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Introduction

Molecular embedding

Using natural language processing (NLP)-inspired
molecular embedding approach to predict Hansen
solubility parametersy

Jiayun Pang,@* Alexander W. R. Pine and Abdulai Sulemana

Hansen solubility parameters (HSPs) have three components, dq4, 6, and dy,, accounting for dispersion forces,
polar forces, and hydrogen bonding of a molecule, which were designed to better understand how
molecular structure affects miscibility/solubility. HSP is widely used throughout the pipeline of
pharmaceutical research and yet has not been as well studied computationally as the aqueous solubility.
In the current study, we predicted HSPs using only the SMILES of molecules and utilise the molecular
embedding approach inspired by Natural Language Processing (NLP). Two pre-trained deep learning
models — Mol2Vec and ChemBERTa have been used to derive the embeddings. A dataset of ~1200
organic molecules with experimentally determined HSPs was used as the labelled dataset. Upon
finetuning, the ChemBERTa model ‘learned” relevant molecular features and shifted attention to
functional groups that give rise to the relevant HSPs. The finetuned ChemBERTa model outperforms
both the Mol2Vec model and the baseline Morgan fingerprint method albeit not to a significant extent.
Interestingly, the embedding models can predict d4 significantly better than 4, and ¢, and overall, the
accuracy of predicted HSPs is lower than the well-benchmarked ESOL aqueous solubility. Our study
indicates that the extent of transfer learning leveraged from the pre-trained models is related to the
labelled molecular properties. It also highlights how 6, and 6, may have large intrinsic errors in the way
they are defined and therefore introduces inherent limitations to their accurate prediction using machine
learning models. Our work reveals several interesting findings that will help explore the potential of
BERT-based models for molecular property prediction. It may also guide the possible refinement of the
Hansen solubility framework, which will generate a wide impact across the pharmaceutical industry and
research.

structures. Molecular text representation-based deep learning
models are emerging as an important research tool in the
ongoing data-driven revolution of chemical and biological

Deep learning techniques have revolutionised various fields in
recent years. One of the most successful areas is Natural
Language Processing (NLP) where deep learning models are
applied to understand huge volumes of raw text to extract
meaning and generate new content. The deep learning NLP
techniques are increasingly applied to other domains where the
domain data has a similarity with text. One example is SMILES
(Simplified Molecular Input Line Entry System), a form of line
notation to describe molecular structures using a string of
chemical elements and symbols. Through SMILES, it is possible
to adopt powerful NLP algorithms to process molecular struc-
tures to predict their properties and generate new molecular
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Word embedding in the field of NLP is an important tech-
nique in which the meaning of words and sentences can be
captured by dense real-valued vectors. A well-established
approach to obtain embeddings in NLP is pre-training (Fig. 1).
In this approach, such text embeddings are obtained via
learning from an extremely large set of unlabelled text
sequences, in a fully unsupervised manner, to capture the
semantic and syntactic meaning of words. Subsequently, when
these pre-trained text embeddings are used in different down-
stream tasks with or without fine-tuning on smaller sets of
labelled data. This concept of reusing a large general pre-
trained model for many specific tasks with task-specific data
annotations is known as transfer learning in machine learning
and NLP. Applied to a large dataset of SMILES (such as ZINC
and ChEMBL), the embedding approach could provide a new
type of molecular representations that captures the physico-
chemical properties of molecules.
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Fig.1 (A) lllustrate pretraining of the Word2Vec and BERT models and
how they are used for molecular property prediction. (B) Illustration of
how a molecule is converted to SMILES, tokenised into tokens
(substructures), then derived into real-valued vectors, i.e. embeddings
in NLP. The vectors can come from pre-training, chemical descriptors
or molecular fingerprints.

Molecular embedding approaches have been explored in the
past few years as a general concept to predict molecular
properties.®® There is some evidence that molecular embed-
dings could surpass molecular descriptors and fingerprints in
some tasks, but the improvement may not be significant and
still lacks clear interpretability. Hence a better understanding of
what the embedding models have learned of the molecular
properties will help to better train and finetune them. On the
other hand, earlier molecular embedding work usually required
extensive coding which makes adaptation difficult for non-
experts. In the past couple of years, the development of
Hugging Face (https://huggingface.co/), a machine learning and
data science platform has lowered the barrier for non-experts to
pre-train and finetune deep learning models (transformer
models to be more specific). In the present study, we explored
the use of molecular embedding approaches to predict Hansen
solubility parameters (HSPs) which bridge directly molecular
embedding with intrinsic molecular forces. In addition, we have
used pre-trained models deposited in Hugging Face for fine-
tuning so that our approaches can be adapted more easily.

