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of simulated metal nanoparticles for catalytic
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The application of supervised machine learning to the study of catalytic metal nanoparticles has been

shown to deliver excellent performance for a range of predictive tasks. However, this success assumes that

the particles have been thoroughly characterised and that the property labels are known. Even in

exclusively computational studies, the labelling of metal nanoparticles remains the bottleneck for most

machine learning studies due to either high computational costs or low relevance to the experimental

properties of interest. To facilitate more widespread use of machine learning in catalysis, a computationally

affordable strategy to describe metal nanoparticles by a label that is relevant to their catalytic activities is

needed. In this study we propose an entirely data-driven approach that can be automated to characterise

the patterns and catalytic activities of the surface atoms of simulated metal nanoparticles, and evaluate its

utility for catalytic applications.

1 Introduction

Heterogeneous catalysis is a cornerstone of industrial
chemical reactions due to its high efficiency and selectivity.1

The contribution of surface atoms toward the catalytic
performance of heterogeneous catalysts is known to be
multivariate.2,3 The unique coordination environments, local
symmetry, and electronic structures of these atoms directly
influence the adsorption and activation of reactant molecules,
and hence the subsequent reaction pathways.4–6

Consequently, the ability to recognise the patterns among the
surface atoms that give rise to good catalytic performance is a
fundamental prerequisite for researchers to understand and
optimise the catalytic behaviour of metal nanoparticles.

However, past attempts to characterise the surface of metal
nanoparticles, which is a type of versatile and highly active
heterogeneous catalyst, often approximate the catalytic
contribution of surface atoms based on a single physically-
meaningful variable. A notable example is the characterisation
approach for metal nanoparticles inspired by the biological
genomes, proposed by the Baletto group.7–10 The method
sequences the structural genome of metal nanoparticles based
on a chosen atomistic geometrical variable to distinguish,

catalogue, and count the adsorption sites available on the
surface.7 While the approach is general and could be used with
other variables, the limitation of such approaches is that only
the information in a single variable can be utilised. More
accurate electronic variable from quantum mechanical
calculations could potentially be used in place of the
geometrical variable, but it would be prohibitively expensive for
metal nanoparticles. Given the multivariate contributions of
surface atoms toward the net catalytic efficiency of metal
nanoparticles, the accuracy of attempts to predict the catalytic
contribution of each surface atom using a single geometric
variable will always be limited. A more judicious approach to
capture information relevant to catalysis is to combine the
information from multiple computationally affordable and
catalytically relevant variables.

We propose that by framing the problem of recognising
surface patterns as an unsupervised clustering task, surface
atoms can be grouped based on their similarity in the high
dimension encoded by multiple variables that are relevant to
catalysis. This allows more complex and nuanced surface
patterns to be identified, which can then be collectively
related to a chosen variable that is known to be predictive of
catalytic properties to identify applications that the groups
are suitable for.

Some atomistic variables that have been used to study the
catalytic properties of metallic systems include the orbital-
wise coordination number,11 effective coordination,12

generalised coordination number (GCN)13 and its variants.14

Considering computation simplicity and correlation with
catalytic performance, a good variable to evaluate the
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catalytic relevance of the groups of metal nanoparticle
surface atoms would be GCN, which is both simple and
predictive,15 and was also chosen for the aforementioned
genomic approach.7 It is expressed as:

GCNi ¼
XNi

j¼1

CNj

CNmax
(1)

where CNj is the coordination number of atom j, Ni is the
number of first shell neighbours of atom i, and CNmax is the
maximum value among the coordination numbers of the
neighbours of atom i.

According to the Sabatier's principle, there is an optimal
bond strength that best catalyses a given reaction,16 and GCN
was deemed to be a useful variable to identify this optimal
value.15 Since its proposal, GCN has been applied in studies
involving different metal nanoparticles and chemical reactions,
including oxygen reduction reaction (ORR) catalysed by
platinum (Pt) and gold (Au) nanoparticles,8,17–19 carbon dioxide
reduction reaction catalysed by copper (Cu) nanoparticles,9,20,21

acetone reduction reaction (RCORRR) catalysed by Pt
nanoparticles,22 carbon monoxide oxidation reaction (COOR)
catalysed by Pt nanoparticles,23–25 and reverse water-gas shift
reaction catalysed by Cu nanoparticles.26

