suggested via machine learning. (b) Number of
constitutional isomers for 20 stoichiometries considered.
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databases29–32 provide orders of magnitude of speedup over ab
initio calculations, reaching 1–2 ppm 13C mean-absolute-error
(MAE) w.r.t. experiment or theory, respectively.31,33–38 However,
while the stoichiometry of the reaction product is usually
known, e.g. through prior mass spectrometry experiments, the
number of possible constitutional isomers exhibits NP hard
scaling in number of atoms, quickly spanning millions of valid
molecular graphs already for molecules of modest size
(Fig. 1b)). As such, the inverse problem of inferring the molec-
ular structure from an NMR spectrum still poses a major chal-
lenge even for rapid solvers.

Recent machine learning approaches tackle the inverse
problem using a combination of graph generation and subse-
quent chemical shi predictions for candidate ranking.39–41

First explored by Jonas,39 a Top-1 ranking with 57% recon-
struction success-rate was achieved using deep imitation
learning to predict bonds of molecular graphs. Sridharan et al.41

used online Monte Carlo tree search to build molecular graphs
resulting in a similar Top-1 ranking of 57.2%. Huang et al.40

relied on substructure predictions from which complete graphs
can be constructed, reaching 67.4% top-1 accuracy by ranking
substructure proles instead of shis. A commonality between
© 2024 The Author(s). Published by the Royal Society of Chemistry
all algorithms is the subsequent ranking of candidates using
spectra matching or other heuristics. Consequently, even
though the correct query compound could be detected early,
similar candidates might be ranked higher, making the ranking
process as critical as the candidate search itself.

In this work, we analyse the effectiveness of the NMR spectra
matching task encountered in the inverse structure elucidation
problem. As stagnating improvements26 in chemical shi
predictions due to limited public NMR data aggravate candidate
rankings, results suggest that both the prediction error of
machine learning models and the number of possible candi-
dates are crucial factors for elucidation success. By systemati-
cally controlling the size of chemical search space and accuracy
of chemical shis, we nd that higher error levels become
permissible in constrained search spaces. Moreover, results
indicate that increasing the uniqueness through including both
13C and 1H shis in the matching process, rather than relying
on a single type of shi, signicantly reduces ambiguity and
enhances error tolerance. To evaluate the spectra matching task
throughout chemical compound space, we systematically
control the accuracy of 1D 13C and 1H chemical shis of the 20
most common stoichiometries in QM9-NMR1,31 by applying
distinct levels of Gaussian white noise. Note that while we focus
on DFT based 1D NMR in this work, future studies could
include experimental data and 2D NMR information. Compar-
isons amongst stoichiometries suggest that chemical spaces
with increasing amounts of heteroatoms and number of
constitutional isomers are harder to characterize than others.
To test the spectra matching method on a large search space, we
extended QM9-NMR to 56 k C7O2H10 constitutional isomers.
Controlling the chemical shi accuracy through machine
learning models trained at increasing training set sizes,
performance curves again indicate a trade-off between search
space and accuracy. Hence, as less accurate shi predictions
become useful, results show that machine learning training
data needs can be reduced by multiple orders of magnitude.

2. Theory & methods
2.1. NMR spectra matching

Consider a query 13C or 1H spectrum with a set of N possible
candidate constitutional isomer spectra. We chose the squared
euclidean distance as a metric to rank candidate spectra against
the query spectrum (see ESI Fig. 3† for comparison against
other metrics):

d
�
dq; di

� ¼Xn
j¼1

�
dq; j � di; j

�2
; (1)

With d being a sorted spectrum of n chemical shis (13C or
1H), q being the query, i being the i-th of N candidates, and j
being the j-th chemical shi in a spectrum, respectively. To use
both 13C and 1H shis simultaneously for spectra matching,
a total distance can be calculated as follows:

dcombined ¼ d
�
d13Cq ; d13Ci

�
þ g$d

�
d1Hq ; d1Hi

�
; (2)
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with g = 64 being a scaling factor determined via cross-
validation (see ESI Fig. 1†) to ensure similar weighting. Final
rankings are obtained by sorting all candidates by distance. The
top-1 accuracy is calculated as the proportion of queries
correctly ranked as the closest spectrum, respectively.

