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models of domain wall dynamics
as a route for autonomous domain wall design via
reinforcement learning†

Benjamin R. Smith, ab Bharat Pant, c Yongtao Liu,b Yu-Chen Liu,d

Jan-Chi Yang, d Stephen Jesse,b Anahita Khojandi, e Sergei V. Kalinin,f Ye Caoc

and Rama K. Vasudevan *b

Understanding the dynamics of domain walls in ferroelectrics is critical both for fundamental reasons of

studying interfacial dynamics in disordered media, as well as practical engineering of metastable states

with enhanced properties. Piezo response force microscopy (PFM) enables both imaging and writing of

ferroelectric domain walls via a biased scanning probe. However, control over positioning of individual

domain wall segments to engineer domain wall structures over large areas reproducibly, and particularly,

quantification of associated mechanisms remains challenging. Here, we present a reinforcement learning

based experimental workflow deployed on an autonomous PFM platform that enables automated data

collection of domain walls interacting with pinning sites. The autonomous experiment is used to

construct a physics-informed surrogate model of local domain wall response in response to applied

electric fields by the PFM tip in prototypical (110) PbTiO3 thin films, and the results are further verified

using phase-field simulations. The surrogate enables generation of ‘phase diagrams’ of the domain wall,

conditional on initial structure. Subsequently, reinforcement learning is used to optimize tip-modification

trajectories for obtaining desired domain wall structures in simulated environments utilizing the

surrogate model for the environment dynamics. This workflow shows how automated data collection

and autonomous agents can be orchestrated towards realizing domain wall manipulations with precision

in scanning probe studies, and how such surrogates can aid in understanding domain wall interactions in

ferroelectrics.
Introduction

Domain walls in ferroelectric and ferroelastic materials have
garnered continuous attention due to their unique static and
dynamic properties.1,2 Being topological defects within the
order parameter eld,3 they possess different symmetry to the
bulk. Additionally, due to ferroelastic coupling they are typically
extremely thin and possess high elastic energy.4 Domain walls
can be charged,5 with possible changes in electronic band
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structure,6,7 and can even exhibit their own phase transitions
and 1-D defects.8 Such phenomena can lead to interesting
properties, including changes in AC and DC conductance
compared with the bulk,1,9–11 signicant contributions to static
permittivity,12 large extrinsic contributions to the piezo- and
dielectric coefficients of ferroelectric ceramics,13,14 and changes
to opto-mechanical15,16 (e.g., photostrictive17) behaviors. The
combination of the novel functionalities emerging at ferroic
domain walls, and the fact that it is possible to control polari-
zation orientation with the scanning probe of an atomic force
microscope,18,19 led to whole new areas including domain wall
engineering and domain wall nanoelectronics.20

The engineering of domain walls and topological defects
with the scanning probe microscope (SPM) tip has been
ongoing for more than two decades, with early work exploring
simple domain poling and observations of events such as the
pinning of written ferroelectric domain walls by interfaces,21,22

as well as the occurrence of faceting23 and aging effects.24 The
ability to pattern more in-plane polarization orientations was
opened up by several studies that showed how the tip-induced
electric eld's radial symmetry could be broken. This was per-
formed either by motion, as demonstrated for instance by Balke
© 2024 The Author(s). Published by the Royal Society of Chemistry
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et al.18 to write more complex topological patterns with the SPM
tip, or by pre-existing defects, e.g. by Vasudevan et al.,25 who
used pulsing at domain walls to produce novel topological
defect states. Device-level methods were also discovered,
including strategies to “inject” domain walls into ferroelectric
devices for memory applications which were explored by Whyte
et al.,19 while McGilly et al. utilized resistive Pt electrodes to
enable writing of domain walls into capacitor structures,26 with
the goal of forming circuitry. Many more studies through the
years have explored other methods of tip-based writing of
ferroelectric domain walls and more complex domain
congurations.27–31

Typically, when domain walls are written electrically with the
SPM tip, the tip follows a pre-determined trajectory that is either
implicit or explicitly dened, with voltage values that are set
once and not amenable to feedback during the writing process.
However, this procedure requires human interventions to
determine the correct locations to position the tip, and the right
values of the excitation pulse to facilitate the desired domain
structure modication. This comprises a sequential decision-
making task that is conditional on the pre-existing domain
structure, the existence of defects, and the current state of the
SPM tip, along with the type of domain wall itself, all of which
can change spatially, temporally, or both.