Solubility and Hansen solubility parameters

Solubility can be defined as the maximum quantity of a chemical
that can be fully dissolved in a given volume of solution.’ It is
applied to numerous applications in the areas of environmental
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chemistry, chemical process design, and pharmaceutical sciences
and informs molecular design and optimisation in a wide range of
tasks such as drug design and the development of lithographic
materials in the semiconductor industry."*

Predicting solubility can be a challenging task since it depends
on various physicochemical factors. Some of the more important
factors to be considered are the interactions between solute and
solvent and the nature of intrinsic intermolecular forces of solute.
Because of the complexity associated with the term, several types of
parameters have been developed to account for different aspects of
the solvating ability/miscibility of molecules. For example, the
partition coefficient log P reflects a molecule's hydrophobicity and
is widely used to estimate the aqueous solubility of small molecules
for drug discovery. On the other hand, Hildebrand and Scott
introduced the total solubility parameter d; in 1949, which is the
square root of a solvent's cohesive energy density. The total cohesive
energy can be measured by evaporating the liquid, i.e., breaking all
the “cohesive interactions”. Thus, the total cohesive energy of
a compound is considered to be similar to the energy of vapor-
ization. The Hildebrand and Scott total solubility parameter usually
is not sufficient to describe molecules with strong polarity and
hydrogen bonds. It was further refined by Charles M. Hansen in
1967, which became the widely used Hansen solubility parameters
(HSPs). Hansen decomposed 6, and introduced three variables 0y,
0Op, 04 as partial solubility parameters:

O = sqrt(dq” + o> + 0,7

where 04, 0p, 0, account for dispersion forces, polar forces, and
hydrogen bonding of a molecule, respectively. HSPs were
designed to better understand how the nature of intermolecular
forces affect solubility, thus have vast applications in the
pharmaceutical, paint and material science-related industries.™
While experimental methods can be used to determine HSPs, it
is often not feasible when the quantity of the chemicals avail-
able is limited and costly and impossible for the vast number of
hypothetical molecules that are routinely used for virtual
screening. Several theoretical approaches have been developed
to determine HSPs, notably the group contribution methods
(GCMs)*** and methods based on Quantitative Structure-
Property Relationship (QSPR) and machine learning models.*”*®
In GCMs, molecules are divided into basic functional groups
(UNIFAC) and polyfunctional and polycyclic groups and then
linear regression models are used to determine the group
contribution to the partial solubility of the molecules. GCMs are
usually less accurate for large molecules with multi-functional
groups that make significant positive or negative contribu-
tions to the HSPs." QSPR methods use molecular fingerprints
and physicochemical descriptors to build regression models to
predict the HSPs. These approaches are well established and
often give a satisfactory prediction, but usually involve
computing of the descriptors which requires expert knowledge
of the molecules and can be time-consuming. There is a need to
explore new ways to predict HSPs and more broadly to under-
stand solubility from a molecular structure-based and data-
driven perspective that would be more rigorous and
efficient."**>

© 2024 The Author(s). Published by the Royal Society of Chemistry
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We aim to predict HSPs based on only the SMILES of the
molecules and the molecular embedding approaches. In our
study, two NLP embedding approaches were employed, namely
Word2Vec*® and BERT-based finetuning.** Word2Vec is
a shallow, two-layer neural network to efficiently create high-
dimensional vector (usually several hundred dimensions)
representations of words and has been widely used since its
publication in 2013. Word2Vec takes in a large corpus of text
and produces a vector space, with each unique token in the
corpus being assigned a corresponding vector. These vectors are
positioned in the vector space such that tokens that share
similar meanings are located close to one another in the vector
space. In the present work, we used Mol2Vec,* a previously
developed unsupervised Word2Vec-inspired chemistry model to
assign the vectors. Similar to word embeddings in the Word2-
Vec approach, the vectors for chemically related substructures
occupy the same part of vector space in Mol2Vec. The limit of
Word2Vec approach is that it is “context-free” representation,
where the embeddings for substructures are static (Fig. S1 in the
ESIT). This means the embeddings do not depend on the
context of the SMILES, i.e. the same substructure will have the
same vector representation even if it is in two completely
different SMILES. Static embedding limits the accuracy of the
models as it is well known in chemistry that adjacent and
neighbouring functional groups may have significant influence
over each other's reactivity and chemical properties in molec-
ular structures. In recent years, the power of incorporating
context into text embedding learning has been demonstrated by
transformer-based models, such as BERT (Bidirectional
Encoder Representations from Transformers).>* Similarly,
applying contextual representation to SMILES could also lead to
the improvement of the models. Several BERT-based models
have been developed with different training objectives and
strategies along with different SMILES datasets.”® In the current
study, we used the ChemBERTa models*** as these pre-trained
models are available on Hugging Face that enables more
straightforward finetuning and adaptation by others. We fine-
tuned the ChemBERTa models to make HSPs prediction.