While clustering methods have been employed to study
collections of entire nanoparticles in the past,27 studies
clustering the individual atoms within nanoparticles are rare.
In the work of Zeni et al. which characterised the melting of
Au nanoparticles,28 six classes of local atomic environment
types were defined from a small database of configurations
randomly extracted from the phase change trajectories of
their simulations, using a hierarchical k-means clustering
approach. Each atom was described by 40-dimensional
features generated using a modified version29 of the 3-body
local atomic cluster expansion descriptor.30 While the results
concluded that Au cuboctahedra start to melt from the
surface when heated, no conclusion related to catalytic
performance was drawn.

In this article, we demonstrate the feasibility of using a
clustering method to identify groups of patterns on metal
nanoparticle surfaces, which are then evaluated based on a
physically meaningful variable such as GCN to produce
catalytically-relevant labels. In the following section, we
explain the methodology to extract atomistic features from
the raw nanoparticle coordinates, to preprocess the data, to
cluster the surface atoms, and to evaluate the clustering
results. This entirely data-driven method can be applied to
the surface atoms of any metal nanoparticle, and the results
for palladium (Pd) nanoparticles presented here show that
the methodology allows for reliable separation between bulk
and surface atoms and for subsurface layers of ordered
nanoparticles to be identified, in addition to recognising the
patterns among the surface atoms. Combining the
visualisation of the feature profiles of these groups of atoms
with the proposed evaluation metrics also enables
researchers to further understand the characteristics of

surface atoms that contribute to the catalytic performance
toward chemical reactions of interest.

2 Methods
2.1 Data set

A set of simulated Pd nanoparticles are used as a testbed in
this study. Idealised (sampled from simulation temperature
of 0 K) polyhedra with eight different shapes, including the
cuboctahedron (CO), cube (CU), decahedron (DH),
icosahedron (IC), octahedron (OT), rhombic dodecahedron
(RD), tetrahedron (TH), and truncated octahedron (TO), are
used to develop the computational pipeline. This pipeline is
then applied to slightly heated and disordered (DIS)
nanoparticles to test its performance on more realistic
specimens. The testbed contains a total of 39 nanoparticle
structures, as tabulated in Table 1.

The testbed was taken from a Pd nanoparticles data set that
was not produced as part of this study, but is publicly
available.31 This data set consists of 4000 Pd nanoparticle
conformations generated from classical molecular dynamics
simulations with embedded atom interatomic potentials,32

ranging in size from 137 to 16 262 atoms (1.4 to 7.5 nm in
diameter). The data set is diverse, and each structure is unique,
including ordered crystalline nanoparticles, polycrystalline,
and twinned nanoparticles, along with disordered and non-
crystalline nanoparticles, depending on the growth
temperature, growth rate, and simulation duration.

The raw data are transformed into potentially useful
structural features that are more amenable to clustering
algorithms at the atomistic level using software packages
including the Network Characterisation Package (NCPac),33

Atomic Simulation Environment,34 Python Structural
Environment Calculator,35 and SYMMOL.36 The features are
grouped into five groups of descriptors, namely positional,
geometric, Steinhardt, neighbour, and order descriptors.
Detailed explanations of the features and the software
parameters used to generate them are provided in ESI†
(section S1).

2.2 Data preprocessing

The extracted and engineered features for each data set are
preprocessed in the following ways to reduce redundancy:

1. Features with variance of 0.0 are removed.

Table 1 Descriptions of the simulated nanoparticles used as a testbed

Shape Temperature (K) Sizes Total

CO 0 1 1
CU 0 3 3
DH 0 3 3
IC 0 1 1
OT 0, 323, 523 3 9
RD 0, 323, 523 3 9
TH 0, 323, 523 3 9
TO 0 1 1
DIS 723 3 3
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2. One of each pair of features with Pearson correlation
coefficient above 0.9 is removed. The features are ranked
according to the ease of interpretation and relevance to
catalysis, and the feature with lower ranking scores in each
highly correlated pairs is retained. The ranking scores are
included in ESI† (section S1.5).