It should be noted that the response of domain walls to applied
electric potentials has been well studied not only experimentally,
but also through a variety of different theoretical means.
Numerous works have explored the problem in both pristine32 and
defect settings,4,33 for example analytically with Landau theory, or
through numerical solutions via phase-eld methods34 and even
reactive force elds,35 exploring everything from the impact of pre-
existing domain walls on switching,36 switching in the vicinity of
grain boundaries37 and individual defects,38 to ferroelastic wall
deformations39,40 and switching of hierarchical domain patterns.41

However, to date, the models used are generally compared semi-
quantitatively (at best) with experimental observations in PFM,
largely due to unknowns in tip condition, presence of defects, etc.
To facilitate appropriate predictions to guide decision-making for
autonomous domain wall engineering in ferroelectrics via SPM,
what is needed is a reliable model that can predict changes to
domain wall structure for arbitrary applications of applied volt-
ages. Such a model could then be used within existing machine
learning algorithms for sequential planning and decision-making
tasks, such as reinforcement learning (RL), to create agents that
can autonomously create andmeasure novel domain wall patterns
in ferroelectrics. In the process, the surrogate model generated
can be interrogated for yielding insights into the dynamics of
domain walls within the sample. Note that training of such
a model requires signicant data that can only realistically be
captured in automated settings, thus requiring the use of auto-
mated experiments on SPM platforms.42 Moreover, given that this
data will require capturing of domain wall perturbations aer
pulsing at domain walls, it requires us to use computer vision
methods to reliably locate domain walls in an automatedmanner,
i.e., the automated setup also requires some basic computer
vision or machine learning to capture the necessary dataset.
© 2024 The Author(s). Published by the Royal Society of Chemistry
Here, we present such a workow towards achieving auton-
omous domain wall manipulations, showcasing the ability to
automatically manipulate domain walls in a prototypical (110)
PbTiO3 thin lm, develop a physics-informed dynamics model
from the ensuing data, and then use this model to both better
understand wall displacements in the sample, as well as train
RL agents to develop simulated strategies for wall manipulation
to achieve desired outcomes. We verify our physics-informed
model with phase-eld simulations, and nd qualitative
agreement on wall displacement proles, and further note the
ability to construct functional ‘phase diagrams’ of wall structure
as a function of input actions.

Overall workflow

The experiments are performed with a commercial AFM system
(Oxford instruments, Cypher) with a Pt/Ir coated AFM tip
(BudgetSensors) on a 200 nm-thick PbTiO3 thin lm grown on
(110)-oriented SrTiO3 with a small buffer layer (electrode) of
La0.3Sr0.7MnO3 (LSMO). The sample is grounded through the
bottom LSMO electrode in the measurement. The lm was
chosen because although PbTiO3 is a standard prototypical
oxide ferroelectric, few studies exist of the ferroelastic domain
walls present in the (110) direction for thin lms. Thus, it
provides an interesting test case for wall manipulation, beyond
traditional 180° ferroelectric domain walls.

We rst performed structural and ferroelectric character-
ization of the thin lm. X-ray diffraction conrms the growth of
(110) PbTiO3 on SrTiO3 (see ESI S1†) with no secondary phases
detected. Next, to conrm the polarization orientations we
performed lateral band-excitation piezo response force
microscopy measurements (BE-PFM), by poling a region with
+8 V applied to the tip to pole one rectangle and −10 V to pole
another rectangle immediately below, creating two domains,
and then imaging aer rotation by 45° and 90° counterclock-
wise, with the results shown in Fig. 1(a–c) for all three rotation
angles. For this (110) lm, it is convenient to rst transform the
coordinate system as shown in the inset in Fig. 1(d), where the
principal directions of [001], [−110] and [−1−10] are (in the new
coordinate system) [100]T, [010]T and [001]T respectively with
the subscript denoting the transformed coordinates.

