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Availability of material datasets through high performance computing has enabled the use of machine

learning to not only discover correlations and employ materials informatics to perform screening, but

also to take the first steps towards materials by design. Computational materials databases are well-

labelled and provide a fertile ground for predicting both ground-state and functional properties of

materials. However, a clear design approach that allows prediction of materials with the desired

functional performance does not yet exist. In this work, we train various machine learning models on

a dataset curated from a combination of Materials Project as well as computationally calculated

thermoelectric electronic power factor using a constant relaxation time Boltzmann transport equation

(BoltzTrap). We show that simple random forest-based machine learning models outperform more

complex neural network-based approaches on the moderately sized dataset and also allow for

interpretability. In addition, when trained on only cubic material systems, the best performing machine

learning model employs a perturbative scanning approach to find new candidates in Materials Project

that it has never seen before, and automatically converges upon half-Heusler alloys as promising

thermoelectric materials. We validate this prediction by performing density functional theory and

BoltzTrap calculations to reveal accurate matching. One of those predicted to be a good material,

NbFeSb, has been studied recently by the thermoelectric community; from this study, we propose four

new half-Heusler compounds as promising thermoelectric materials – TiGePt, ZrInAu, ZrSiPd and ZrSiPt.

Our approach is generalizable to extrapolate into previously unexplored material spaces and establishes

an automated pipeline for the development of high-throughput functional materials.
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Introduction

Discovering novel materials and novel properties of existing
materials is a complex process, and success can mostly be
credited to luck or unconventional thinking.1 A general
approach towards rational, automated and data-driven design
of new materials is desired.2,3 The development of Density
Functional Theory (DFT) was a big step towards the discovery of
high-throughput (HT) materials.4 However, despite their wide
usage, DFT calculations require signicant computational
resources, and rely on various assumptions by domain experts
to obtain successful results. Therefore, laborious work is
required before consistent mapping to experimental results.5

Nowadays, novel machine learning (ML) methods are being
considered as an alternative to DFT calculations and can ach-
ieve similarly accurate results in a fraction of computational
time and cost. Furthermore, they also help unravel previously
unknown correlations between a priori unrelated material
descriptors.6,7 Therefore, deployment of ML algorithms has
accelerated the discovery and development of novel materials.8

For example, some of them target the prediction of the stability
© 2024 The Author(s). Published by the Royal Society of Chemistry
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of crystal structures9,10 as well as crystal properties, e.g., melting
points of binary mixtures,11 vibrational entropies and free
energies of crystalline compounds,12 and band gaps of a specic
type of materials such as perovskites.13 There is also a body of
literature that focuses on the discovery of functional materials,
like metallic glasses,14 lead-free hybrid organic–inorganic
perovskites15 or new molecules for organic ow battery elec-
trolytes.16 Efforts in applying ML to thermoelectrics have also
been reported. Gorai et al. reported the very rst database
dedicated exclusively to thermoelectric materials, the TE Design
Lab.17 It contains calculated thermoelectric properties, obtained
combining ab initio calculations and modelled electron and
phonon transport, offering insights into the intrinsic material
properties underlying the thermoelectric gure of merit zT.
Following this, Katsura et al. developed Starrydata2, an open
web system, to accelerate a comprehensive digitization of data
of materials from as-reported plot images in published papers.18

This database was used by Borg et al. to quantify the perfor-
mance of machine learning models towards the discovery of
novel TE materials.19 Along the lines of StarryData2, Na and
Chang constructed a dataset containing 5205 chemical
compositions of the experimentally synthesized thermoelectric
materials and their experimental thermoelectric properties.20

All these approaches rely on manual or semi-manual extraction
from the literature. Sierepeklis and Cole used a combination of
web-scrapping and natural language processing to develop the
rst automatically generated database of thermoelectric mate-
rials and their properties from the existing literature, contain-
ing 22 805 data records, automatically generated from the
scientic literature, spanning 10 641 unique extracted chemical
names.21

