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Machine learning thermodynamic perturbation
theory offers accurate activation free energies at
the RPA level for alkene isomerization in zeolites†

Jérôme Rey,a Michael Badawi, *ab Dario Rocca,a

Céline Chizallet *c and Tomáš Bučko *de

The determination of accurate free energy barriers for reactions catalyzed by proton-exchanged zeolites

by quantum chemistry approaches is a challenge. While ab initio molecular dynamics is often required to

sample correctly the various states described by the system, the level of theory also has a crucial impact. In

the present work, we report the determination of accurate barriers for a type B isomerization of a

monobranched C7 alkene (4-methyl-hex-1-ene) into a dibranched tertiary cation inside a protonated

chabazite zeolite. This is done by using the Machine Learning Thermodynamic Perturbation Theory (MLPT)

at the Random Phase Approximation (RPA) level, on the basis of blue-moon sampling dynamic data

obtained at the Generalized Gradient Approximation (GGA) level (PBE+D2). The comparison of PBE+D2

and RPA profiles shows that the former overstabilizes cationic intermediates with respect to neutral ones.

The transition state of the isomerization is a non-classical edge protonated cyclopropane, the stabilization

of which is lower than that of the π-complex when PBE+D2 is replaced by RPA, but higher than that of the

classical tertiary carbenium. Consequently, the backward isomerization barrier is decreased. Applying the

MLPT approach to recompute the free energy barriers with various dispersion correction schemes to the

PBE energies shows that none of the schemes is sufficient to improve both the forward and backward

barriers with respect to the RPA reference. These data complement previously determined alkene cracking

barriers [Rey et al., Angew. Chem., Int. Ed., 2024, 63, e202312392], thanks to which it is possible to

compare the presently determined barriers with reference experimental data [Schweitzer et al., ACS Catal.,

2022, 12, 1068–1081]. The agreement with experiments is significantly improved at the RPA with respect to

GGA. Chemical accuracy is approached (maximum deviation of 6.4 kJ mol−1), opening the door to

predictive kinetic modelling starting from first principles approaches.

1 Introduction

The determination of accurate free energy barriers is a key
challenge in computational catalysis. Indeed, as it can be
deduced from the Eyring equation,1 errors made on free
energy barriers translate exponentially on the rate constant,
itself being directly linked to the rate of elementary steps

through rate equations. Reaching chemical accuracy, i.e.,
predicting barriers with a deviation with respect to
experiments lower than 4.2 kJ mol−1, is thus more than ever
needed. For example, at a reaction temperature of 500 K, the
chemical accuracy implies that the ratio of experimental
versus computed rate constants must not exceed 2.8.

Achieving this goal requires improving both the level of
theory and the quality of the sampling of states to quantify
the stability of reactants, transition states and products. In
the current common practice, which is determined by the
available computer power, performing ab initio molecular
dynamics (AIMD) for simulation cells relevant for the
modelling of heterogeneous catalysts at higher levels of
theory than density functional theory (DFT) is not feasible. In
the present study, our goal is to quantify accurate barriers
making use of the Random Phase Approximation2,3 (RPA)
level. RPA was indeed shown to perform remarkably well for
a series of properties of solids such as lattice parameters,4,5

for adsorption energies of various molecules on surface
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(including metals6,7 and zeolites8,9), and for barriers of
simple reactions.10–13 Very recently, we quantified free energy
barriers for a set of zeolite catalyzed reactions14 at the RPA
level combined to AIMD, thanks to Machine Learning
Thermodynamic Perturbation Theory (MLPT).15–18 The
breakthrough result of this study is that it demonstrated that
it is possible to perform sampling of realistic systems at a
very high level of theory in a reasonable time (a few weeks),
which is just a small fraction of the estimated computational
time that would be needed to perform AIMD at the RPA level
of the same length in a naive way (a millennium). An
unprecedented accuracy was reached when comparing the
computed barriers with experimental ones, extracted from a
complex reaction network thanks to kinetic modelling.19

Zeolite-catalyzed reactions play a major role in a large
array of mature and developing catalytic processes, belonging
to the fields of refining, petrochemistry, pollution abatement,
biomass conversion and plastic recycling, among others.20–29