3. Features are scaled using min-max normalisation.
4. Principal component analysis is conducted on the data

to reduce the dimensionality, as described in ESI† (section
S2.1). The number of features is set to be the number of
components that retains >99% of the data variance.

2.3 Iterative label spreading

The iterative label spreading (ILS)37 clustering algorithm was
chosen for this work as it offers a few advantages over other
alternatives,38–40 such as no requirement for preliminary
estimation nor optimisation of hyperparameters. ILS has also
demonstrated greater reliability in both simple and
challenging clustering tasks, including the null and chain
cases, and was shown to be ideal for noisy datasets with high
dimensionality and high variance, which are typical in
materials science.41–43

ILS sequentially orders data samples, based on their
proximity to initialised samples in a high dimensional
space.37 The initialisation process is described in ESI†
(section S3.1), and the criterion of the labelling process is
described by:

Rmin(i) = min({r(i, j)|i ∈ L and j ∈ U}) (2)

where r(i, j) is the similarity distance metric between a labelled
sample i and an unlabelled sample j, L is the set of all labelled
samples, and U is the set of all unlabelled samples.

ILS returns an ordered minimum distance (Rmin(i)) plot
when all samples are labelled, where i indicates the order by
which the atoms are labelled (based on their proximity to the
atoms that are already labelled in the feature space), and
Rmin reports the distance between the previously labelled
point and the newly labelled point. The range of the plot thus
corresponds to the number of atoms being clustered. The
plot captures useful information such as the number of
clusters and their separation in Euclidean space based on a
series of peaks which signify drops in density between
clusters. The clusters can be estimated by dividing the Rmin

plot at each peak into separate regions, and definitively
identified by relabelling a sample in each region and
reapplying ILS to assign the final cluster labels. Our method
for automatically identifying peaks is described in ESI†
(section S3.2). Double confirmation can be obtained by
applying ILS to each cluster to ensure there are no hidden
sub-clusters that could be further divided.

2.4 Cluster evaluation

The clustering outcome is internally evaluated quantitatively
using the Silhouette coefficient,44 Calinski–Harabasz

index,45 and Davies–Bouldin index,46 since ground truth
labels are not available (particularly for disordered
nanoparticles). At a high level, Silhouette coefficient
measures the similarity between a sample to its own cluster
(cohesion) compared to other clusters (separation). A mean
coefficient value of −1 across all samples indicates poor
clustering performance, 0 indicates overlapping clusters,
and +1 signifies highly dense clustering and better defined
clusters. The Calinski–Harabasz index or Variance Ratio
Criterion computes the ratio of the between-clusters
dispersion over the within-cluster dispersion, dispersion
being sum of distances squared, meaning a higher value
represents denser and better separated clusters. On the
other hand, Davies–Bouldin index denotes the average
“similarity” between each cluster and the cluster it is most
similar to, with similarity being measured by the distance
between clusters with the size of the clusters themselves.
Therefore, an index value closer to 0 signifies a better
partition from clustering. The mathematical details of these
methods are provided in ESI† (section S4).

In addition to these internal evaluation metrics, some
domain-relevant cluster evaluation metrics have also been
proposed based on the activity maps that depict the onset
potential (potential in an electrochemical cell that drives
the reaction) as a function of GCN, obtained from catalysis
studies of different monometallic nanoparticles for different
chemical reactions.17,20,22,23 The aforementioned optimal
bond strength that best catalyses a given reaction according
to the Sabatier's principle can be reasonably represented by
the peak of the activity map, which is composed of multiple
linear equations. For example, a GCN of ∼8.3 was found to
be optimal for ORR catalysed by Pt nanoparticles,17 while a
GCN of 3.1 has been found to be optimal for the reduction
of carbon dioxide to methane accelerated by Cu
nanoparticles.20 Many studies have investigated the
structural characteristics of the atoms near the optimal
GCN values to conduct surface engineering such that the
nanoparticles contain more of these atoms.17,18,20,22,23

Building upon this, we propose that the GCN activity map
can also be utilised to evaluate the catalytic contribution of
a given group of atoms.