In this work, we use suitable ML algorithms to directly
predict functional properties using material descriptors.
Specically, we use Random Forest (RF), eXtreme Gradient (XG)
Boost, Deep Neural Networks (DNNs), and Crystal Graph Con-
volutional Neural Networks (CGCNNs) to directly infer func-
tional thermoelectric properties of materials. The efficiency of
a thermoelectric material is determined by its gure of merit, zT
= S2sT/k, where S, s, T, and k are the Seebeck coefficient,
electrical conductivity, temperature, and thermal conductivity,
respectively.22,23 The thermal conductivity, in turn, can be
expressed as the additive contribution of the heat carried by
charge carriers (kel) and the heat carried by the vibrations of the
crystal structure, or lattice thermal conductivity (klat). Tradi-
tionally, full Boltzmann transport equations (BTEs)24 can be
used to calculate the Seebeck coefficient and electrical
conductivity. However, the fully accurate solution of BTEs,
which requires detailed knowledge of scattering mechanisms
and their strengths, is computationally expensive. The main
computational difficulty resides in the electron–phonon inter-
action simulation, and numerical integration over the whole
Brillouin zone. Therefore, such direct computation cannot serve
as an efficient discovery tool. Alternatively, a constant relaxation
time approximation (CRTA), taking DFT-computed band-
structure as the input as implemented in BoltzTraP,25 is used
for linearized BTE calculations to calculate S2s/s0 (henceforth
called the power factor) where s0 is the relaxation time.
© 2024 The Author(s). Published by the Royal Society of Chemistry
Although the scattering rates of charges are missing (and thus
accuracy in power factor prediction is lowered), this can serve as
a screening parameter that links the material's electronic
structure to its thermoelectric performance26 and therefore is
immensely useful. Leveraging upon detailed calculations per-
formed by Ricci et al. and their open-source dataset,26 with
additional descriptors, obtained from Materials Project Data-
base,27 we adopt these computed power factors as outputs for
training our ML algorithms and generate supervised models to
enable automated, accelerated and high-throughput design
without DFT calculations as shown in ESI 1.†

The models for materials by design are built upon the
supervised models. First, we use CGCNN as a pre-trained model
to extract the ground state features from crystal information.
The extracted features along with other descriptor inputs are
then fed into a random forest model to systematically search for
high-performance thermoelectric materials in a candidate pool
that the model has not seen before. The integrative method is
based on the following rationale: random forest models over-
come the drawback of overtting and have better interpret-
ability, which is critical for practical materials design, while the
CNN is well known for capturing spatial features. Therefore, the
as-designed framework not only obtains robust predictive
capability, but also exhaustively exploits the structural infor-
mation of materials via CGCNN. We test this method on cubic
compounds, as many high-performance thermoelectric mate-
rials exhibit cubic crystal symmetry. The combination of
domain-knowledge andML algorithms resulted in the discovery
of new half-Heusler materials, that have not been studied before
as promising thermoelectric candidates. We then validate our
prediction of high electronic power factor with DFT and Boltz-
TraP calculations. The results reveal that the predictive accuracy
of our algorithmic framework towards such materials by design
is high and could provide a general framework for the devel-
opment of thermoelectric and other functional materials.

Experimental
Data retrieval and pre-processing

In this project, the dataset was obtained from the work of Ricci
et al.26 This dataset was developed by retrieving the electronic
band structures from Materials Project and utilizing them to
compute the thermoelectric properties of materials using a BTE
package called BoltzTrap.25 This dataset contains more than 23
000 entries of multi-level data for 8059materials and is stored in
separate json les. Particularly, there would be multiple entries
for each material, each with a different temperature, doping
level and carrier type. These 23 000 json les were attened and
compiled into a single le for ease of use for ML application.
The attened dataset was augmented with elemental properties
data, retrieved from the Materials Project Database (MPD)27

using the Matminer Python package.28 In short, CGCNN has 15
input features while DNN, XG Boost and RF models have a total
of 26 input features. Table 1 shows the input parameters used in
the different machine learning models.