Understanding the mechanisms at play and being able to
accurately predict the rate constants of important elementary
steps for such reactions is thus highly important.30 For a
large array of zeolite-catalyzed reactions, reliance on high
levels of theory31–34 (beyond DFT) and explicit sampling of
configuration space via AIMD35–41 has proven essential to
properly capture the nature and stability of intermediates. As
mentioned above, effective combination of these two
requirements became achievable only very recently,14,42,43

thanks to development of machine learning approaches.
Many of the previously cited works address hydrocarbon

transformation reactions on Brønsted acidic zeolite, in which
main active sites are bridging Si–(OH)–Al groups. The reactions
involve both neutral (adsorbed alkanes and alkenes) and ionic
(carbonium or carbenium ions, obtained by protonation of the
hydrocarbon molecules) species. The variation of the free
energy estimate of these species as a function of the level of
theory (GGA versus higher level methods) appeared to depend
strongly on the charge state of these species.31,34,42,44–46 It is
crucial to quantify the intensity of this effect, also accounting
for the impact of the charge state on the dynamic behavior of
the confined intermediates. This requirement holds true for
the family of reactions that we have considered in our previous
work,14 namely the isomerization and cracking of alkenes
containing seven carbon atoms.

By the MLPT approach, we have previously addressed type
B isomerization reactions (which induce a change in the
branching degree of the hydrocarbon skeleton) linking di-
and tri-branched tertiary carbenium ions, and a type B1

cracking reaction transforming a secondary cation into a
tertiary carbenium plus propene (Fig. 1a and c). In the
present work, we extend this analysis by considering a type B
isomerization of a monobranched alkene (4-methyl-hex-1-
ene) into a dibranched tertiary cation, passing through a
secondary carbenium ion (Fig. 1b). Previous AIMD study
conducted at the PBE+D2 level showed that the latter was
only an elusive reaction intermediate.35 This additional case
study is relevant in a practical context, as the bifunctional

hydroisomerization and cracking of linear alkanes pass
through the gradual increase of the degree of branching of
intermediates (alkenes and carbenium ions, obtained after
dehydrogenation of alkanes on a metallic phase).19,30,47 We
show in the present work that MLPT at the RPA level is a
precious tool to approach chemical accuracy, whereas
adjusting the dispersion correction scheme brought to the
PBE energies does not lead to substantial improvement. A
fundamental interest can also be found in the combination
of neutral and ionic intermediate states in a same
isomerization reaction, whereas in our previous work,14 a
neutral intermediate was invoked as the reactant of a
cracking reaction. Thanks to MLPT, a better rationalization
can be made between the level of theory and the stability of
important species in the reaction network, taking into
account their dynamic behavior.

2 Methods

All the simulations have been performed using the periodic
DFT program VASP,48–50 utilizing the projector-augmented wave
(PAW) method implemented by Blöchl and Kresse et al.51,52

The Kohn–Sham equations were solved self-consistently with a
convergence criterion of 10−7 eV per cell. The basis set with
plane waves with kinetic energy of up to 400 eV was used and
the integrations over the Brillouin zone were realized using a
single k-point at the position Γ. A Gaussian smearing with a
smearing parameter of 0.05 eV was applied. The simulation cell
used to represent the chabazite structure is shown in Fig. 2.
The proton initially lies onto the framework oxygen atom O1,
which is, according to experiment,53 one of the two most
populated proton sittings in CHA.

The MLPT calculations were performed using the NVT
Born–Oppenheimer AIMD free energy calculations at 500 K
(Andersen thermostat, collision frequency per atom of 0.01
fs−1) at the PBE54 level with D2 (ref. 55) dispersion correction
described in our previous work.36 In the following, we shall
refer to the PBE+D2 method used to produce the AIMD data