A catalytic weighting profile (q) as a function of the GCN
value can be obtained from these activity maps by
normalising the maps such that the areas under the lines
sum to 1. The normalisation is necessary for the evaluation
metrics proposed below to be compared with each other as
the intercepts of the equations directly affect the outcomes.
The GCN distributions of each cluster (p) can then be
compared with this profile for the cluster to be evaluated
meaningfully. Further details about the activity maps and
their normalisation are included in ESI† (section S5).

The evaluation metrics proposed here are termed as
selectivity (eqn (3)), specificity (eqn (4)), and sensitivity (eqn
(5)), and are designed to be bound within [0, 1] for ease of
interpretation. These metrics are illustrated in Fig. 1, and
defined as:
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SEL ¼ 1 − arg maxg p gð Þ − arg maxg q gð Þ�� ��
max Gð Þ −min Gð Þ (3)

SPC ¼
− 1
2q gð ÞO p; qð Þ þ 1; if p within q

1
2q gð ÞO p; qð Þ; otherwise

8>><
>>:

(4)

SEN ¼
ð

p gð Þq gð Þ
max q gð Þð Þ − min q gð Þð Þ dg (5)

where g is GCN, p(g) is the GCN distribution of a given
cluster, q(g) is the catalytic weighting profile obtained from
the reference reaction GCN-activity map, G is the range of
GCN considered (1 to 14 for this work), and O(p, q) is the
overlapped GCN range between p(g) and q(g). Further details
regarding the computation of p(g), q(g), and O(p, g) are
included in ESI† (section S6).

Selectivity denotes the difference in the GCN values
corresponding to the peaks of both p and q. This informs
how selective are the surface atoms toward the reaction of
interest, which is important for the process of catalyst design.
It is maximised when the peaks overlap, and minimised
when each peak is at the extreme boundaries of GCN range
considered. Specificity is related to the overlapping range of
the distributions, and quantifies the exclusion of unwanted
reactions. It is maximised when the full width at half
maximum of p is entirely within q, and minimised when
there is no overlap between them. We relate the metric
termed sensitivity to the area of the overlapping distribution,
which informs the proportion of the surface atoms that are
actually useful for the catalysis of the reaction of interest,47,48

which is deemed essential for the manufacturing process. It
is maximised when the whole cluster comprises atoms with
the reference reaction optimal GCN value, and minimised
when there is no overlapping GCN range.

We note here some potential limitations of GCN: (i) It was
warned that the analyses of GCN presuppose that there are

no significant surface reconstructions upon adsorption, such
that the geometric and electronic structures of the clean
active sites are representative of those with adsorbates.15

While this is a fair approximation in many cases, there can
be exceptions for strong chemisorbates and/or large surface
coverage of species.49 (ii) GCN focuses on the geometric
arrangement of atoms, neglecting electronic structure effects
that might be crucial for understanding reactivity and
catalytic performance. (iii) For multimetallic catalysts beyond
bimetallic nanoparticles, GCN has not been proven to be able
to sufficiently account for the interactions between different
metal species and their collective impact on catalysis.7 (iv)
The calculation of GCN depends heavily on the identification
of nearest neighbours, which is often based on a radial cutoff
distance. While the cutoff distance is found to be robust even
in highly disordered monometallic nanoparticles, the
inclusion of other metal elements in multimetallic
nanoparticles may cause overlapping of the first and second
nearest neighbour peaks due to the mismatch between
chemical species, and hinder accurate calculation of surface
atom GCN.7

Nevertheless, similar to the work of Baletto group,7 while
GCN is used here for the evaluation of catalytic relevance of
the surface clusters, the methodology is transferable to any
other suitable variable that is capable of predicting the
catalytic performance of metal nanoparticles sufficiently well.

2.5 Workflow

The workflow for the whole surface atoms labelling pipeline
is illustrated by Fig. 2. All written codes and data that
support the findings of this study are openly available at
https://github.com/Jon-Ting/metal-nanoparticle-surface-atom-
labelling.

3 Results
3.1 Data visualisation

We first visualise the data distribution for the atoms
described in the high dimensional space for a selection of Pd
nanoparticles in Fig. 3 using the manifold learning method
t-distributed stochastic neighbour embedding. The details of
the method and more results are included in ESI† (section
S2.2). The points (corresponding to atoms) projected to the

Fig. 1 Illustration of domain-relevant cluster evaluation metrics. The
red and blue curves represent the kernel density estimation of the
generalised coordination number distribution for a given surface
cluster and the catalytic weighting profile obtained from the reference
activity map for a chemical reaction of interest, respectively.
Selectivity, specificity and sensitivity are defined by the yellow range,
the pink range, and the area under the red curve within the pink range,
respectively.