The initial lateral scan (Fig. 1(a)) appears to show lateral
contrast in both domains, but one of the domains (the one
poled by +8 V) displays signicant charging effects, precluding
easy identication. We note in particular that the cross-
coupling between the torsional and vertical cantilever modes
can make accurate polarization assignment challenging.43 On
rotation of the sample 45° counter-clockwise, the amplitudes of
both the domains appear equal – strongly implying the exis-
tence of two lateral polarization orientations, but with opposite
phases (directions). Therefore, we tentatively assign the polari-
zation orientations as per the red and black arrows in Fig. 1(b).
Rotating further in the counter-clockwise direction results in
the arrow denoted by the red domain to gain contrast, whereas
the arrow denoted by the black arrow reduces amplitude. Based
on this data we conclude the in-plane orientations are as shown
in Fig. 1(a)–(c) by the red and black arrows. We again suggest
Digital Discovery, 2024, 3, 456–466 | 457
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Fig. 1 Domain structure and switching of the (110) PbTiO3 thin film. Band-excitation lateral PFM scans of the film are shown in panels (a–c) with
the cantilever orientation with respect to the sample axes shown on the left. Polarization vectors are shown in the amplitude image. (d) Phase-
field simulation of the domain structure with the coordinate transformation shown above. (e) Band-excitation piezo force spectroscopy
measurement showing the amplitude (blue) and phase (red) of an off-field hysteresis loop captured on the film.
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the reason for the discrepancy in the high lateral amplitude in
Fig. 1(a) in the domain poled with positive bias to be related to
the charging and cross-coupling effects (and possibly also shear
effects).

Since the two polarization orientations are at 90° to each
other, the two variants that are responsible are (in the new
coordinate system) [−100]T and [011]T, noting that the second
variant has a vertical component. This is also consistent with
the phase-eld simulations (discussed later, shown in Fig. 1(d))
of the initial lm structure. The ferroelectricity is further
conrmed by a band-excitation switching spectroscopy
measurement, shown in Fig. 1(e), which shows that the lm is
capable of being switched locally with about −3 V of bias at
a single location. Therefore, in this lm, creating domain walls
involves the creation of these 90° ferroelastic domain walls. We
note additionally that needle domains are present in the
sample.

Our overall experimental plan is shown in Fig. 2. We begin by
imaging a virgin region and poling a domain wall by applying
alternately −8 V and +8 V to the AFM tip while scanning, on the
le and right side. The sample is then imaged again, either with
single frequency or band-excitation PFM (always at 1 V AC), and
then the position of the written domain wall in the image is
extracted from the PFM phase image. This generates the ‘initial’
state of the system which consists of a single written domain
wall through the middle of image. As explained above, this
458 | Digital Discovery, 2024, 3, 456–466
generates a ferroelastic domain wall. The tip is then moved to
a random location along this domain wall, and then a bias pulse
is applied. The bias parameters are chosen to be uniformly
distributed in the interval [−10, +10] V for the voltage ampli-
tude, and [50, 500] ms for the pulse width. The sample is then
imaged again with PFM. This sequence (image / action /

image) is repeated a set number of times until the wall is reset,
i.e., until the wall is rewritten in the original conguration. Note
that in our dataset, we collected one dataset where the reset
frequency was 10, i.e., every ten actions, the wall would be
rewritten, as well as a second dataset where there was no
resetting applied. These transitions are stored and then used
subsequently to train a dynamics model, which is used as the
basis for a RL environment that enables agents to learn how to
modify domain walls in the system towards desired
morphologies.

This experimental procedure is coded with python into
a Jupyter notebook, which communicates to an FPGA device
(Fig. 2(b)) that then executes the workow steps on the micro-
scope. Details of the FPGA device operation are provided else-
where,44 but essentially, this acts as an alternate controller for
the microscope enabling customized scan paths and excitations
to be applied and controlled via python scripts. An example of
the initial image, the bias pulse location and parameters, and
the result of the bias pulse, are shown in Fig. 2(c). It is observed
that applying voltages above a certain threshold produces wall
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 (a) Overall workflow combining experiments with computation. The images (fromwhich states are derived) are in green; actions are in red.
(b) A Jupyter notebook with code cells is used to communicate to a home-built program running on an FPGA, that an enables instrument control
with fast inputs and outputs for automated experiments. (c) Example vertical PFM amplitude (left) and phase (right) image collected with this
workflow, with the original image above and the bias details and location indicated by the white circle. After applying the bias pulse, the sample is
reimaged, and clearly shows a displaced domain wall at the location of pulsing (lower panel).
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displacements, as expected. The full dataset and a video
showing all captured transitions is provided in the ESI S2.† For
simplicity, we probe only the vertical PFM signal. Note also that
numerous ‘needle’ domains can be seen in the vicinity of the
written wall. Some of the data was captured using single
frequency PFM, whereas other data were captured with band-
excitation PFM measurements, utilizing 1 VAC excitations in
both cases. For the BE-PFMmeasurements, a frequency band of
333 kHz to 413 kHz was utilized.