Fig. 1 Reactants (R), transition states (TS) and products (P) of the
reactions compared in the present work: a) type B isomerization
between dibranched and tribranched tertiary carbenium ions, b) type B
isomerization between a mono-branched π-complex and a dibranched
tertiary carbenium ion, c) type B1 β-scission cracking reaction. All
reactions are catalyzed by proton-exchanged zeolite chabazite.
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as the production method. The free energy of activation (ΔA‡)
was determined thanks to simulations in the Blue Moon
ensemble,56,57 as reported in ref. 35. A reaction coordinate
based on distances between relevant atoms (C and H from
the hydrocarbon moiety, H and O from the zeolite acid site)
was chosen and shown to lead to reliable results. In the
present work, using the computed free energy of activation
and ensembles of reactant and transition state structures
obtained with the production method, the free energies of
activation at various target method levels (ΔÃ‡), involving PBE
+D3(0) and PBE+D3(BJ),58,59 PBE+D4,60–62 PBE+dDsC,63 PBE
+TS,64,65 PBE+TS/HI,66,67 PBE+MBD,68–70 PBE+MBD/FI,71 and
RPA,2,3,72–74 were determined via

ΔÃ‡ = ΔA‡ + ΔATS − ΔAR, (1)

with the terms associated with transition state (TS) and
reactant (R) being defined as

ΔATS = −kBT ln〈exp[−ΔV(q)/kBT]〉ξ* (2)

and

ΔAR = −kBT ln〈exp[−ΔV(q)/kBT]〉, (3)

respectively. The angular brackets 〈⋯〉 and 〈⋯〉ξ* represent
the NVT ensemble average over free R, and that over the
configurations with the reaction coordinate (ξ(q)) fixed at
the value characteristic for TS (ξ*), respectively. kB is the
Boltzmann constant, T is thermodynamic temperature, and
ΔV(q) is the difference in potential energy computed using
the target and production methods for a configuration
with Cartesian coordinates q. Note that eqn (1) can be
used to express also ΔÃ‡ of the reverse reaction mode,
but the term ΔAR must be replaced by ΔAP corresponding
to contribution of product (P), which is defined
analogously to eqn (3).

As an auxiliary quantity, the internal energy of activation
can be defined as follows:15,57

ΔŨ‡ = ŨTS − ŨR, (4)

with

Ũ TS ¼
Ṽ qð ÞZ−1=2 exp −ΔV qð Þ=kBT½ �� �

ξ*

Z−1=2 exp −ΔV qð Þ=kBT½ �� �
ξ*

; (5)

and

ŨR ¼ Ṽ qð Þ exp −ΔV qð Þ=kBT½ �h i
exp −ΔV qð Þ=kBT½ �h i ; (6)

where Z ¼
XN
i¼1

X
v¼x;y;z

1
mi

∂ξ
∂qi;v

 !2

with N and mi being the

number of atoms in the system and the mass of an atom i.
In order to compute the terms ΔAi and Ũi, up to 225

configurations from production method AIMD of the state i
were selected and the target method potential energies were
computed in single point calculations. The differences ΔV(q)
were then determined using the production method energies
available from AIMD and these data were employed to train a
Δ-ML model that was subsequently used to predict ΔV(q) for
a representative ensemble of configurations of a state i (every
10th point of the original production method trajectory). As
in our previous work,14 the kernel ridge regression75 with the
REMatch kernel76 and the SOAP (smooth overlap of atomic
positions) descriptors77 were used for this purpose.
Compared to other ML-based methods used to study
chemical reactions, our approach has advantage that it does
not require building a global model for whole reaction
process but, instead, it uses two separate models specifically
trained for R and TS.

The results for ΔATS and ΔAR obtained as described above
can be affected by the systematic error due to imperfect Δ-ML
model. As shown in ref. 16, this source of error can be
significantly reduced by applying the correction:

ΔAi ← ΔAi + Δε (7)

where

Δε ¼ ε qð Þh i − ε qð Þh i − εh i2
2kBT

− ε qð Þ ΔV qð Þð Þh i − εh i ΔV qð Þh i
kBT

(8)

and ε(q) is the difference between actual and predicted ΔV(q).
Note that the terms on the right hand side of eqn (8) are
closely related to the mean error (ME), root mean square
error (RMSE) and covariance of error with ΔV(q) (COVE),
which are often used as measures of quality of the ML model
and can be determined using a reasonably large independent
test set with known exact labels (here ΔV(q)). Thus, our
correction scheme can be integrated into the usual training–
validation workflow conventionally used in the ML-based
calculations. In the context of present work, the test set used
to determine Δε is termed “correction set”. Due to enormous
computational demands of RPA calculations, we sought for a
computationally more effective solution that allows us to
estimate ε(q) without the need of defining an independent
correction set. For this purpose, we test in this work the use