Fig. 2 Workflow for clustering the atoms of metal nanoparticles. The
red, blue, and yellow components correspond to data preparation,
atom clustering, and result evaluation steps, respectively.
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reduced 2D manifold are coloured based on whether the
atoms are identified as a bulk or surface atom by NCPac33 via
the cone algorithm.50 The details of the algorithm are
provided in ESI† (section S1.6.1). This visualisation shows
that the surface and bulk atoms always form distinct groups,
so it is reasonable to assume that ILS would also be able to
distinguish between groups corresponding to the surface and
bulk atoms. We can also see that there are more detailed
sub-groups, indicating there are multiple surface (and bulk)
clusters with different characteristics. The correlation
matrices, and cumulative explained variance plots are
included in ESI† (sections S7 and S8).

3.2 Grouping all atoms

Fig. 4 show the Rmin plots obtained from the first pass of ILS
through all atoms of ordered and disordered Pd
nanoparticles, coloured by the surface and bulk atoms. It can
be seen from the figures that it is straightforward for ILS to
distinguish between bulk and surface atoms, particularly the
ordered nanoparticles, just by dividing the plot at the central
peak. While the bulk atoms seem to be mixed within the
surface atoms for some disordered nanoparticles, identifying
the central peak and rerunning ILS with a cluster centre on
both sides of the peak allows ILS to find the clusters that

Fig. 3 Mapping of the high dimensional data sets for the (a) octahedron, (b) rhombic dodecahedron, (c) tetrahedron, and (d) truncated
octahedron nanoparticles simulated at 0 K, the (e) octahedron, (f) rhombic dodecahedron, and (g) tetrahedron nanoparticles simulated at 523 K,
and (h) the smallest disordered nanoparticle simulated at 723 K, onto 2D manifold learnt via t-distributed stochastic neighbour embedding. The
red and blue points correspond to surface and bulk atoms, respectively.

Fig. 4 Minimum distance plots for the (a) octahedron, (b) rhombic dodecahedron, (c) tetrahedron, and (d) truncated octahedron nanoparticles
simulated at 0 K, the (e) octahedron, (f) rhombic dodecahedron, and (g) tetrahedron nanoparticles simulated at 523 K, and (h) the smallest
disordered nanoparticles simulated at 723 K. The nanoparticles are sliced across the x-axis or (100) plane. The points are coloured by whether they
are surface (red) or bulk (blue) atoms.
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correspond well to the surface and bulk atoms. The relevant
results are included in ESI† (section S9).

Fig. 5 shows the ILS clusters obtained from clustering all
atoms of the ordered nanoparticles, and showed good
evidence that the algorithm can be used to identify different
types of surface and subsurface layers in nanoparticles, which
are crucial for density functional theory studies for catalytic
applications.51,52 The sensitivity of the peak identifying
algorithm is tuneable to obtain coarser or more refined
details of the subsurface structures, as illustrated in ESI†
(section S10). However, it is not trivial to decide what values
to tune them to, and this is deferred to be explored in future
work. While threshold values could be set based on domain
knowledge, to preserve the degree of autonomy of the
clustering pipeline, we have used the same threshold values
based on the testing on ordered nanoparticles in this work.

3.3 Grouping surface atoms

The final Rmin plots for the surface atoms of ordered
nanoparticles are shown in Fig. 6, with the sample colours
corresponding to the identified clusters. This confirms that
ILS is capable of identifying the surface patterns deemed
important for the catalytic performance of metal
nanoparticles, i.e. corners, different edges and sub-edges,
and different facets.53,54 The confirmation that the final
clustering results have been obtained is achieved by verifying
that there are no obvious peaks in the Rmin plots for each
cluster of each nanoparticle. Readers are directed to ESI†
(section S11) for more information.