Dynamics model

Our experiment provided us with 801 useable transitions, i.e.,
circumstances where the imaging quality was sufficient for use.
We developed a dynamics model to predict the displacement of
domain walls structures when bias pulses are applied via PFM.
The architecture of the dynamics (‘surrogate’) model is provided
in ESI S3.† As described above, PFM is used to generate training
data for the model that contains sequences of images, and their
corresponding actions. Each image is represented by a 128 ×

128 pixel array from which a 128-pixel length 1-D domain wall
vector St is extracted. Actions are given by three continuous
normalized values that correspond to bias location, voltage, and
pulse width in that order. Since the wall displacement mostly
occurs in the section of the wall around where the bias was
applied, the dynamics model only predicts displacements for
the wall in these local regions. Therefore, the rst action value
(the one that corresponds to the location of the bias pulse) is
© 2024 The Author(s). Published by the Royal Society of Chemistry
thus used to index the local region of the domain wall. Around
the location bias is applied, a local region of the wall is extracted
as a 14-pixel length vector, represented by St0. The inputs to the
surrogate model are the local region St0 as well as the voltage
and pulse width applied. Using these inputs, a neural network
with two branches works to predict the displacement for the
domain wall in the local region. The rst branch takes the
domain wall conguration, i.e., St0, while the second branch
takes the bias amplitude and pulse width as inputs, and both
contain only dense layers. These branches are subsequently
concatenated before being passed through two more dense
layers to obtain the output. The predicted displacements in
local region St+10 can then be added to the original entire wall
structure to generate St+1. Because images are also captured
immediately following when the bias is applied, our model's
predicted domain wall structures can be compared to the
actual, observed domain wall structures. This allows the
dynamics model to be trained through a supervised learning
method, with a traditional loss function such as mean squared
error (MSE).

Physics-based loss functions

Due to the limited data available, we found it was necessary to
introduce two additional regularizations into the loss function
to prevent over-tting and retain reasonable predictions in
accordance with known or postulated physics of the system. We
introduced two additional regularizers to the loss function for
Digital Discovery, 2024, 3, 456–466 | 459
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the dynamics model. The rst additional term we add to the loss
function is a term that emphasizes the agreement of the
prediction with known local physics. In this experiment, the
direction of displacement for the domain wall should align with
the sign of the voltage for the bias that was applied. When this is
not the case and the surrogate model's predictions do not agree
with this physical prior, such predictions should be penalized.
Therefore, for any pixels in St+10 whose direction of displace-
ment is opposite the sign (±) for the magnitude of the voltage
amplitude applied, a penalty coefficient is multiplied to the
difference between the observed and predicted wall locations.
The mean-squared-error of St+10 is then calculated using this
penalty to determine the total loss for St+10 which our dynamics
model then attempts to minimize in its displacement predic-
tions. This physics loss appears to be a reasonable constraint to
add to the model, as it agrees with not only expectations for this
prototypical ferroelectric system, but also simply that it
comports with the experimental data (e.g., see the videos in the
ESI†). But, it should also be noted that in e.g., the boracite
system, domain wall motion counter to the direction of the
applied electric eld has observed45 and in such circumstances
this regularization would be actively detrimental.

Additionally, we add an additional ‘global’ physics loss
which is based on the expectation that the magnitude of
displacement of the surrogate model should be monotonic for
both the bias voltage and pulse width values. It should be noted
that the increased displacement with increased voltage is
consistently observed in the raw data. However, the same was
not true for pulse width, potentially due to changes in tip
condition or other exogeneous variables. Moreover, we also note
that the application of the voltage could cause changes to the
underlying defect structure, such as by injecting or redis-
tributing oxygen vacancies or other mobile ions,46 or creating
other types of defects (for example, see work by Evans et al.47).
We do not rule out this possibility, but we can control the degree
to which we enforce this inductive bias by adjusting the
strength of this term in the nal loss function if desired.

To account for this global physics loss, we implement an
additional term into the loss function that acts to promote the
monotonicity of the dynamics model with respect to pulse
width. During training, for each transition, we sample across
the action space of pulse widths to make additional predictions.
We then compare the predicted area displaced for each pulse
width and add a penalty when the area does not either remain
constant or increase for longer pulse widths i.e., when mono-
tonicity is not observed. This loss function acts as a regulariza-
tion term to help ensure that known physical trends are
implemented into the dynamics (surrogate) model. In total, the
loss function can be written as

L ¼ 1

n

X
ðy� ŷÞ2 þ Clocal

�
1

n

X
ðy� ŷÞ2

�
þ Lglobal

Clocal ¼
(
1; signðVÞssignðŷÞ

0; otherwise
460 | Digital Discovery, 2024, 3, 456–466
Lglobal ¼

8><
>:

1

s
;

ðn
0

fkðyÞ\
ðn
0

fk�1ðyÞ

0; otherwise

where y is the actual domain wall position, ŷ is the predicted
position, and s is the training step number.