Fig. 2 The supercell of acid chabazite with the π-complex, reactant
for the isomerization reaction. Color code: Si in blue, O in red, Al in
light blue, C in brown, H in white.
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of the leave one out (LOO) strategy,78 in which, out the Ntrain

labelled data points, Ntrain − 1 points are used as a training
set to prepare a model which is subsequently used to make
prediction for the remaining “left-out” point. The whole
process is repeated Ntrain times such that Ntrain independent
predictions (subsequently used as correction set) are made
using the same number of models that are all very similar
(sharing all but one training points) with the model validated
(trained on all Ntrain points). Obviously, the prerequisite for
this strategy to yield realistic estimates of Δε is a sufficiently
high Ntrain enabling a reasonable estimates of ME, RMSE,
and COVE on one hand, and ensuring near identity of
models trained on Ntrain − 1 and Ntrain data points on the
other. We test this approach on the example of a time-
effective DFT calculation in Sec. 3.1.

Finally, let us remark that if the ΔATS and ΔAR terms are
determined using a Δ-ML model based on the same method
and values of hyperparameters, which is the case in this
study, the corresponding Δε values are likely to take very
similar values and, consequently, their contribution to ΔÃ‡

determined via eqn (1) is likely to vanish. Indeed, ΔÃ‡ was
shown16,79 to converge much faster than the individual ΔATS
and ΔAR terms.

3 Results and discussion
3.1 Convergence of the MLPT results

In this section we examine the convergence of the ΔAR, ΔATS,
and ΔÃ‡ − ΔA‡ = ΔATS − ΔAR terms for the forward reaction
mode with respect to the training set size used in the MLPT
calculations. As a demonstration example, PBE+dDsC target
method is used but similar trends are observed also for other
methods considered here. For both states, R and TS, 225
configurations were first selected from production parts of
the MD-generated trajectories in such a way that their
separation was 400 MD steps (i.e., more than assumed
correlation time of ∼100 fs). Out of these configurations,
Ntrain = 10, 25, 62, 113, and 225 structures were used as a

training and remaining 225-Ntrain as a correction set for
calculation of Δε via eqn (8). Alternatively, the LOO strategy
described in Sec. 2 was applied using the training set only.

The numerical results obtained for the ΔAR, ΔATS, and ΔÃ‡

terms are listed in Table 1. As evident from the data, the
uncorrected values show very rapid convergence with respect
to the training set size, and even the model prepared with
Ntrain = 10 yields result for ΔÃ‡ − ΔA‡ that is within 1 kJ mol−1

identical to our best estimate obtained with Ntrain = 225. Such
an excellent convergence is possible because of the strong
linear correlation between the potential energies of the target
and production methods, which can be demonstrated for all
target methods considered in this work (see Fig. 3).

Despite this strong correlation, the variance in ΔV(q) is far
from being negligible - if this were the case, the calculation
of ΔÃ‡ − ΔA‡ would be trivial, namely ΔÃ‡ − ΔA‡ = ΔV(qi) for

Table 1 Terms ΔAR, ΔATS, and ΔÃ‡ − ΔA‡ = ΔATS − ΔAR (all in kJ mol−1)
computed using MLPT for the PBE+D2 production and PBE+dDsC target
methods for the forward step of the type B isomerization reaction from
the mono-branched π-complex to the dibranched tertiary carbenium ion.
Results obtained using different sizes of training set (Ntrain) and different
methods for computing correction Δε (no correction (None), independent
correction set (225-Ntrain), or leave one out procedure (LOO))

Quantity Correction

Ntrain

10 25 62 113 225

ΔAR None −44.38 −44.18 −43.58 −43.48 −43.62
225-Ntrain −43.62 −43.53 −43.66 −43.72 —
LOO −45.96 −44.74 −43.86 −43.62 −43.70

ΔATS None −39.52 −39.17 −39.57 −39.70 −39.74
225-Ntrain −40.22 −40.02 −39.90 −39.99 —
LOO −40.36 −39.69 −39.84 −39.87 −39.81

ΔÃ‡ − ΔA‡ None 4.86 5.01 4.01 3.77 3.88
225-Ntrain 3.41 3.51 3.76 3.72 —
LOO 5.60 5.05 4.02 3.75 3.89