The final Rmin plots for the surface atoms of disordered
nanoparticles, coloured by the identified clusters, are shown
in Fig. 7. It was discovered that the features that allow

Fig. 5 Minimum distance plots for the (a) cuboctahedron, (b) cube, (c) decahedron, (d) icosahedron, (e) octahedron, (f) rhombic dodecahedron, (g)
tetrahedron, and (h) truncated octahedron nanoparticles simulated at 0 K, coloured by clusters identified. The nanoparticles are sliced across the
x-axis or (100) plane.

Fig. 6 Iterative label spreading minimum distance plots for the (a) cuboctahedron, (b) cube, (c) decahedron, (d) icosahedron, (e) octahedron, (f)
rhombic dodecahedron, (g) tetrahedron, and (h) truncated octahedron nanoparticles simulated at 0 K, coloured by clusters identified.
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surface characteristics on ordered nanoparticles to be
distinguished do not necessarily have the same utility for
disordered nanoparticles. Therefore, a smaller set of features
(determined from an experiment testing different
combinations of descriptors) are used to obtain the results
for the disordered nanoparticles. The results obtained using
the original (all features) and other feature spaces are
included in ESI† (section S12). It is also noted that, as the
final clusters are obtained from a second pass of ILS and are
projected back onto the Rmin plots obtained from the first
pass of ILS, the colours do not necessarily appear to be
consecutive in the plot. The patterns identified confirm that
the algorithm is able to group atoms with similar surface
patterns that are difficult to describe with any single catalytic
variable, and provides good evidence that the algorithm is
capable of combining the information in the high
dimensional feature space, which will be important when

labelling disordered nanoparticles. Further illustrations on
the ability of the algorithm to identify the peaks where
human eyes might fail are included in ESI† (Section S13).

3.4 Surface pattern analysis

The feature profiles of the surface patterns identified can be
analysed to inform researchers about the characteristics of
any surface atom groups of interest, which will be
determined via the cluster evaluation step in this work. As an
example, the box plots of a selected set of features of the
surface clusters identified for an ordered CO nanoparticle
simulated at 0 K, and a disordered nanoparticle simulated at
723 K are shown in Fig. 8 (the box plots for the other features
are included in section S14 of ESI†), with the corresponding
clusters visualised in Fig. 9. The four clusters for the ordered
nanoparticle are composed of atoms with very different

Fig. 7 Iterative label spreading minimum distance plots for octahedron nanoparticles simulated at (a) 323 K and (b) 523 K, rhombic dodecahedron
nanoparticles simulated at (c) 323 K and (d) 523 K, tetrahedron nanoparticles simulated at (e) 323 K and (f) 523 K, and (g) small- and (h) medium-
sized disordered nanoparticles simulated at 723 K, coloured by clusters identified.

Fig. 8 Box plots of a selected set of features for (a) the ordered cuboctahedron nanoparticle simulated at 0 K, and (b) the smallest disordered
nanoparticle simulated at 723 K, with the medians marked by red lines. The explanation of the features are provided in ESI† (section S1.5).
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coordination numbers (which is correlated with the average
bond angles), radial distance from nanoparticle centre, and
certain Steinhardt parameters. Fig. 9(a) reveals that clusters
1, 2, 3, and 4 correspond to the atoms on {100} facets, edges,
{111} facets, and corners, respectively. However, even without
reference to the figure, we can infer this from these feature
profiles alone. For example, the surface atoms in cluster 4
are the corner atoms as they are furthest away from the
centre of the nanoparticle, bonded to a lower number of
neighbours, and have a lower symmetry.

The differences between the three surface patterns
identified in the disordered nanoparticle are more subtle.
Nonetheless, it can be concluded that atoms in cluster 1 tend
to be more deeply embedded among the other surface atoms
(as indicated by its relatively lower median normalised radial
distance from the nanoparticle centre and higher
coordination number compared to other clusters) and are
more symmetric locally. Fig. 9(b) indicates that they are the
most facet-like atoms. The atoms in cluster 2 are very far
from the nanoparticle centre (protruded from the facet-like
atoms), have coordination values that fall in between the
other clusters, and are rather symmetric locally. We refer to
them as the most step-like atoms based on the visualisation
in Fig. 9(b). Cluster 3 atoms have the lowest coordination
and shortest average distance to the neighbouring atoms.
Fig. 9(b) shows that they are the most adatom-like atoms (the
opposite of vacancies) on the surface. The differences in all
features collectively make the surface pattern of each cluster
unique, in a way that is difficult to be described by any single
geometric variable. We also note that all of our features are
structural in this work. The insight obtained could be even
more informative for catalysis if electronic factors are
included in the feature space.