The surrogate model is trained with the Adam optimizer for
3000 epochs, and we use an 80/20 training/test split with
random splitting of the data. Results aer training of the
predictions of the model along with real wall displacements are
shown in ESI S4.† On the test data, the mean absolute error of
the predictions is ∼13.2 nm.
Phase-field simulation results

To better verify our dynamics model, we turned to phase eld
simulations of the PTO structure. We performed phase-eld
simulation to further understand the dependence of wall
displacement on the applied voltage pulse amplitude and pulse
width in (�11�0) oriented PTO thin lm. Details of the simulations
can be found in ESI S5.† As explained earlier we use the trans-
formed coordinate system from hereon for simplicity. All the
polarizations in the phase-eld result hereaer refer to the global
coordinate system. First, the equilibrium domain structure of PTO
thin lm is generated, which consists of two domain stripes of
[−100] and [011] separated by 90° domain walls (Fig. S6†). Next,
a positive AFM tip voltage is applied at a pre-existing at 90°
domain wall on the surface of PTO lm, while the bottom lm is
grounded. This causes a large bulge in the domain wall (Fig. 3(a)).
The local domain wall displacement (along y) is calculated from
the original at domain wall, which varies along the original at
wall (along x) (see Fig. S7b†). It is clearly seen that the maximum
displacement increases with increasing pulse voltage (0.65 V
∼3.26 V) at xed pulse width (1.15 ms) (see Fig. 3(a)), and with
increasing pulse width (0.45 ms∼2.32 ms) at xed pulse amplitude
(3.26 V) (see Fig. S7a†). Once the domain wall displacement rea-
ches steady state, we moved the tip location to the displaced wall
(i.e., the one created with 3.26 V/1.15 ms), and further applied both
positive and negative pulse voltages with different amplitudes at
xed pulse width (2.3 ms). Under positive tip voltage, the bulge
becomes wider and its width even exceeds the [−100] domain
stripes (Fig. 3(e)). The domain wall displacement increases with
increasing tip voltage and reaches 16 nm at 3.25 V (Fig. 3(d)).
Under negative tip voltage, the original bulge disappears, and
a new bulge appears on the other side of the domain stripe
(Fig. 3(g and h)), which displaces the domain wall in the opposite
direction. The variations of wall displacement with increasing
negative voltage (in absolute value) is much smaller than with
positive voltage (Fig. 3(g)), and the maximum displacement is
calculated to be around −2 nm under −3.25 V. This suggests that
depressing the wall (back to an original at conguration)
requires little bias, but pushing it further in the opposite direction
requires substantially more. We note here that the phase eld
simulations show many different domain variants as indicated by
the colors in the image. However, we do not see such complicated
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Phase field simulations of a straight and bulged domain wall, after bias application. (a) Predictions of the domain wall profile as a function
of voltage, when the tip is placed at an initially flat domain wall and an already bulgedwall. The resultant domain wall profiles are shown on the left
in (a, d, g) with the (x–y) plane images in (b, e, h) and the elastic energy density is shown on the right, as a function of time in (c, f, i). These
simulations are performed for the flat initial wall configuration (a–c), an already ‘bulged’wall, for positive voltage (d–f) and an already bulged wall
for negative bias (g–i). The ‘bulged’ situation is the same one created in (a) where 3.26 V/1.15 ms pulse was applied. Colors in the center panel
correspond to different domain variants, as shown in the legend.
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patterns in the real experiment with PFM.We suggest a reason for
this is the underlying simulations code is quite sensitive to local
changes in structure. Given that we do not observe evidence of this
in the PFM data, we suggest this is likely an artefact. Regardless,
these are ignored for the sake of the wall displacement calcula-
tions as we simply take the maximum extent of the switched
domain regardless of the variant predicted.
Dynamics model predictions

The predictions from our data-driven dynamics model are shown
in Fig. 4. In the le column in Fig. 4(a), we show how the wall
displaces from an initial at prole aer different bias voltages are
applied. Overall, we observe the maximum displacement
increasing as the magnitude of voltage and pulse width increases
as would be expected. Low voltages also seem to not cause
signicant displacement, i.e., there is some pinning. The ‘phase
diagram’ of the domain wall displacement as a function of the
voltages and pulse widths is shown in Fig. 4(b) and indicates (in
general) increasing domain wall displacements towards higher
voltages and pulse widths as would be expected.