Fig. 3 Correlation between target (Ṽ ) and production (V) potential
energies of reactant of the type B isomerization of mono-branched
π-complex into a dibranched tertiary carbenium. Results for the PBE
+dDsC (above) and RPA (below) target and PBE+D2 production
methods are shown. The dashed lines correspond to the linear fit to
data points (represented as red symbols) computed for selected
structures generated using the AIMD simulation at the PBE+D2 level
(the parameters of the linear fit and the coefficient of determination
are shown in the inset of each plot), while the dotted lines represent a
perfect agreement between both sets of data. For easier visualization,
all potential energies are referenced to the minimal values obtained
within the dataset using the given method (Ṽ ref and Vref for target and
production methods, respectively).
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arbitrarily chosen qi. In the case of the 225 configurations
reactant state, for instance, ΔV(q) varies between −46.88 and
−34.61 kJ mol−1. Since a similar variance is observed also in
the TS data (here ΔV(q) ranges between −48.84 and −27.98 kJ
mol−1), the uncertainty in prediction of ΔÃ‡ − ΔA‡ made using
a randomly selected single R and TS configurations would be
much greater than the ΔÃ‡ − ΔA‡ itself (−3.86 kJ mol−1, see
Table 1) and even the sign of the free energy difference would
be a matter of chance.

The correction Δε obtained using 225-Ntrain data points
basically eliminates any uncertainty resulting from systematic
error of ML in predicted ΔAR, ΔATS, and ΔÃ‡ (see Table 1). At
first sight, the benefit of the present procedure might not be
obvious since, after all, the same number of data points is
used in all cases with different Ntrain, the difference being
only in their partitioning between the training and correction
set. Nevertheless, even this simple example shows that, since
the systematic error can be eliminated a posteriori, one
should actually demand convergence of corrected rather than
uncorrected free energy values. This idea is particularly
useful in context of our alternative computationally more
effective simulation protocol in which the correction set is
prepared using the LOO procedure (see Sec. 2) and hence the
explicit target method calculations need to be performed only
for Ntrain data points. In this case, as expected, the quality of
correction for very small training sets is poor but
systematically improves by increasing Ntrain (see Table 1) and
the values obtained with 62 and 225 datapoints are virtually
identical to the results corrected with independent training
set (Table 1). Importantly, consistency in corrected and
uncorrected results for ΔATS − ΔAR obtained using a certain
value of Ntrain clearly indicates that the systematic error does
not significantly affect predictions of free energy differences.
As shown in Table 2, this indeed holds true for all methods
discussed in this work when Ntrain = 62 was used. Discussion
presented in remaining part of this work is therefore based
on the results obtained with this setting and correction
estimated from the LOO procedure.

Finally we note that a good overlap between the
configuration spaces sampled by target and production
methods must be achieved to get reliable MLPT results.80 This
important requirement can conveniently be measured by the

index Iw
16,17 with the limiting values of 0.0 and 0.5,

corresponding to zero and perfect overlap, respectively. This is
achieved by computing the weighting factors wi = e−ΔV(qi)/kBT for
all N configurations used in MLPT calculation, ordering them
in an ascendant order, and identifying the lowest M fulfilling

the condition

PM
i
wi

PN
j
wj

≥0:5, which then defines Iw as follows:

Iw ¼ N −Mð Þ
N

: (9)

As shown by Herzog et al.,17 the MLPT procedure is
reliable if Iw ≥ 005, which was fulfilled for all methods except
of PBE+TS/HI applied to the TS structure, see Table 3.

3.2 MLPT results at various levels of theory

In the type B isomerization reaction investigated in this work,
a π-complex (reactant) is first transformed into a
monobranched secondary cation after proton is transferred
from the zeolite. The very elusive secondary cation is
subsequently isomerized into a tertiary dibranched cation via
an edge protonated cyclopropane transition state (Fig. 1b).
The corresponding free and internal energy barriers for the
forward and backward steps determined by AIMD (PBE+D2)
and MLPT (other levels of theory) are reported in Table 4. In
addition, the free energy profiles computed at the PBE+D2
(AIMD) and RPA (MLPT) levels of theory are compared in
Fig. 4.