Values of S and s in the dataset were obtained in the tensor
format, separately for X, Y and Z directions of each inorganic
Digital Discovery, 2024, 3, 210–220 | 211
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Table 1 Input parameters for machine learning models used in this study

Feature type Feature Models

Index All models
Atomic descriptors Range of atomic weight

Mean atomic weight
Standard deviation of atomic weight
Range of covalent radius
Mean covalent radius
Standard deviation of covalent radius
Range of electronegativity
Mean electronegativity
Standard deviation of electronegativity
Number of elements
Molecular weight

Discriminative physical inputs n/p type (one-hot encoded)
Temperature
Doping

Crystallographic information le (cif) Crystal structure CGCNN
Number of sites in the unit cell (nsites) DNN, XGB & RF

DFT dependent descriptors s fraction
d fraction
p fraction
Formation energy per atom
Energy above hull
Final energy per atom
Volume
Density
Band gap
Fermi energy
Direct/indirect (one-hot encoded)

Output Power factor All models
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crystal. These values were averaged using the following
formulae:

Seff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SxxSyySzz

3
p

; s ¼ sxx þ syy þ szz

3
(1)

The following lters were applied to the data based on
domain expertise before training the machine learning models.

(1) The band gap was set to be greater than 0.16 eV as this
should cover most semiconducting thermoelectric materials
even for high temperature performance. This criterion is based
on the Goldsmid–Sharp criteria, which relates the maximum
Seebeck coefficient that can be attained (along the temperature
at which it is attained) by a material with its band gap: Smax ∼
Eg/2kBT.29,30 This range includes a correction factor of 1.6,
considering the errors from DFT calculations.31 It is to be noted
that such a linear transformation does not affect the prediction
accuracy of the supervised models.

(2) The energy above the convex hull was restricted to less
than 0.05 eV per atom, so that only stable compounds were
considered.27 However, other authors have argued that a more
accurate cut-off for the energy above the convex hull is 0.08 eV
per atom.32 This could be one of the reasons for the low number
of discovered compounds.

(3) Compounds with no data for Fermi energy (as estimated
from DFT in Materials Project) were excluded.
212 | Digital Discovery, 2024, 3, 210–220
(4) Data points with 0 value for the power factor were
excluded.

(5) Compounds with a non-zero fraction of f-orbital contri-
bution were excluded, as DFT calculations for f-orbitals are
known to be challenging to obtain, as well as computationally
time-consuming.33

(6) Data points with the following temperature and doping
conditions were excluded:

(a) Doping level # 1017 cm−3 for all temperature levels, as
traditional thermoelectric materials (for instance PbTe and
Bi2Te3) are typically degenerate semiconductors with doping
levels ∼ 1019–21 cm−3.

(b) Doping level = 1018 cm−3 and temperatures greater than
or equal to 1000 K, because of sparsity of data and our interest
in lower to intermediate operating temperatures.

(7) Data points with log10(power factor) < 21 were excluded,
as the skew in the dataset would render the training data
inaccurate (refer to ESI 8†).

Finally, Box–Cox transformation was employed to normalize
the distribution of the input and output features.34 Box–Cox
transformation was especially necessary for neural network
models as their predictions depend on the distribution of the
input feature values unlike tree-based ensemble machine
learning methods. Thus, an initial dataset was reduced
employing these lters to 8059 unique materials.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Machine learning

The Crystal Graph Convolutional Neural Network (CGCNN)
architecture was adapted in this project to predict power factor
directly from a material's crystal structure together with some
additional atomic descriptors.35 The original CGCNNmodel was
demonstrated to be able to bypass DFT calculations and predict
DFT-derived properties such as Fermi energy and band gap
directly from the crystal structure of a material. In this work,
this CGCNN model has been extended to predict the power
factor of a thermoelectric material aiming to circumvent BTE
calculations too. The second model trained in this study is
a deep neural network (DNN) which has a standard neural
network architecture. DNN requires DFT-dependent parameters
unlike CGCNN. The other two models developed are random
forest and XG boost which take in the same inputs as DNN. By
comparing the performance of tree-based ensemble models
(i.e., RF and XG boost) with DNN, we investigated if the archi-
tecture of machine learning algorithms plays a role in their
prediction accuracy.
Supervised model training results

The total number of points obtained aer applying the lters
mentioned in the data pre-processing section, was 529 314. Of
these 529 314 points, 476 382 points (90% of full dataset) were
used for training the models while 52 932 points (10% of full
dataset) were used for testing the accuracy of the trained
models. The best hyperparameters for each machine learning
model were determined aer searching through the parameter
space of possible values on the training data (ESI 6†). Fig. 1
summarises the performance of each model on the test set
when trained with these hyperparameters.