By using and comparing our two embedding models, we aim to
address the following questions relating to the prediction of HSPs:
(i) Do the embedding models have an advantage over the more
commonly used molecular fingerprint and descriptor-based
approaches? (ii) For the embedding approach, does the BERT-
based model outperform the simpler Word2Vec model? (iii) By
comparing two different types of solubility parameters, namely
the ESOL aqueous solubility and Hansen solubility, we will
examine what the embedding models have learned of the
molecular properties and how it may be related to the intrinsic
molecular forces defined by HSPs.

Experimental

Datasets

Two labelled datasets were used. The first is a set of 1183
common organic molecules with experimentally determined
HSPs curated by Steven Abbott.”® Abbott's dataset was checked for
possible duplications and the chemicals that are a mixture and
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do not correspond to a clearly defined molecular structure (e.g.,
pine oil) were removed from the dataset. The chemicals were
converted into SMILES using https://cactus.nci.nih.gov/chemical/
structure. This will be referred to as the Hansen dataset. The
Hansen dataset has an average molecule weight of 131 g mol ™
(Fig. S2 in the ESI}). 64 ranges between 10 and 20, 6, ranges
mainly between 0 and 30 while ¢, ranges between 0 and 20
(Fig. S3 in the ESI}). As a comparison with other similar
studies, we have also applied our models to the ESOL dataset to
predict aqueous solubility.*® ESOL is a dataset of 1143 organic
molecules (Fig. S21) and shares 117 molecules with the Hansen
set. ESOL contains the experimentally determined aqueous
solubility parameter log S, that comes from log P and melting
point. It has an average molecular weight of 204 ¢ mol™" and
the log S values were distributed mostly between —10 and 5. For
both datasets, the canonical SMILES was used for the
molecules. The functional group distribution in the two
datasets was analysed in a similar fashion as used by Boobier et
al® Functional groups were counted by matching their
SMARTS codes to the SMILES strings using pybel/OpenBabel.
The total number of occurrences of each functional group was
then divided by the number of molecules in the dataset to derive
the average occurrence per molecule for each functional group
(Fig. S4 in the ESIT and the code available in the GitHub deposit).
In addition to being lighter in average molecular weight, the
Hansen dataset has fewer alkene and aromatic carbons and
hydrogen-bond donor functional groups than the ESOL dataset.

Molecular fingerprints

Morgan fingerprints are fixed-length vectors that encode the
presence of specific molecular functional groups. In the present
study, they were generated from SMILES using RDKkit** where
the radius was set at 8 and the vector size set to 2048. This
means for each atom, molecular patterns up to a connectivity
distance of 8 angstroms were identified, indexed, and hashed to
a vector of size 2048.

Mol2Vec model

We have adapted the published Mol2Vec model,*® which was
trained using the genism implementation of Word2Vec and
based on 19.9 million molecules from the ZINC and ChEMBL
databases. Consistent with steps in the Mol2Vec paper, SMILES
in our datasets were tokenised by the extended-connectivity
fingerprints (ECFP)-based tokenisation process and the embed-
ding size of 300 was used. Embeddings of tokens (substructures)
were summed to form the molecular embedding. Subsequently,
the data was trained and tested through a 6-fold cross-validation.
The feed-forward neural network (FFNN) and XGBoost regression
models were applied, respectively. The FFNN models were built
using Pytorch. A few sets of hyperparameters were tested based
on a previous study.*** For the reported results, the number of
hidden units used was [300, 200, 100, 10] and the dropout rates
were set as 0.25, 0.1 and 0.05 at each layer with ReLU as the
activation function. The learning rate was set as 0.0001, and the
Adam optimizer and a batch size of 64 were used. The model was
trained for between 50 and 100 epochs. The XGBoost model was
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used alongside Scikit-learn.** The performance of the models was
evaluated by root-mean-squared errors (RMSEs) and Mean
absolute errors (MAEs) which inform the error distribution and
coefficient of determination (R?), which captures how well the
predicted solubility values agree with the experimental values.
The final reported RMSEs, MAEs and R” are based on the testing
data (~200 molecules per fold).