2.2. Elucidation performance curves

To analyse the spectra matching elucidation accuracy, we
systematically control the number of possible candidates N and
the accuracy of chemical shis, respectively. For each constitu-
tional isomer set, we choose 10% as queries and 90% as search
pool, respectively. Next, we randomly sample N spectra from the
search pool, including the query spectrum. Each sample size is
drawn ten times and the top-1 accuracy averaged across all runs.
To control the accuracy of chemical shis, we apply Gaussian
white noise (up to 1 or 10 s for 1H and 13C, respectively) or use the
machine learning error as a function of training set size (c.f. ESI
Fig. 5† for learning curves). For each N and chemical shi
accuracy, results are presented as elucidation performance
Fig. 2 Elucidation performance curves of C7O2H10, C5N3OH7, C8OH14 sp

of mean absolute deviation (MAD) corresponding to

ffiffiffi
2
p

r
z 0:8 of the st

points were obtained by calculating the percentage of queries where nois

been fitted using eqn (3). Solid curves correspond to candidate numbe

numbersNSurge as obtained via graph enumeration.3 The legend correspo

and 13C shifts. Dashed lines correspond to the accuracy required to cor

used, respectively.

138 | Digital Discovery, 2024, 3, 136–144
curves, showing the elucidation success as a function of chemical
shi accuracy in terms of mean absolute deviation (MAD) for
Gaussian noise (c.f. Fig. 2a and b)) or mean absolute error (MAE)
for machine learning predictions (c.f. Fig. 4).

2.3. Chemical shi prediction

We relied on kernel ridge regression (KRR) for machine
learning 13C and 1H chemical shis as presented in ref. 31 and
commonly being used in learning NMR properties from
quantum chemical calculations.37,42–46 We use a Laplacian
kernel and the local atomic Faber–Christensen–Huang–Lil-
ienfeld (FCHL19 (ref. 47)) representation with a radial cutoff31 of
4 Å. The kernel width and regularization coefficient have been
determined through 10-fold cross-validation on a subset of
10′000 chemical shis of the training set. Note that while we
relied on KRR within this work, other NMR shi estimation
methods could have been used such as Hierarchically ordered
spherical environment (HOSE) codes48,49 or neural network
based approaches.50–53
ectra using Gaussian noise to control chemical shift accuracy in terms

andard deviation.2 (a) and (b) 13C and 1H spectra matching. Individual

y and noise free query spectra have the lowest distance. All points have

rs NQM9 from QM9.1 Dashed curves are an extrapolation to candidate

nds to both (a) and (b), respectively. (c) Spectra matching using both 1H

rectly elucidate 95% of queries when only 1H or 13C spectra are being

© 2024 The Author(s). Published by the Royal Society of Chemistry
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2.4. Data

The QM9-NMR1,31 dataset was used in this work, containing
130′831 small molecules up to nine heavy atoms (CONF) with
chemical shieldings at the mPW1PW91/6-311+G(2d,p)-level of
theory. We used the 20 most common stoichiometries (Fig. 1b)),
having a minimum of 1.7 k constitutional isomers available in
the dataset.

To extend the QM9-NMR C7O2H10 constitutional isomers
space, we used the systematic graph enumeration soware
Surge3 to generate 54′641 SMILES. 3D geometries of all SMILES
have been generated using the ETKDG54 method in RDKit.
Lowest lying conformer structures were sampled using the
CREST55 algorithm, using the GFN2-xTB/GFN-FF composite
method in a meta-dynamics based sampling scheme, with
a nal relaxation at the GFN2-xTB level. Adding all successfully
generated structures to QM9, a total pool size of 56.95 k
C7O2H10 isomers was obtained.

For the training of chemical shi machine learning models,
we selected C8OH12, C8OH10, C8OH14, C7O2H8 and C7O2H12

constitutional isomers, yielding a total of 143 k 13C and 214 k 1H
training points, respectively.