The graphs shown in Fig. 1 were plotted for log10(power
factor) values instead of power factor values as this transformed
scale allows for better visualization of the models' performance.
However, the errors shown in the plots were still computed
using actual power factor values, as per eqn (2).

Mean absolute percentage errorðMAPEÞ

¼ 1

n

Xn

i¼1

�����
power factortarget � power factorpredicted

power factortarget

������ 100% (2)

As shown in Fig. 1, random forest performs best on this
dataset, followed by XG boost, DNN and nally CGCNN. Based
on these results, we can conclude that:

(1) The thermoelectric property of a material cannot be
predicted without some rst-principles calculations – at least
some ground state properties (e.g., Fermi energy), but some
rst-principles calculations have been replaced by machine
learning models with relatively good accuracy (CGCNN for
example). In contrast, the other three models, which had inputs
comprising DFT-dependent variables, gave signicantly better
results.

(2) The performance of tree-based ensemble methods (i.e.,
RF and XG boost) was signicantly better than that of neural
network models (i.e., DNN) even though the inputs to RF, XG
© 2024 The Author(s). Published by the Royal Society of Chemistry
boost, and DNN were the same. A similar result was observed
when a database of inorganic materials was trained for only the
Seebeck coefficient of materials, which depends on the doping
level and conductivity and not on the power factor.36 The
difference in the performance of these models might be related
to their algorithmic intricacies. For instance, the distribution of
the input features does not matter for RF and XG boost as these
models learn by separating data based on the reduction in
variance of the output value at each split of the decision trees.
Moreover, RF and XGboost are composed by a group of esti-
mators, which are also called “trees”. Each tree takes in
a portion of the whole dataset randomly, and the decision of the
nal prediction is by averaging the result of all the sub-trees,
which endows them with the advantage of ensemble learning
enabling lower variance and bias. In contrast, the actual
distribution of the input variables does matter for neural
network models: in particular, the under sampled classes could
not be effectively trained. This was also the primary reason for
applying Box–Cox transformations on the input data before
passing to neural network models unlike tree-based ensemble
models. More importantly, the tree-based ensemble methods
are less computationally expensive and can effectively handle
missing input values in model training and testing, with good
interpretability.

(3) Among the two tree-based ensemble methods, RF is the
clear winner having a relative absolute percentage error of
15.62%. This difference in performance might also be related to
the way these models learn from the training data. XG boost
focuses on training weak learners (i.e., decision trees with high
bias and low variance) through boosting while random forest
focuses on reducing the variance of fully grown decision trees
through bootstrap aggregation. The depth of a decision tree in
XG boost is 10-fold smaller than that in RF (ESI 6†). This means
that the number of opportunities available for the XG boost
model to make decisions is signicantly limited. Hence, this
might have prevented the decision trees in the XG boost model
from learning the ner details of the underlying physics
involved thus accounting for their poorer performance.

Then, random forest being the most accurate model, was
used to determine the most important features in the input for
predicting the power factor. Total gain was used as the metric
for quantifying the importance of the features in the RF model.
Aer obtaining the feature importance ranking from the
random forest model, features were added in descending order
of importance and the model's accuracy was computed
progressively as seen in Fig. 2A. This means that doping, being
the most important feature, was initially used alone to train
a random forest model for the full dataset and its accuracy was
computed (denoted by the rst point of the graph). This result is
consistent with the traditional picture of thermoelectric design:
one of the rst requirements of a thermoelectric material is the
ability to position the Fermi level at the optimal point (usually
through doping) crucial to achieve a maximum power factor.37

Then, features were progressively added until the model accu-
racy became almost the same as when all features were used to
predict the power factor. As shown in Fig. 2A, by the addition of
the 10th feature, MAPE dropped to 17.7% which is
Digital Discovery, 2024, 3, 210–220 | 213
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Fig. 1 Plots of prediction against actual log10(PF/s) [W m−1 K−2 s−1] values for different machine learning models. (A) CGCNN model. (B) DNN
model. (C) XGB model. (D) RF model. The RF model shows the highest accuracy of 15.62% MAPE.
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approximately the same as that of the RF model trained with all
features.