Finetuning ChemBERTa

Two ChemBERTa models were used for finetuning: the seyonec/
ChemBERTa-zinc-base-vl model” and the DeepChem/Chem-
BERTa-77M-MTR,* both available on the Hugging Face reposi-
tory. Hugging Face is a machine learning and data science
platform hosting git-based code repositories, models, and data-
sets under a unified API, which simplifies data transformation
and coding syntax.** The Hugging Face hub stores many pre-
trained transformers/BERT models for inference and finetuning
in a variety of machine learning tasks. ChemBERTa-zinc-base-v1l
was trained on 100k SMILES from the zinc database via the
masked language model (MLM) while ChemBERTa-77M-MTR was
trained using 77 million SMILES via multi-task regression (MTR).
These two models appeared to give more accurate prediction after
initial testing to assess the various CHEMBERTa models for
solubility prediction and therefore has been used in the present
study. We also aimed to compare the performance between the
two models to understand the impact of the size of the BERT
training datasets. The Trainer class in Hugging Face provides an
API for feature-complete training in PyTorch and was used to
finetune the ChemBERTa model. As before, the data was trained,
and tested with a 6-fold cross-validation to ensure all data was
used for testing. The performance of the models was evaluated by
RMSEs, MAEs and R> from the testing data (~200 molecules per
fold). It is worth noting that tokenisation in CHEMBERTa is
different from that of the Mol2Vec model. The default Byte-Pair
Encoder (BPE) from the Hugging Face tokenizers library was
used which finds the tokens by iteratively merging frequent pairs
of characters. In addition, we used BertViz**> to visualise the
attention heads of the ChemBERTa model on the HSPs.

Results and discussion

We assessed the performance of the two NPL-based models
against experimental values and the baseline Morgan finger-
print approach. We further compared the quality of the
prediction of HSPs against aqueous solubility from the widely
benchmarked ESOL dataset. Overall, five combinations of
molecular representation and machine learning methods will
be discussed: Morgan fingerprints with XGBoost, Mol2Vec
embeddings using XGBoost and FFNN, respectively and the two
ChemBERTa finetuned models. Each of them has been applied
to 04, On, and 6, and the ESOL aqueous solubility parameters
(Table 1, Fig. 2 and 3).

Comparison with baseline Morgan fingerprints

The RMSEs, MAEs and R” of all the predicted solubility parame-
ters are presented in Table 1. In terms of MAEs and RMSEs, both

148 | Digital Discovery, 2024, 3, 145-154

View Article Online

Paper

Table 1 Comparison of the five models in predicting HSPs and ESOL
with regards to the RMSEs, MAEs and R?. The errors were computed
based on 6-fold cross-validation with each testing dataset containing
~200 molecules. The model highlighted in bold gave the best
prediction for that component of solubility (note: the descriptors-
based result is taken from ref. 18 using a different set of 193 small
organic molecules)

Method  MAE RMSE R
0q
Morgan Fps XGBoost  0.65 +0.04 0.91 £0.07 0.74 &= 0.04
Mol2Vec XGBoost ~ 0.60 + 0.02  0.88 £ 0.04  0.76 £ 0.01
Mol2Vec FFNN 0.87 £0.05 1.2140.08 0.53 £ 0.07
Zinc-base 0.59 +0.03 0.83+0.04 0.73 £ 0.03
77M-MTR 0.67 £0.03 0.97 £0.09 0.64 £ 0.08
Descriptors'®  gpHSP 0.68 1.02 0.69
On
Morgan Fps XGBoost  2.13 £0.11  3.46 £ 0.27  0.55 4= 0.04
Mol2Vec XGBoost  2.15+0.11  3.3140.23  0.59 £ 0.03
Mol2Vec FFNN 1.92 £ 0.13  2.84 £0.41  0.69 £ 0.07
Zinc-base 2.03 £0.25 3.17 £0.46  0.42 £ 0.15
77M-MTR 1.79 £ 0.25 2.70+0.48  0.70 £ 0.09
Descriptors'®  gpHSP 1.57 2.41 0.83
617
Morgan Fps XGBoost  2.23 £0.09 3.02 £0.16  0.51 & 0.05
Mol2Vec XGBoost  2.26 +0.10  3.12 £+ 0.12  0.48 £ 0.02
Mol2Vec FFNN 2154+ 0.14 2924021  0.54 £ 0.04
Zinc-base 2.01 +£0.16 2.83+0.27 0.41+0.14
77M-MTR 2.24 £0.15 3134021  0.42 £ 0.04
Descriptors'®  gpHSP 1.93 2.83 0.71
ESOL
Morgan Fps XGBoost  0.86 +£0.04 1.15£0.05 0.70 &= 0.04
Mol2Vec XGBoost  0.68 £ 0.03  0.92+0.04 0.81 £ 0.02
Mol2Vec FFNN 0.75+0.03 0.98 4+ 0.05 0.78 £ 0.02
Zinc-base 0.58 £0.02 0.79+0.05 0.85 =+ 0.02
77M-MTR 0.68 £0.04 0.79£0.05 0.85 £ 0.02