3. Results & discussion
3.1. Spectra matching accuracy with synthetic noise

To analyse the inuence of noise and number of candidates on
the elucidation success, we applied Gaussian noise to 13C and
1H shis of C7O2H10, C5N3OH7 and C8OH14 constitutional
isomers, respectively. Fig. 2a and b) depicts a sigmoidal shaped
trend of top-1 elucidation performances as a function of mean

absolute deviation (MAD) corresponding to

ffiffiffi
2
p

r
z 0:8 of the

standard deviation2 caused by applying the Gaussian noise.
Note that increasing the maximum candidate pool size NQM9

leads to an offset of the trend towards less permissible errors. A
possible explanation is the correlation of the density of chem-
ical space with increasing numbers of candidate spectra N.56 As
shi predictions need to become more accurate, limiting N
through prior knowledge of the chemical space could be
benecial. Similar ndings have been reported by Sridharan
et al.,41 noting that brute force enumerations of chemical space
lead to worse rankings than constrained graph generation. Note
that while the trends in 13C and 1H elucidation are similar, less
error is permissible when using 1H shis.

To further reduce the ambiguity, we include both 13C and 1H
shis into the matching problem as per eqn (2). Results suggest
50% and∼150%more permissible 13C and 1H errors when both
spectra are considered in the matching process (Fig. 2c)).
Similar to how chemists solve the elucidation problem, the
inclusion of more distinct properties increases the uniqueness
and can improve the elucidation success.

3.2. Extrapolating the search space

Due to the limited amount of constitutional isomers in databases
compared to the number of possible graphs faced during inverse
design (Fig. 1b)), assessing the chemical shi accuracy for
© 2024 The Author(s). Published by the Royal Society of Chemistry
successful elucidation is severely limited. As such, we extrapolate
elucidation performance curves to obtain estimates about
chemical shi accuracies in candidate pool sizes larger than
QM9. We t each elucidation performance curve (Fig. 2a and b)),
respectively, using a smoothly broken power law function:

f ðxÞ ¼
 
1þ

�
x

xb

�d
!a

(3)

With xb controlling the upper bend and offset, d changing the
curvature and a changing the tilt of the function (see ESI Fig. 2†),
respectively. The parameters of eqn (3) as a function of N can
again be tted using a power law function (see ESI Fig. 2†) and
extrapolated to the total number of graphs NSurge, respectively.

Results of the extrapolation (Fig. 2a and b) dashed) indicate
signicant differences in elucidation efficiency among stoichi-
ometries. For instance, C8OH14 queries are potentially easier to
elucidate than C5N3OH7 structures. Possible reasons are the
limited number of C8OH14 graphs compared to millions of
C5N3OH7 isomers. Moreover, the number of heteroatoms of the
C5N3OH7 stoichiometry might hamper the characterization
when only relying on 13C or 1H, respectively. Hence, to solve the
inverse structure elucidation problem using experimental data
of compounds larger than QM9, reducing ambiguities through
including both 13C and 1H shis as well as to reduce the
candidate space is critical for elucidation success.
3.3. Trends in chemical space

To analyse the elucidation efficiency throughout chemical space,
we applied the Gaussian noise and extrapolation procedure to the
20most common stoichiometries in QM9 (Fig. 1b)). Fig. 3a) shows
the MAD required for 95% elucidation success as a function of
NSurge. Results suggest that less error is permissible for stoichi-
ometries with large NSurge and fewer carbon atoms. As such, using
only 13C shis might not be sufficient to fully characterize the
compound. Again, similar to how chemists use multiple NMR
spectra to deduct chemical structures, additional information
such as 1H shis are benecial to extend the information content.