However, this diagram clearly still shows some seemingly
unphysical behaviors, in particular the dark diagonal that cuts
to the top-right of the diagram. One of the reasons for this may
be that because we do not consider the surrounding domain
© 2024 The Author(s). Published by the Royal Society of Chemistry
structure, and there is limited data, then if a few lower voltage
pulses were applied at a domain wall situated next to a strong
pinning site (for instance, one of the needle domains), then
there would be limited to no motion. The model would t to
these instances and lead to this type of seemingly unphysical
result. We attempted to counter this via the addition of physics-
based loss regularization, but this is still a ‘so’ regularization
and thus these features could not be eliminated entirely.
Alternatively, as mentioned earlier, it is possible that certain
defects, e.g. oxygen vacancies, could be injected48 or moved by
the application of bias pulses. Such a circumstance would lead
to anomalous features on the calculated diagrams based on
threshold elds required to initiate such electrochemical
processes. We cannot entirely rule out this possibility.

At the same time, the dynamics model allows us to explore the
reaction of the domain wall in arbitrary congurations, i.e., to
investigate the state dependence. As a simple example, consider
the circumstance when the domain wall is already bulged: one
would expect a very different response to repeated pulsing in this
state, given that the wall conguration is likely already very
energetically unfavorable given it will prefer to be at and reduce
elastic energy. This circumstance is modeled in the phase-eld
simulations in Fig. 3(b) and indicates that when starting with
a positive displacement, increasing the positive voltage still does
increase the wall displacement in the positive direction, but
Digital Discovery, 2024, 3, 456–466 | 461
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Fig. 4 Surrogate model predictions. (a) Predictions of the domain wall profile as a function of voltage, when the tip is placed at an initially flat
domain wall, for a fixed pulse width of 350 ms. The maximum displacement map as a function of both variables, assuming a starting flat domain
wall profile, is shown in (b). The results for application of bias to an already ‘bulged’ domain wall are shown in (c). In this case the originally bulged
wall is created by applying 8 V/300ms, and the profile it creates is indicated by the dashed line in black. The corresponding displacementmap for
all voltages and pulse widths for the bulged wall is shown in (d). Note that this map assumes displacements start at 0 for the bulged wall, i.e. it
shows the difference from the bulged starting point, not the absolute deviations from the original flat configuration. The color scheme for (a, b)
are the same.
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critically, applying negative bias to this situation very quickly
returns the wall to a at position, even for very low voltages, as
seen in Fig. 3(b). That is, there is an asymmetry where returning to
a at prole is more favorable and occurs for lower voltages. This
is also seen in the data-driven dynamics model, in Fig. 4(c), and
particularly in the ‘phase diagram’ in Fig. 4(d) with brighter colors
on the le side of the diagram indicating more propensity to
quickly shi the wall to the negative direction, and darker colors
on the right indicating resistance to further bulging the wall in the
positive direction. These insights suggest that this method can be
effectively used to explore the dependence of domain wall
dynamics on the existing domain wall conguration, providing
another method for domain wall investigations via PFM and
automated experiments.
Wall energy and switching dynamics

Next, we explore the use of the surrogate model towards better
understanding the domain wall dynamics. We rst computed the
switched area as a function of bias amplitude and pulse width, for
both the at and bulged wall congurations, and plot them in
Fig. 5(a and b). Here it is again clear that for a at domain wall the
switched area does not show strong asymmetry, but for the bulged
wall, it is pronounced for the negative side, especially at higher
voltages, in agreement with the results form Fig. 4.
462 | Digital Discovery, 2024, 3, 456–466
To obtain more insight, we calculated the elastic energy
density of the domain wall in the different congurations and
nd there is considerably larger elastic energy at these ferroe-
lastic walls than a typical 180° domain wall in e.g., (001) PZT
thin lms. We nd the energy associated with the wall is about
8.2 × 106 J m−3. For comparison, previous calculations in (001)
PZT thin lms show that the energy density of a ferroelastic wall
in that system is about 2.0 × 106 J m−3, and for a ferroelectric
wall, it is about 1 × 106 J m−3.49