Comparison with published ESOL references

Morgan Fps®®>  XGBoost  0.88 1.20 0.66
Mol2vec?® XGBoost 0.60 0.79 0.86
Mol2vec*? FFNN 0.66 + 0.01
77M-MTR*® 0.89

MoIBERT’ 0.53 £ 0.04
MFBERT® 0.42 + 0.50

Mol2Vec and ChemBERTa finetuning models outperform the
Morgan fingerprint baseline models albeit not by a significant
extent and can be sensitive to ML methods (i.e., the FFNN and
XGBoost of Mol2Vec embeddings tend to give varied accuracies).
This is consistent with what has been observed in several previous
studies® and is expected as the embeddings derived from the two
NLP models capture a latent representation of the physicochem-
ical properties of molecules, therefore should be more informa-
tive than the simple encoding of the presence of specific
molecular functional groups in the Morgan fingerprint approach.

Accuracy of the predicted HSPs

To benchmark, we compared our results with the well-studied
ESOL dataset. The predicted ESOL is in excellent agreement

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Plot of the mean absolute errors (MAEs) of the five models in
Table 1.

with the published values, which validates our approaches
(Table 1). There is a considerable variation of the models’
prediction power over dq4, 0, and d,. The accuracy of predicted
04 (MAE 0.59, RMSE 0.83, and R* 0.73 for the best model) is the
highest, significantly higher than é,, and 6, for all models
(Table 1). This is followed by predicted 6, (MAE 1.79, RMSE
2.70, and R* 0.7) while predicted 6, has the lowest accuracy
(MAE 2.01, RMSE 2.83, and R” 0.4). The 64 > 6y, > 6, trend for the
predicted accuracy and the range of MAEs and RMSEs are
consistent with results from a previous study which used

© 2024 The Author(s). Published by the Royal Society of Chemistry

Fig.2 Plots of the predicted dg4, 6y and d, of the HSPs (top three rows) and ESOL solubility (bottom row) versus their respective experiment values.
The solid red lines indicate ideal agreement between the predicted and experimental values. The dashed red lines indicate two standardised
residual deviations (SRD) away from the experimental values. Molecules beyond the dashed lines are the outliers in each model and were further
analysed in Fig. 4.

chemical descriptors and the Gaussian process, a Bayesian
machine learning approach to predict the HSPs of 193 small
organic molecules.”® There may be intrinsic limits to how
machine learning approaches can predict this type of solubility
parameters.
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Outliers

In general, the models are more likely to overestimate lower-
value HSPs and underestimate higher value HSPs (Fig. 2). For
the lower value HSPs, this may be in part because the models
failed to learn the 6y, and 6, which are zero in value. For the
higher range of HSPs, it may be because these data points are
scarce and tend to be under-represented in the training set. In
addition, the models were finetuned using three separate sets of
labelled data (64, 6n and 6p,). It is clear that the accuracy of the
predicted HSPs of the same molecule is not correlated, i.e. 4 of
the molecule may be predicted poorly while 6, and 6, may be
predicted with good accuracy.

The predicted values two standardised residual deviations
(SRDs) away from the experimental values are selected as the
outliers in each model (see Table S2 in the ESI} for the list of
outliers). These poorly predicted molecules were analysed to
identify possible systematic limitations. The difference in the
average occurrence of the functional groups between the
outliers and the full dataset is presented in Fig. 4 and S5 in the
ESI.} The positive values indicate the increased presence of the
functional groups and the negative values indicate fewer
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functional groups in the outliers. For 04, the most frequent
functional groups in the outliers are Halides (F, Cl, Br and I),
and to a lesser extent nitrile, P and S. All three models (fps,
Mol2Vec and ChemBERTa) performed poorly against Halides.
CHEMBERTa-77M-MTR is the worst-performing one primarily
because it handles Cl badly. For 4y, consistent among all the
models, the outliers tend to have more hydrogen bond donors
and acceptors. However, CHEMBERTa-77M-MTR performs
better than CHEMBERTa-zinc-base-vl in general, therefore
giving the best result for predicted oy,. For ¢, the functional
groups in the outliers are more diverse and no distinct func-
tional groups stand out. It is also interesting that the larger
CHEMBERTa model performed worse than the smaller
CHEMBERTa model in terms of Cl, while the smaller CHEM-
BERTa model tends to perform slightly poorly for carbonyl,
alkene and H-bond acceptor. As a comparison, for the ESOL
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dataset, the outliers' functional groups are more diverse, which
is similar to dp. In terms of the size of the molecules, outliers
from predicted 64 have similar molecular weight to the full
Hansen dataset while outliners from predicted oy, and 6, are
smaller than the full Hansen dataset (Fig. S67). On the other
hand, outliers from the ESOL set have higher average molecular
weight than the full dataset. It appears that Mol2Vec and
CHEMBERTa models don't have a general bias over molecular
weight, but they may have some limit towards smaller or bigger
molecules depending on the predicted molecular properties.