In this way, it can be shown that the 10 most important
features are alone sufficient to predict the power factor of
a thermoelectric material. Fig. 2A suggests that volume, elec-
tronegativity, and band gap are relatively less important
features for accurately predicting power factor, as the MAPE
value increased aer these features were added to the model.
This hypothesis was investigated by training a random forest
model which did not take in these 3 features as inputs. The
MAPE value of this new random forest model was 33%, which is
almost 2-fold higher than the original MAPE value (ESI 7†).
Hence, the interplay of all 10 features was responsible for the
model to predict accurately instead of being associated with
some of the features only, as the inter-relationship of these
features could be relevant. Fig. 2B shows the Spearman
214 | Digital Discovery, 2024, 3, 210–220
correlation matrix, which quanties the strength of the mono-
tonic correlation between the power factor and each of the 10
important features of random forest. The magnitude of the
correlation coefficients shown in the rst row of the matrix was
used to generate a feature importance ranking. This ranking
was then compared with the earlier ranking of features by total
gain importance (see Table 2).

Though Spearman correlation and total gain importance use
different methods to rank the importance of the variables, Table
2 shows that the ranking is generally in agreement with each
other. This serves as concrete evidence that the ranking of the
10 features given by random forest is reliable, with doping and
temperature being the most important features. The results are
in good agreement with conventional understanding of ther-
moelectric design and follows directly from the physical model
provided by the Boltzmann transport equations, as the
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 (A) Plot of variation of MAPE with progressive addition of
features to a random forest model. (B) Correlation matrix denoting the
strength of the 10 most important features with the target variable
(power factor). These two plots share a common consensus over the
order of importance of the 10 variables.
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temperature and doping levels are known to strongly affect the
non-equilibrium transport of charges, responsible for the
magnitude of the electrical conductivity and Seebeck coefficient
and therefore on the power factor. Number of sites and volume
indirectly represent the crystal structure, mostly by referring to
the size of the unit cell. On the other hand, mean atomic weight,
density and mean electronegativity represent the composition
of the material. Composition and structure, through the
bonding network, determine the material's band structure, and
therefore heavily inuence the electrical properties. Fermi
energy and bandgap are also indirect representatives of the
band structure. Generally, a high power factor is expected for
Table 2 Feature importance rankings for the random forest model co
determine them)

Ranking
Random forest
(total gain importance)

Spear
(corr

1 Doping Dopi
2 Temperature Temp
3 nsites nsites
4 Volume Volum
5 Mean electronegativity n/p t
6 Bandgap Mean
7 n/p type Dens
8 Fermi energy Band
9 Mean atomic weight —
10 Density —

© 2024 The Author(s). Published by the Royal Society of Chemistry
systems with high band degeneracy (Nv) and low inertial effec-
tive mass (mI).38–40 The results also seem to indicate that a larger
number of sites per unit cell is detrimental for a high power
factor. Whilst generally high symmetry crystal structures tend to
have a larger valley degeneracy, and this may be associated with
a low number of sites per unit cell, this should be taken care-
fully, as there are several examples where lower-symmetry
structures have higher band degeneracies, for instance, in
rhombohedral GeTe.41 This leads to the negative correlation
between the power factor, and nsites and V. Increased electro-
negativity difference between elements strongly increases the
band mass, due to their impact on bonding,42 so a negative
correlation with PF is expected. This is explained considering
that an increased electronegativity difference increases the
polarity of the bonds, which effectively increases the ionic
character of the bonding. Typically, ionic compounds have high
effective masses and low mobilities. This will reduce the elec-
trical conductivity and therefore decrease the power factor. A
low inertial effective mass may come from a small band gap,
which benets the thermoelectric performance, as previously
reported in other studies.40 Therefore, band gap has a negative
impact on power factor. However, when the band gap is smaller
than a factor of the thermal energy at which the material is
operating,3 the bipolar effect is observed. This effect, in which
minority charge carriers (holes in n-type materials and vice
versa) contribute to the electrical transport is known to be
detrimental to the overall power factor. Therefore, the depen-
dence between band gap and power factor is rather complex,
which explains the relatively weak correlation.