The elastic energy densities for the different congurations
as a function of bias and time are shown in Fig. 3(c, f and i).
When a bias is applied, the elastic energy density as a function
of time aer the bias is turned on varies in a complex manner
depending on the initial state of the wall (straight or bulged)
and whether positive or negative polarity is applied. Interest-
ingly, the elastic energy density reduces, for ‘bulging’ when
positive bias is applied as shown in Fig. 3(c). When a positive
bias is applied to an already bulged wall, the overall elastic
energy density does not change signicantly, when looking at
longer time frames (Fig. 3(f)). Conversely, applying negative
potential appears to change the elastic energy density more so.
However, the change in elastic energy density for small voltages
(e.g., −0.65 V), which is sufficient to erase the ‘bulge’, is negli-
geable. Given that the elastic energy density does not appear to
be signicantly greater in the bulged state, we believe that the
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Switching dynamics. (a) Switched areas as a function of voltage and pulse width, for an initial flat wall (a) and a positively bulged wall (b). (c)
Velocities of the domain wall calculated for different voltages and 200ms pulse width (blue) with linear fits in this log vs. 1/E plot shown as a blue
dashed line. The linear fit indicates a creep regime. Compared to data by [1] Tybell et al.49 on PZT films in a different geometry, the calculated
slope is significantly lower.
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asymmetry that we observe in the surrogate model can be best
explained via a straightforward surface energy argument: since
the domain walls are obviously more energetically costly than
the surrounding domains, eliminating the bulge will be favor-
able in most circumstances.

Next, we utilized the surrogate model to obtain estimates for
the domain wall velocity in this system, similar to the seminal
work by Tybell et al.50 We used the model to predict the domain
wall velocities for different voltages assuming a pulse width of
200 ms. For this we assume that the electric eld E = V/d, where
we assume a value of d= 20 nm. The real electric eld is likely to
be quite complex in such structures,51 but this estimate serves
as a reasonable upper bound. We thus computed the domain
wall velocities extracted under this approximation and plot
them against those of Tybell et al. for PZT domain growth.
Accordingly, we plot the log of the velocity against 1/E in
Fig. 5(c). The data ts well to a linear slope, i.e., evidence of
a creep regime, however it is very evident that the slope is
signicantly less than those of ref. 49. Note that the two
scenarios are not directly comparable, since in the case of the
PZT lms the experiments by Tybell et al. were performed with
nucleation and growth of domains directly underneath the tip,
whereas here we are dealing with extension or contraction of
pre-existing domain walls in a different orientation. The slope
of the velocity is ∼6.5 times lower than that of (001) PZT lms.
Although the direct comparison cannot be made, we can
conclude that (i) the wall appears to be governed by creep
dynamics, and (ii) the mobility is signicantly reduced
© 2024 The Author(s). Published by the Royal Society of Chemistry
compared to 180° walls in PZT, by two orders of magnitude.
Further investigations are required to better understand the
nature of the pinning potential in this sample.
Reinforcement learning environment

It is also possible to utilize the learned dynamics model as the
basis for a RL environment to train agents to manipulate
domain wall structures in silico. Notably, such a scenario would
be prohibitively expensive with traditional phase-eld methods,
given that RL typically requires thousands to millions of state
transitions for learning policies on meaningful tasks. Note also
that while the surrogate model only acts in a local region, we
integrate the model into an environment for the entire domain
wall. Using this environment, we can then apply RL to learn
policies for how to iteratively apply biases to alter the domain
wall towards a target structure. Here we do so in the simulated
environment that uses the surrogate model as the model for
dynamics.

To learn policies to control the domain wall structure, we
employed the deep deterministic policy gradient (DDPG) algo-
rithm proposed by Lillicrap et al.,52 and implemented within
d3rlpy.53 To show the potential use of RL, we simplify the
scenario by reducing the action space to just one action – the
pulse width is xed, and the agent is able to modify only the
voltage applied. The position where the pulse is applied is
varied linearly in a pre-selected manner, and the agent is able to
apply 10 pulses to achieve a domain wall structure close to a pre-
Digital Discovery, 2024, 3, 456–466 | 463
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determined target structure. The RL policy used is a simple
multi-layer perceptron with two layers each with 256 units. The
reward given to the agent is the negative of the mean absolute
error between the domain wall structure and the targeted
structure. As a function of training, the RL agent learns to
manipulate the wall structure closer to the target, as shown in
the learning curve in Fig. 6(a).