Attention visualisation

We used BertViz to visualise the attention mechanisms of
outliers from the original CHEMBERTa_zinc-base-vl model and
the finetuned models to understand what they have learned

from the molecular structures and their labels. The
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Fig.4 Functional group analysis of the outliers for (A) o4, (B) 4y, (C) 6, and (D) ESOL. Functional groups were counted by matching their SMARTS
codes to the SMILES strings. The total number of each functional group was then divided by the number of molecules in the outliers to derive the
average occurrence per molecule (Fig. S5). For clarity, the difference of the average occurrence of functional groups between the outliers and

the full dataset are presented in the above figures.
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ChemBERTa model has 6 hidden layers and 12 attention heads
in every layer. Since model weights are not shared between
layers, the model has 72 different attention mechanisms.
Attention is visualised as lines connecting the position being
updated (left) with the position being attended to (right). The
colours identify the corresponding attention heads while the
thickness of the lines reflects the attention score. General
attention patterns are present including attention to the
previous/next token, attention to identical/related tokens, and
attention to the delimiter token </s> when the attention head
can't find anything meaningful in the input molecule to focus
on (Table S1 in the ESIY).

It is clear that the attention mechanisms are different in the
finetuned models compared to the original ChemBERTa model.
The attention focuses more on the atoms that give rise to the
HSPs in the finetuned models. For example, pyridazine
(SMILES: clcenncl) is an aromatic heterocyclic compound.*® It
contains a six-membered ring with two adjacent nitrogen
atoms. The molecule has a high dipole moment with w-m
stacking interactions and dual hydrogen-bonding capacity
(both as hydrogen bond donor and as acceptor). Its simple
structure and strong characters relating to the HSPs make it
easier to interpret the attention mechanism from ChemBERTa
(Fig. 5 and Table S1 in the ESIt). In the 64 finetuned model,
strong attention is distributed among c[token1], 1[token2] and
cenncftoken3]. [c] represents an aromatic carbon and [1] indi-
cates connectivity to form an aromatic ring. [ccnnc] includes the
two nitrogen - the hydrogen acceptor in the molecule. All 3
tokens contribute to d4 because the dispersion parameter is
based on the atomic forces of all the atoms in the molecule. In
the J, finetuned model, the attention focuses more on the
hydrogen bond acceptor token [cennc] in layer 2/(head_4),

Original model dd finetuned model

(B)

Layer:[1 v| Layer: [1v]
} i}
Layer_1
Head_1 c c c c
1 1 i 1
cenne cenne cennc - ——» ccnnc
1 . 1 /// 1
</s> / </s> </s> </s>
Layer: (3 v| Layer: (3 v|
Laye r_3 <S> <s> <s>
. .
Head_5 ¢
— i 1 1-
cenne = cenne cennc -
1 - 1 14
</s> - - </s> </s>
Layer: [3 v| Layer: (3 v|
|
Layer_3 <s> <s> <s> <s>
c g
Head_7 e
- 1 1 1 1
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layer_3/(head_2, 5, 10 and 11), layer 4/(head_0, 1, 7) and
layer_5/(head_0). In the 4, finetuned model, there is a strong
focus on the [c] token that is not seen in ¢4 and ¢y,. Attention to
[c] is dominant in layer_1/(head_11), layer_2/(head_o0, 2, 4 and
10), and layer_3/(head_1, 2, 3, 4, 5, 6, 8, and 11). The ¢4 fine-
tuned model gave an excellent prediction of 19.2 compared to
the experimental value of 20.2. The ¢} finetuned model per-
formed worse with predicted 6y, 6.8 (exp ¢, 11.7) and the dq
finetuned model the poorest with predicted 6, 7.7 compared to
the exp ¢, 17.4.

t-(—)-Ephedrine (SMILES: CN[C@@H](C)[C@H](O)c1ccecel)
has an aromatic ring, a hydroxyl (OH) and an amine (NH)
functional group. The two tetrahedral centres are indicated by
the chiral specification simple of @ and @@ in the SMILES
(Fig. 6 and Table S1 in the ESIt). In the 64 finetuned model,
some heads (0, 1, 3, 4, 8 and 11) in layer_4 focus strongly on the
[CN] token. In the d;, finetuned model, some heads (1, 2, 3, 6, 7,
10 and 11) in layer 4 focus on the [O] token. Attention is
generally more evenly distributed in the 6, finetuned model
with the focus on both [CN] and [O]. Both dq and 6, are
reasonably predicted (predicted 17.8 vs. exp 18.0 for 4 and
predicted 7 vs. exp 10.7 ¢,) while ¢y, is significantly under-
estimated (predicted 11.8 vs. exp 24.1) for this molecule. Based
on the visualization of attention mechanisms, it is plausible
that the 0y finetuned model only learned OH but not NH
functional group as a hydrogen bond donor, therefore under-
estimating Oy,