3.5 Catalytic evaluation of surface patterns

In this section, we compare the evaluation results between
the two nanoparticles investigated in section 3.4, in terms of
the selectivity, specificity, and sensitivity of the surface
clusters identified toward some selected chemical reactions,
namely ORR, COOR, and RCORRR. The scores of all clusters
of the surface patterns identified for both nanoparticles

toward the reactions are listed in Table 2. The internal
evaluation scores of the clustering results for all
nanoparticles and the comparisons between the catalytic
weighting profiles and the surface cluster GCN distributions
for the two nanoparticles are included in ESI† (sections S15
and S16, respectively).

It is observed that cluster 3 ({111} surfaces) of the
cuboctahedron nanoparticle has the highest scores toward
ORR. This is in accordance with the findings in the past,
where only sites with the same number of first-nearest
neighbours as {111} terraces but with increased number of
second nearest-neighbours are predicted to have superior
catalytic activity over the atoms on the {111} terraces.17 The
surface pattern that is expected to best contribute to the
catalytic activity toward COOR in terms of selectivity,
specificity, and sensitivity is found to be cluster 2, which
corresponds to the edge atoms. This once again agrees with
the findings in the previous work, where the maximal activity
is reached on the step edges of the electrodes, which has
GCN of approximately 5.4.23 The most catalytically active sites
for RCORRR were determined to be the steps on {110} facets
for 2-propanol production and the {110} steps on {510} facets
for propane production.22 The cluster on the cuboctahedron
nanoparticle surface with the closest surface patterns to these
surface structures is cluster 2 (the edge atoms). While cluster
1 (the {100} facets) has slightly higher selectivity and
specificity scores, cluster 2 is deemed to be superior overall
when sensitivity is taken into account. The finding that no
adsorption nor hydrogenation occur at the {100} and {111}
facets of Pt electrode22 is also reflected by the relatively lower

Fig. 9 Identified surface clusters for the (a) ordered cuboctahedron
nanoparticle simulated at 0 K and (b) smallest disordered nanoparticle
simulated at 723 K. The cluster identifier number ascends from blue
(smallest number) to red (biggest number). Clusters 1, 2, 3, and 4 of (a)
thus correspond to the {100} facets, edges, {111} facets, and corners,
respectively.

Table 2 Selectivity (SEL), specificity (SPC), and sensitivity (SEN) toward
oxygen reduction reaction (ORR), carbon monoxide oxidation reaction
(COOR), and aliphatic ketone reduction reaction (RCORRR) for all surface
clusters of an ordered cuboctahedron nanoparticle simulated at 0 K and
a disordered nanoparticle simulated at 723 K. All three metrics are bound
within the range of [0, 1]

Nanoparticle Reaction Cluster SEL SPC SEN

Ordered ORR 1 0.872 0.987 0.093
2 0.764 0.000 0.000
3 0.918 0.983 0.236
4 0.687 0.000 0.000

COOR 1 0.909 0.985 0.211
2 0.984 0.981 0.678
3 0.863 0.980 0.149
4 0.907 0.164 0.190

RCORRR 1 0.952 0.993 0.183
2 0.940 0.991 0.399
3 0.906 0.990 0.230
4 0.863 0.859 0.237

Disordered ORR 1 0.900 0.166 0.207
2 0.813 0.038 0.011
3 0.737 0.000 0.000

COOR 1 0.881 0.773 0.316
2 0.967 0.851 0.478
3 0.957 0.866 0.430

RCORRR 1 0.924 0.891 0.377
2 0.989 0.926 0.436
3 0.913 0.936 0.303
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sensitivity of clusters 1 and 3 toward RCORRR. These
matching observations with the findings in the literature
validates the reliability of the algorithm in evaluating the
clusters according to the catalytic relevance to different
chemical reactions, and builds our confidence for the
patterns discovered by the algorithm among the disordered
nanoparticles.