Feature engineering design

In order to carry out materials by design, it is essential that the
model predicts the power factor only based on input features
that can be directly obtained from the properties of the atoms in
the crystal structure of the material. As seen from Table 2,
features such as band gap and Fermi energy are DFT-dependent
variables. Hence, material-by-design cannot be performed for
a random forest model trained on a full dataset as we still
cannot circumvent important DFT-obtained variables.

In view of this, a new random forest model was trained for
data comprising of cubic materials only with all features as
shown in ESI 10.† For this model, aer carrying out total gain
mpared to the correlation coefficients (including the metrics used to

man correlation
elation coefficient)

Magnitude of correlation
coefficient

ng 0.6
erature 0.3

0.23
e & mean electronegativity 0.19

ype & Fermi energy 0.17
atomic weight 0.16

ity 0.15
gap 0.092

—
—
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feature importance analysis, 6 features namely doping,
temperature, nsites, n/p type, Fermi energy and mean electro-
negativity were sufficient to predict the power factor of a cubic
material as seen in Fig. 3B. The trained random forest model
with the 6 important features is shown in Fig. 3A.
Fig. 3 (A) Plot of prediction against actual log10(power factor/s [Wm−1

K−2 s−1]) values for a random forest model trained on cubic structure
materials with the 6 important features only. (B) Variation of error with
feature addition to the random forest model. (C) SHAP feature
importance (descending order of importance) for validating total gain
feature importance.

216 | Digital Discovery, 2024, 3, 210–220
Shapley Additive explanations (SHAP) feature importance
was also carried out to validate the feature importance ranking
obtained from total gain importance (Fig. 3C).43 The general
order of ranking follows total gain importance except that the
rankings of nsites & temperature and n/p type & Fermi energy are
swapped. However, we note that total gain importance is more
reliable than SHAP importance as it is based on how the tree is
constructed.

SHAP feature importance is also useful in obtaining the
correlations between the input features and the target variable
like Spearman correlation. A high level of doping, higher
temperatures and large Fermi energy are seen to have a positive
impact on the power factor, while n-type is seen to be preferable.
On the other hand, a large electronegativity and nsites negatively
impact the power factor. A comparison of correlations between
SHAP and Spearman correlation was carried out as shown in
Table 3. As seen in Table 3, the correlations between the 6 input
features and power factor match exactly between SHAP and
Spearman correlation.

In order to estimate the Fermi energy from the crystal
structure of the material, the pre-trained CGCNN model was
utilized (ESI 9†).35,36 Combining these two models, a general
materials design method was developed in order to identify new
cubic materials with good thermoelectric properties that are not
part of the training set (methodology described in Fig. 4).

This procedure was carried out on different user-dened
combinations of ndoping, T and n/p type to identify materials
which exhibit good thermoelectric properties over a wide range
of conditions. Particularly, high doping levels (1018, 1019 and
1020 cm−3) were used to lter suchmaterials, since generally the
optimal carrier concentration falls in this range, and we only
considered low and intermediate temperatures (300 K and 500
K) for validation purposes, though our method is generally
applicable for higher temperatures too. We did not consider
even higher doping (1021 cm−3) as it is possible that the elec-
tronic thermal conductivity will be higher, increases the total
thermal conductivity and hence decreasing the gure of merit
zT.

The approach shown in Fig. 4 was applied on 12 unique
combinations of physical conditions as seen in Fig. 5. Then,
cubic materials which appeared in 10 or more categories were
identied as potentially good thermoelectric materials (ESI
12†). Following this approach, 809 compounds were identied
as potentially good thermoelectric materials in a list of 6917
cubic structure compounds (ESI 12†). Of these, 4 materials were
chosen at random to validate the performance of the ltering
algorithm as shown in Fig. 5. As mentioned in ESI 12,† the
target power factor values were benchmarked using NbFeSb as
it has already been reported in the literature to have a good
thermoelectric power factor.44 By comparing the power factor
values of the 4 new materials with NbFeSb, it can be shown that
they are also equally good thermoelectric materials. These
power factor values are comparable to conventional cubic
materials. The classic material for TE applications at the
intermediate temperature range is cubic lead telluride (PbTe).
PbTe is a direct band gap semiconductor, whose valence band
maximum is located at the L-point. This band exhibits
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 3 Comparison between feature importance rankings of SHAP
analysis and Spearman correlation coefficient