In Fig. 3b), the error permissiveness of spectra matching
using only 13C (see ESI Fig. 4† for 1H) versus combining both 13C
and 1H is being compared, revealing a linear trend between
both. Note that the C7NOH7 stoichiometry shows the smallest
benet from adding additional 1H information. Interestingly,
a hierarchy for C7NOHX stoichiometries of different degrees of
unsaturation is visible, indicating an inverse correlation
between number of hydrogens and 13Csingle MAD (Fig. 3b)
green). Similar hierarchies are also observed for other stoichi-
ometries such as C7O2HX and C8OHX (Fig. 3b) blue and orange).
On average, the combination of 13C and 1H for spectra matching
increases the error permissiveness of 13C and 1H by 85% and
261% (see ESI Fig. 4†), respectively.
3.4. Comparison to machine learned shi predictions

To test the elucidation performance using machine learning
predictions, we trained 13C and 1H KRR models at increasing
Digital Discovery, 2024, 3, 136–144 | 139
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Fig. 3 Trends in QM9 (ref. 1) chemical compound space to correctly
elucidate queries at 95% accuracy. Themean absolute deviation (MAD)ffiffiffi

2
p

r
z 0:8 of the standard deviation.2 (a) Extrapolated MAD at candidate

numbers NSurge of the 20 most common stoichiometries in QM9.1 (b)
MAD using only 13C spectra (13Csingle) against

13C and noise-free 1H
spectra combined (13Ccombined) at candidate numbers NQM9 from
QM9.1
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training set sizes (see ESI Fig. 5† for learning curves) and pre-
dicted chemical shis of 56 k C7O2H10 constitutional isomers.
Note that within this proof of concept application we rely on
xTB-GFN2 relaxed geometries as queries, which on average are
within 0.06 Å RMSD of C7O2H10 B3LYP level of theory struc-
tures.57 Results again show similar trends as observed with
Gaussian noise (Fig. 4a and b)), however, indicate more
permissive accuracy thresholds. For instance, KRR 13C predic-
tions at 2 ppmMAE can identify 64% of queries rather than only
17% suggested by the Gaussian noise experiment. The differ-
ence could be explained due the systematic, non uniform nature
of the QM9 (ref. 1) chemical space, inuencing the shape and
140 | Digital Discovery, 2024, 3, 136–144
extrapolation of elucidation performance curves in Fig. 2.
Moreover, Gaussian noise is applied to all shis at random
compared to possibly more systematic machine learning
predictions. Note that the trade-off between error and N is
consistent and that the exact parameters will depend on the
machine learning model and the nite sampling of constitu-
tional isomer space.

To model possible experimental noise on query spectra, we
apply Gaussian noise to query spectra and evaluate the elucida-
tion performance of the best performingmachine learningmodel
(see insets in Fig. 4a and b)). Results indicate a halving of eluci-
dation accuracy when the query spectrum contains up to 2 ppm
MAEQ in 13C and 0.15 ppmMAE in 1H error, respectively. Thus, in
the presence of experimental measurement noise even higher
prediction accuracies might be necessary. Combining both 13C
and 1H spectra for matching improves the elucidation perfor-
mance up to 90% (Fig. 4e)). Again, the combination of spectra for
elucidation highlights the effectiveness of reducing the ambiguity
of the matching problem by including additional properties.

Investigating potential strategies to reduce the constitutional
isomer search space, we constrained N based on functional
groups (see ESI Table 1†). Randomly selecting functional groups
present in each query, N can be reduced by 50% and 62% on
average (see Fig. 4d) inset for distributions), respectively.
Results in Fig. 4c and d) indicate an increase of the elucidation
accuracy by 5% in 13C and up to 10% for 1H, respectively, in
agreement with the elucidation performance in Fig. 4a and b).
Note that the knowledge of two functional groups only led to
marginal improvements. However, fragmentation could be
more benecial for larger compounds than present in QM9,1 as
reported by Yao et al.58 Using both 13C and 1H shis on the
reduced search space only lead to marginal improvements of
0.5% over the results of the full search space.
3.5. Balancing search space and accuracy