The work of Rossi indicated that the most active sites for
ORR tend to be the more deeply embedded atoms on
relatively flat surface, with GCN values within the range of
[7.5, 8.3].8,18 This is in agreement with the prediction in this
work, where cluster 1 atoms (which are the most deeply
embedded and facet-like) are predicted to exhibit superior
catalytic performance (in terms of all three evaluation
metrics) for ORR, and cluster 3 atoms (which are the most
adatom-like) are predicted to be largely irrelevant (with 0
specificity and sensitivity) for ORR. Jørgensen and Grönbeck
found that the edges and corners of Pt nanoparticles tend to
dominate the catalysis of COOR, which is only facilitated by
the facets when the edges and corners are poisoned.24

Specifically, the edges are more active than the corners.25

This study also predicts that the step-like and adatom-like
atoms in clusters 2 and 3 have higher catalytic performance
for COOR than the facet-like cluster 1 atoms. The trend of
activity is also similar to the literature,25 with cluster 2 atoms
having higher selectivity and sensitivity but slightly lower
specificity than cluster 3. For RCORRR, the performance of
the most step-like cluster 2 atoms is predicted to be superior
over the other clusters, in accordance to the findings of
Bondue et al.22

While more research into these surface patterns using
electronic structure methods would be beneficial to confirm
this prediction, and identify underlying mechanisms, the
present work demonstrates that these patterns can be found
and labelled automatically.

4 Conclusions

We have presented a new data-driven approach to identify
the patterns among the surface atoms of simulated metal
nanoparticles and characterise their catalytic potentials. The
surface atoms are grouped into patterns based on their
similarities in the high dimensional feature space using the
iterative label spreading clustering algorithm. After atomistic
features are extracted and processed, a complete workflow
pipeline is demonstrated on a data set of simulated Pd
nanoparticles. This approach can be generalised to other
atomistic objects, and automated to label entire molecular
dynamics trajectories.

The possibility of using the surface atom clusters as the
performance indicators of the catalytic potential of the
nanoparticles was investigated. The surface patterns were
found to provide a reliable, purely unsupervised labelling
scheme for nanoparticle surface atoms, capable of identifying
complicated surface patterns that may be unintuitive to
researchers, but highly relevant to different catalytic

reactions. This approach is significantly faster than electronic
structure simulations, capable of characterising large
nanoparticles, and could replace current, simplistic labelling
schemes that fail to capture multi-atom effects. The surface
patterns can act as a surrogate label for their catalytic
activities by allowing the catalytic contribution of the surface
pattern groups of any simulated nanoparticle toward
chemical reactions to be quantified. This pipeline is general
and can be automated to remove the labelling bottleneck that
prevents more widespread usage of large data sets and
molecular dynamics simulation trajectories in the study of
nanocatalysts.

It was found that the features used to distinguish the
surface characteristics of ordered nanoparticles may not be
as effective for disordered nanoparticle structures.
Consequently, as the degree of disorder in the nanoparticle
structures increases, the original feature space gradually loses
its capability to capture the surface patterns. The surface
patterns for clusters for disordered nanoparticles can be
detected by (i) refining the selection of features for
disordered nanoparticles, and/or (ii) tuning the sensitivity of
the peak identification algorithm. However, it is not trivial to
decide the optimal groups of features and optimal values for
the tuning, hence dedicated future work is planned to
investigate these issues.

We also note that the evaluation metrics in this work are
based on the activity maps for platinum and copper
nanoparticles. However, the transferability of the maps across
different metals is unknown. Ideally, the nanoparticles
should be evaluated by the catalytic weightings obtained
from the activity maps computed using the nanoparticles of
the same type of elements. Nonetheless, the methodology
developed here will be applicable as soon as such maps are
available from the literature.

Data availability

This study was carried out using publicly available palladium
nanoparticle data from CSIRO Data Access Portal at https://
doi.org/10.25919/epxd-8p61. Data generated for this article,
including the extracted features, code scripts, and figures are
available at https://github.com/Jon-Ting/metal-nanoparticle-
surface-atom-labelling. The original source codes for NCPac
(version 1) and SYMMOL (version October 22nd 2002) can be
found at https://doi.org/10.25919/tfv3-he58 and https://
github.com/fxcoudert/symmol, respectively.
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