The environment begins with a relatively at wall and using
an RL policy, actions are taken to move the wall towards the
target wall structure, indicated by a red dashed line in Fig. 6(b).
An example of the resulting domain wall structure aer the
trained agent has performed actions are shown in Fig. 6(b) (blue
line). We observe the agent learns to take actions in regions
where the ideal wall is further away from the original wall (i.e.,
where rewards can increase most signicantly). It should again
be noted that these are only performed in the simulated envi-
ronment, not the real experiment. However, training this policy
only takes ∼1 hour on a laptop, and even with increasing the
action dimensions, it appears possible that it can in future be
deployed on operational AFMs.

Discussion

Our work has shown that RL could potentially be used to control
PFM to automate the alteration of ferroelectric domain walls.
Using PFM image data, we successfully trained a dynamics
model to predict the displacement of domain walls for different
pulses. Then, with a dynamics model, we were able to train RL
agents to learn policies to select action that move the domain
wall towards a particular structure. The major advantage of this
approach over a traditional human-based workow is the
potential for automatically manipulating structures in a reliable
and reproducible manner. Although most SPMs can be pro-
grammed to perform tip-based lithography, this requires the
bias values to apply to be known ahead of time, and no error
correction is possible. In contrast, RL approaches have recently
been shown in STM to be useful in precise atomic scale posi-
tioning, by Chen et al.54 The RL agent can be continually
retrained based on new data and bemore adaptable to changing
Fig. 6 Reinforcement learning policy in silico. (a) RL agent returns from th
the agent's learning saturates. (b) Trial run of trained agent, with the targ
structure created by biasing an initially flat domain wall plotted in blue. T

464 | Digital Discovery, 2024, 3, 456–466
conditions. Perhaps more interestingly, RL agents can be
coupled with intrinsic curiosity rewards to enable manipulation
and discovery of new types of domain states that are not envi-
sioned by the human operator.

There still exist challenges to fully integrate RL automation
for domain wall alteration using PFM. Currently, the dynamics
model only predicts the 1-D structure of the domain wall. While
we can encode information for the areas surrounding the
domain wall from PFM images when making predictions, the
model itself would have to predict the entire 2-D image for more
accurate policies, given the dependence of the actions on the
local domain environment. This type of prediction is not
feasible due to the limited data currently available. There is
a substantial impact of the surrounding domain structure on
the underlying dynamics at that position. Given this is
a heterogeneous sample, there are many possible domain
congurations in the vicinity of a domain wall, and the addi-
tional complicating factor of the wall structure itself (for
example, bulged or not) will further impact how it responds to
electric elds (for instance, see Aravind et al.32). This would
require, at minimum, tens of thousands of transitions to be
acquired to adequately sample this congurational space,
which can only realistically be done through high-throughput
scanning methods. This may be possible with methods such
as fast scanning via compressive sensing approaches.55

Interestingly, our data was captured on two different
instruments (albeit of the same make and model) with different
tips on different days, but this did not seem to introduce a level
of distribution shi that severely impacted the learning process
of the dynamics model. Should this be a problem, one strategy
to counter it may be to learn a simple linear model that maps
the applied potentials in previous data to applied potentials in
the new data that minimizes the discrepancy between the
predictions. This is under the assumption that the major tip
change will be to affect the applied potential, but not the shape
of the domains themselves.

Moreover, ideally one would use the phase-eld simulations
directly as the physics regularizer, using methods such as
structured Gaussian processes, rather than incorporating
e environment as a function of training episode. After 40 000 episodes
et wall structure plotted as a red dashed line, and the agent's final wall
he mean absolute error is indicated.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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additional loss terms that are ad hoc dened andmay not always
be suitable depending on the circumstance. At the same time,
the dynamics model learned provides signicant insight into
the dynamics of domain walls in a state-dependent way that is
difficult to recover from more traditional PFM spectroscopic
methods, and as such can be convenient for investigating
‘domain wall phase diagrams’. Finally, this approach could be
used to optimize for specic properties of the material rather
than the specic structure of the domain wall itself, i.e., to solve
the inverse design problem of maximizing e.g., photo-
conductance of domain walls by trialing different wall cong-
urations that maximize the photoconductance reward given to
the agent, as opposed to rewarding the generation of a specic
structure per se.

Data availability

Python code for reproducing the results in the paper are
provided in the included notebooks. The PFM microscopy data
is included with the manuscript both as numpy les aer pro-
cessing as well as video les for visualization of the full image
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G. R. Castro, J. F. Fernández and J. E. Garćıa, Nat.
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