We use performance curves to analyse the relationship between
the elucidation performance of C7O2H10 queries, machine
learning prediction errors and candidate pool sizes N. Similar to
learning curves, showing the systematic decay of out-of-sample
machine learning prediction errors as a function of training
data, elucidation performance curves show for a specic eluci-
dation threshold, e.g. 90%, the machine learning prediction
error as a function of pool size. Note that while learning curves
of chemical shi predictions only show the predictive accuracy,
e.g. in terms of MAE, the addition of elucidation performance
allow a multifaceted evaluation of new spectra estimation
algorithms, considering data efficiency as well as pool size. The
systematic decay of performance curves (Fig. 5 red and blue)
again demonstrates that constraining N with prior knowledge
allows for less accurate shi predictions to be applicable.
Extrapolating the 13Csingle performance curves indicates
a machine learning MAE of 0.93 ppm to correctly rank 90% of
queries out of 56 k possible candidates (Fig. 5 red), 0.02 ppm
lower than suggested by Gaussian noise. To reach an MAE of
0.93 ppm, four million training instances are required (Fig. 5
orange). Using both 13C and 1H shis requires two orders of
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Elucidation accuracy of C7O2H10 spectra using machine learning 13C and 1H shift predictions. Mean absolute error (MAE) refers to the
predictive accuracy of the machine learning models, respectively. (a) and (b) 13C and 1H spectra matching at increasing search pool sizes N. The
inset depicts the decay of the elucidation accuracy of the best performing machine learning model at increasing levels of Gaussian noise on
query spectra (MAEQ). (c) and (d) Spectra matching accuracy when restricting the search pool to contain only known functional groups. The inset
in (d) depicts the search pool sizeN restricted to compounds with similar functional groups as the query, respectively. (e) Spectra matching using
1H and 13C shifts combined. (f) Accuracy required to reach 85% correct elucidation at increasing N when using both 1H and 13C shifts combined.
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magnitude less training data (Fig. 5 blue). As such, facing
expensive experimental measurements and ab initio calcula-
tions, more effective inverse structure elucidation could be
achieved by balancing machine learning data needs through
reduced search spaces and incorporation of additional
properties.
Fig. 5 Performance curves (red, blue) of the MAE permissible to
correctly identify 60, 70, 80, 90% of C7O2H10 query spectra at a given
pool size N using machine learning shifts predictions, respectively.
13Csingle (red) only uses 13C shifts for elucidation, whereas 13Ccombined

uses 13C and 1H spectra combined, assuming a 1H MAE of 0.15 ppm.
The learning curve (orange) indicates the systematic improvement of
QM9 (ref. 1) 13C chemical shift predictions as a function of training set
size Ntrain using KRR with the FCHL19 (ref. 47) representation.

© 2024 The Author(s). Published by the Royal Society of Chemistry
4. Conclusion

We have presented an analysis of the effectiveness of the NMR
spectra matching task encountered in the inverse structure
elucidation problem. By systematically controlling the predic-
tive accuracy of 13C and 1H chemical shis, we found consistent
trends throughout chemical compound space, suggesting that
higher errors become permissible as the number of possible
candidates decreases. Note that while we relied on 1D ab initio
NMR data, similar analysis could be performed using 1D or 2D
experimental spectra. Applications to the most common
constitutional isomers in QM9 highlight that chemical spaces
with many heteroatoms are harder to characterize when only
relying on a single type of chemical shi. Using both 13C and 1H
chemical shis increases the error permissiveness by 85% and
261% on average, respectively. Machine learning predictions for
56 k C7O2H10 compounds showed that using both 13C or 1H
shis increased elucidation success to 90% compared to only
64% and 36% when used alone, respectively. The usefulness of
the analysis is expressed via performance curves, showing that
training demands can be reduced by orders of magnitude
compared to relying on specic shis alone.

We believe that as the accuracy of machine learning models
to distinguish spectra is limited, constrained search spaces or
inclusion of more distinct properties are necessary to improve
candidate rankings. Rather than solely relying onmore accurate
models, future approaches could deal with estimating the
applicability of machine learning models to successfully
Digital Discovery, 2024, 3, 136–144 | 141
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elucidate unseen chemical spaces, as well as including explicit
knowledge of chemical reactions, functional groups or data
from mass spectrometry, infrared- or Raman spectroscopy,59–64

respectively.
Finally, explicitly accounting for atomic similarities and

chemical shi uncertainties via the DP5 probability might
further increase the condence in structure assignments.23
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