For strictly nonpolar molecules, the d, and d}, terms are zeros
by definition in  HSPs. Cyclododecane (SMILES:
C1CCCCCCCCCCCL) is such a macrocycle molecule that
contains a twelve-membered ring (molecular formula (CH,);5).
04 of cyclododecane is 16.4 while its 6, and 6y, are both zeroes

(A) /N— . 7Exp j Predicted |
N &d 1202 192
\\ / oh 11.7 6.8
clcenncl op 17.4 7.7

Original model 6h finetuned model

(C)
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o er
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1 1 1 = 1
</s> </s> <ls> </s>
(D) Original model &d finetuned model
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Fig. 5 Attention analysis of pyridazine using BertViz based on the original CHEMBERTa_zinc-base-vl model and the finetuned models. (A)
Molecular structure and SMILES of pyridazine and its experimental and predicted HSPs. Selective visualisation of attention is presented for the
original model and the d4 finetuned model (B), éy, finetuned model (C) and é,, finetuned model (D).
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Fig. 6 Attention analysis of L-(—)-ephedrine using BertViz based on

the original CHEMBERTa_zinc-base-vl model and the finetuned
models. (A) Molecular structure and SMILES of L-(—)-Ephedrine and its
experimental and predicted HSPs. (B) Visualisation of attention of
layer_4 is presented for the original model, and the dq4, 6y and 6,
finetuned models.

(Fig. 7). The molecule is tokenised into four tokens [C], [1],
[ccceceecececeC] and [1]. 11 carbons from the ring structure
are grouped into one token while the two [1] and the last [C]
which indicates that the connectivity is set as three separate
tokens. Attention is distributed among all the tokens and
although the attention mechanisms change in the finetuned
models, the way the molecule is tokenised makes them difficult
to interpret. The ¢4 finetuned model gave a reasonable predic-
tion of 18.1 (exp 16.4), but J,, and 64 were both overestimated
(7.3 and 5.9). The finetuned models failed to grasp the corre-
lation between nonpolar molecules and zero value for HSPs.
However, it is important to point out that HSPs use a simplified
way to define the polarity of molecules. Cyclododecane can
adopt multiple conformations and has a sizable dipole
moment,*” therefore assigning its dq as 0 is a significant
underestimation and does not reflect the complexity and
conformational flexibility of its structure. Cyclododecane
occupies a unique chemical space and has been used in drug
discovery. There are several challenges for the prediction of
HSPs of such unique molecules: (1) better ways to tokenise
molecular structure. The 11-carbon token in our approach may
be too long and will be scarce in the training set. Shorter tokens
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Fig. 7 Attention analysis of cyclododecane using BertViz based on the
original CHEMBERTa_zinc-base-vl model and the finetuned models.
(A) Molecular structure and SMILES of cyclododecane and its experi-
mental and predicted HSPs. (B) Tokens used in the model. (C) Visu-
alisation of attention of all layers is presented for the original model,
the 64, 6n and 6, finetuned models.

of a few carbons may account for local structural flexibility
better. (2) The limit of HSPs' theoretical framework, in partic-
ular, how ¢, and ¢}, terms may have large intrinsic errors for
complex molecules.

General discussion

In the present study, we have predicted different components of
solubility using two molecular embedding approaches. The
significantly varied prediction accuracy for the three parameters
of HSPs along with ESOL aqueous solubility parameters is
intriguing. It raises interesting questions as to how finetuning
tasks may benefit from the improvement of pretraining, e.g.,
increased pretraining dataset size. More importantly, it indi-
cates that how much the pre-trained model can be leveraged for
transfer learning may relate to the nature of the molecular
properties in the labelled dataset, a key area to investigate
further to enable more effective use of BERT-based models for
molecular property prediction.