SHAP importance
(type of correlation)

Spearman correlation
(coefficient)

Doping (positive) Doping (0.62)
nsites (negative) nsites (−0.25)
Temperature (positive) Temperature (0.32)
Fermi energy (positive) Fermi energy (0.14)
n/p type (positive) n/p type (0.11)
Mean electronegativity (negative) Mean electronegativity (−0.19)
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signicant valley degeneracy (Nv = 4). This band has a nearby
(∼100 meV of separation) secondary valence band along the S

line, with its own Nv= 12. The energy separation between bands
changes with temperature, and they are known to converge
around 600 K. This phenomenon is referred to as band
convergence and its effect is a net enhancement in the power
factor, and it is responsible for the large power factor values of
PbTe. At 600 K, PbTe (n = 5 × 1019 cm−3) has values of power
factor between 10 and 13 mW cm−1 K−2 but it can be pushed
further with increasing carrier concentration,45,46 reaching
a maximum reported power factor of ∼34 mW cm−1 K−2 for n ∼
1.7 × 1020 cm−3.47 More recently, an analogous telluride to
PbTe, germanium telluride (GeTe) has gained momentum for
Fig. 4 Graphical illustration of methodology to combine random forest

© 2024 The Author(s). Published by the Royal Society of Chemistry
intermediate and high temperature TE applications. Like PbTe,
cubic GeTe also shows band convergence but at much lower
energy than PbTe (∼64 meV), meaning that the L and S valence
bands are more likely to converge, explaining the large values of
power factor observed in GeTe, ranging from 30 to ∼50
mW cm−1 K−2.48–50 On the other hand, half-Heusler materials
exhibit very large power factor values, normally above 30
mW cm−1 K−2, as it is the case for n-type doped ZrNiPb.51 This
value can be much higher, as optimal power factor values for
both n- and p-type TiNiSn, TaCoSn, YNiSb, NbFeSb, ScNiBi all
exceed 50 mW cm−1 K−2.44 Specically, Zhou et al. achieved
a room temperature power factor value of 120 mW cm−1 K−2 for
p-type NbFeSb, which decreased to ∼80 mW cm−1 K−2 at 600 K.
Other top performing predicted materials with diverse chem-
istries were also studied, and the results can be found in ESI
Section 12.†

A non-linear dimensionality reduction technique called t-
distributed Stochastic Neighbour Embedding (t-SNE)52 was
employed to investigate the similarity in the properties of the
ve materials in comparison with the 8059 materials (all crystal
structures) from the training set (Fig. 5F). From Fig. 5F, it is
observed that the 5 new compounds reside near each other and
within the boundaries dened by the training set, which shows
that these materials have a strong commonality with one
another. The newly identied compounds are from a new
dataset, taken from the MP and compared against the training
model and CGCNN to identify new materials in Materials Project.
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Fig. 5 Plots of predicted vs. actual (computed with DFT + BoltzTrap) power factor values [mW m−1 K−2] of the 12 chosen conditions of the 5
predicted thermoelectric materials and tSNE plot for comparing properties of the newmaterials with thematerials in the training data. (A) TiGePt.
(B) NbFeSb. (C) ZrSiPd. (D) ZrSiPt. (E) ZrInAu. (F) t-SNE plot.
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and testing datasets of the supervised models. Therefore, the t-
SNE result shows that the input features of the newly found
materials have similar traits in the structural domain, as they
are half-Heusler compounds that are of cubic symmetry.