First of all, our results may be explainable by the underlying
nature of these parameters and the experimental errors asso-
ciated with them. The HSPs were derived from three main types
of interactions in common organic molecules. The most
common is the nonpolar interactions, which are usually
referred to as the atomic dispersion forces (d4). All molecules
contain this type of force, therefore dq4 is usually the predomi-
nant component of total solubility while ¢}, and d,, has relatively
small contributions. d4 can be predicted quite well with just
Morgan fingerprints, indicating that it is dependent more on
the molecular structure. Because the dispersion parameter is

© 2024 The Author(s). Published by the Royal Society of Chemistry
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based on atomic forces, the size of the atom is important. To
determine ¢4 experimentally or theoretically, corrections are
usually required for atoms significantly larger than carbon,
such as Cl and Br but not for oxygen and nitrogen that are of
similar size. The impact of the corrections is larger for small
molecules.*® This is consistent with our results that for dq4, the
most frequent functional groups in the outliers are the halides
(F, Cl, Br and I). The fact that the models handled halides poorly
could be due to a combination of two factors - the intrinsic
errors in the experimental data associated with the halide atoms
and the scarcity of this type of molecules in the training set.

on arises from the hydrogen bonding capacity of the mole-
cule and has been used to collect the cohesive energy compo-
nent that is not included in the other two parameters. 6, was
most often found by subtracting the polar and dispersion
components from the total solubility. Therefore, ¢y, is less well
defined physicochemically, and the experimental errors asso-
ciated with 0y, are bigger than those of d4. This may explain why
the predicted accuracy of dy, is lower than 4.

0p arises from dipole-dipole interactions between molecules.
Most molecules (except few strictly nonpolar molecules) contain
these inherent molecular forces to some extent, in a way similar
to the ubiquitous atomic dispersion forces in all molecules.
Therefore, it is intriguing that there is a significant difference in
our models' accuracy of dq over dp, despite both parameters
involving all atoms of the molecules. In a previous study using
descriptor-based machine learning approach,* it was found
that 64 appeared to be more dependent on molecular structure,
while d,, depended more on the electrostatic descriptors (dipole
moment, polarizability, polarity and hydrogen-bonding
moments). Electrostatic properties are more complex as they
are description of how atoms influence each other within
a molecule. To improve model accuracy, an increased number
of labelled data may be needed to finetune BERT for it to learn
the more complex interactions within molecules. More labelled
data can be easily generated for future studies because 6, is
well-defined and can be derived from dipole moment of mole-
cules calculated using quantum mechanical calculations.

Comparison with the well-benchmarked ESOL aqueous solu-
bility dataset also provided useful insights. Dissolution is
a complex process that involves solute-solute, solvent-solvent and
solute-solvent interactions. Aqueous solubility is dominated by
solvation energy and solvent-solute interactions, due to water's
high polarity and its capability for hydrogen bonding.>*** In
contrast, HSPs mainly account for solute-solute interactions i.e.
cohesive/sublimation energy, which has always been more chal-
lenging to predict.”” Therefore the ESOL = 64 > 6, > 6, trend of
prediction accuracy is in agreement with our understanding of the
physical aspects of the dissolution process.

Finally, it is important to point out that experimental HSP
values exhibit significant uncertainties. 6, has the largest
uncertainties. For example, the value derived from the dipole
moment could be much smaller than values derived from the
group contribution methods.**** Large inconsistencies between
0n values have been observed for compounds with strong
hydrogen bonds, such as urea.** Similarly, it has also been

© 2024 The Author(s). Published by the Royal Society of Chemistry
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pointed out that experimental data quality could be a limiting
factor in predicting the aqueous solubility of molecules.**

Conclusions

In conclusion, we predicted HSPs based on only the SMILES of
molecules using the so-called molecular embedding
approaches. Upon finetuning, the ChemBERTa model “learned”
relevant molecular features and shifted attention to functional
groups that give rise to the relevant HSPs. The finetuned
ChemBERTa model outperforms both the Mol2Vec model and
the baseline Morgan fingerprint method and gives accuracy
slightly lower or on a par with the more computing-intensive
chemical descriptors-based models. In general, the embed-
ding models can predict dq significantly better than 6, and 6,
and overall, the accuracy of predicted HSPs is lower than the
well-benchmarked ESOL aqueous solubility. The ESOL = 64 > 0p,
> 0p trend of prediction accuracy is in agreement with our
understanding of the physical aspects of the dissolution
process, i.e., HSPs mainly account for solute-solute interactions
from cohesive/sublimation energy, which has always been more
challenging to predict than the aqueous solubility which is
dominant by solvent-solute interactions. In addition, our study
indicates that the labelled molecular properties in the finetun-
ing datasets may determine how much the pre-trained model
can be leveraged for transfer learning. This is most likely due to
the limit of HSPs' theoretical framework, and in particular, how
the 0, and d,, terms may have large intrinsic errors in the way
they are defined and derived, therefore introducing inherent
limitation to the accuracy of their prediction from data-driven
approaches. It would be worthwhile to consider refining the
Hansen solubility framework using a combination of stand-
ardised experimental measurement, quantum mechanical
calculations and machine learning models.
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