Many other half-Heusler cubic structure compounds such as
LiZnP, LiZnAs, VFeSb, TiCoSb, ZrNiSn and HfNiSn were also
identied even though these materials were never seen by our
machine learning algorithm.44,53–55

For validation, we performed DFT band structure calculation
followed by BTE computation to obtain CRTA power factor from
rst principles. DFT calculation was performed using
QUANTUM ESPRESSO56,57 with ultraso pseudopotentials.58

The charge density was obtained using 83 k-points and the band
structure was calculated on 483 k-points. The band structure
was then fed into BoltzTraP to compute the power factors for
different temperatures and doping levels. The theoretical
calculations validated that the ve predicted candidates dis-
played high power factor. Moreover, the predicted values from
machine learning algorithms closely matched the actual values
from DFT, the MAE was as low as 0.189 mWm−1 K−2 (ESI Table
9†), which conrms the overall generalization ability of our
algorithmic framework in the foreign dataset.

Driven by the results of this work, there are still certain areas
of interest worth noting for future work. Firstly, although the
218 | Digital Discovery, 2024, 3, 210–220
validation of our approach on cubic systems is sufficient proof
to demonstrate the viability of our design approach, the
materials-by-design algorithm can be enhanced to include all
materials since there already exist accurate pre-trained CGCNN
models for band gap, nal energy per atom and formation
energy per atom.35 Secondly, excellent electronic transport is
just half of the work in designing a good thermoelectric mate-
rial. Particularly in half-Heusler alloys, it is well-known that the
bottleneck limiting their widespread use is their high lattice
thermal conductivity. Guo et al. performed phonon calculations
to investigate the effect that vibrational entropy has on half-
Heusler alloys.59 They concluded that, at high temperature,
weakly bonded half-Heusler alloys such as Ti0.5Hf0.5NiGe are
stabilized through the introduction of vibrational entropy. This
weak bonding is associated with larger atom motion, which
translates to a large phonon density of states at low frequency,
indicating a low group velocity, effectively reducing the lattice
thermal conductivity. Accordingly, we suggest introducing the
following criteria in the design of half-Heusler materials:
nding an element that will cause an increase in the bond
length when doped, since vibrational entropy is rather sensitive
to changes in the local bonding environment. Hence, alloying
will serve a double purpose: optimizing the carrier concentra-
tion and introduction of vibrational entropy. Finding
© 2024 The Author(s). Published by the Royal Society of Chemistry
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a compromise between these two effects could be the key
advancing step in designing high performing half-Heusler
thermoelectric materials. Finally, the architecture of the
CGCNN model can be modied by changing the design of
convolution layers (e.g., number of layers, type of activation
functions or type of pooling) to predict the power factor from
the crystal structure directly. In our work, the ltering algorithm
used in the design approach was only able to identify existing
materials in the literature that were previously not known to
have good thermoelectric properties. However, an effective
inverse design algorithm should be able to construct a new
material (crystal structure) for a given set of attributes. This type
of inverse design would prove to be more valuable as it will be
able to suggest new combinations of materials that have not
been explored yet.
Conclusions

Four machine learningmodels were considered in our work. We
identify that random forest is the best supervised model for
predicting the power factor of a thermoelectric material with
a mean absolute percentage error (MAPE) as low as 15.62%. XG
boost was the second-best model for predicting power factor.
This can be generalized as tree-based ensemble machine
learning algorithms are superior to neural networks for pre-
dicting the power factor of a thermoelectric material, most
likely due to the nature of good labeling, strongly correlated
material features and advantages of ensemble learning. Since
random forest is the best supervised model for prediction of
power factor, an RF based on pre-training on crystal informa-
tion of cubic materials was developed. Pre-trained CGCNN was
used to extract the Fermi energy values from crystal spatial
information. The extracted Fermi energy along with other 5
features were adopted, which were conrmed as being sufficient
to accurately predict power factor for cubic materials and
adequate to determine the structure for practical design
purposes. Therefore, a scanning method using the integrated
framework aided by domain knowledge, was carried out to
probe potentially high-performance thermoelectric materials in
the parameter space. The results obtained ve predicted
candidates with high power factors and theoretical calculations
successfully validated that the predicted values closely matched
the actual values, with MAE as low as 0.189 mW m−1 K−2 (ESI
Table 9†). More importantly, the high interpretability of our
algorithmic framework should indeed be instructive for the
oriented design of thermoelectric materials. The as-designed
algorithmic framework can accelerate materials development
and is applicable to precisely ne tune the structure–property
relationship.
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