The forward step corresponds to the transition from the
neutral π-complex to the cationic edge protonated
cyclopropane (PCP) transition structure and the
corresponding ΔA‡ obtained in Blue Moon ensemble AIMD
simulations at the PBE+D2 level is 69.2 kJ mol−1.35 The MLPT
calculation at the RPA target method level leads to increase
of this barrier to 76.3 kJ mol−1, which is related to a relative
stabilization of the π-complex reactant with respect to the
cationic edge protonated transition state. For the backward
reaction, which involves transformation from tertiary
dibranched cation to PCP, the PBE+D2 free energy of
activation is 94.5 kJ mol−1. Unlike for the forward reaction,

Table 2 Terms ΔATS − ΔAR and ΔATS − ΔAP (in kJ mol−1) obtained for
various methods using MLPT with Ntrain = 62 without and with (indicated
with prime) correction Δε (see eqn (8)) determined using the LOO
procedure

Target method ΔATS − ΔAR ΔA′TS −ΔA′R ΔATS − ΔAP ΔA′TS −ΔA′P
PBE+D3(0) 3.55 3.70 7.56 7.52
PBE+D3(BJ) 6.11 6.16 7.16 7.09
PBE+D4 4.86 5.00 6.35 6.36
PBE+TS 1.70 1.87 3.72 3.57
PBE+TS/HI −2.97 −2.81 6.08 5.90
PBE+dDsC 4.01 4.02 3.66 3.51
PBE+MBD 1.48 1.54 3.70 3.64
PBE+MBD/FI −0.85 −0.83 3.98 3.87
RPA 6.92 7.09 −1.62 −2.04

Table 3 The Iw values obtained in MLPT calculations of reactant (R),
transition state (TS), and product (P) of the type B isomerization reaction
with PBE+D2 production and different target methods

Target method R TS P

PBE+D3(0) 0.16 0.08 0.20
PBE+D3(BJ) 0.23 0.13 0.24
PBE+D4 0.23 0.14 0.23
PBE+TS 0.17 0.17 0.18
PBE+TS/HI 0.06 0.02 0.13
PBE+dDsC 0.27 0.19 0.25
PBE+MBD 0.21 0.18 0.20
PBE+MBD/FI 0.23 0.16 0.28
RPA 0.12 0.07 0.13
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RPA predicts decrease of ΔA‡ by 2.0 kJ mol−1 compared to the
PBE+D2 result. Thus, in contrast to the type B isomerization
linking tertiary cations considered in our previous work14

(Fig. 1a), the product (tertiary cation) is slightly less stabilized
than the cationic PCP transition state by RPA. Computing the
free energy of reaction as the difference between ΔA‡

determined for the forward and backward reaction modes,
we find that both methods predict that the tertiary
carbenium ion is more stable than the π-complex.
Nevertheless, the relative stability of the former with respect
to the latter is significantly reduced when PBE+D2 is replaced
by RPA, whereby the free energy of reaction increases from
−25.3 kJ mol−1 to −16.2 kJ mol−1.

Since the difference between the ΔA‡ and ΔU‡ terms
determined for the R → TS transformation (see Table 4) is
only 3.4 (PBE+D2) and −1.0 kJ mol−1 (RPA), one can deduce
that the entropy change linked with this first part of reaction
is only modest. In contrast, ΔA‡ − ΔU‡ for the P → TS
transformation is much larger (33.9 and 33.7 kJ mol−1 for
PBE+D2 and RPA, respectively), indicating that the entropy of
product is significantly higher than that of reactant and

transition states. As explained in our previous work,35 the
entropy gain in the product state is due mainly to release of
frustrated rotations and translations upon breaking relatively
strong H-bonds present in reactant. Interestingly, this
entropic effect predicted by RPA is about the same as that
obtained in PBE+D2 calculations.

Combining the free energy results presented here with the
data previously reported for the type B isomerization between
tertiary cations and for type B1 cracking,14,37 we predict the
general trend according to which all neutral intermediates
are more stabilized with respect to ionic species at the RPA
than at the PBE+D2 level of theory. The fact that PBE+D2
overestimates the stability of ionic species with respect to
higher levels of theory is qualitatively compatible with
previous reports made on short-chains alkenes.42,44 The
isomerization PCP transition states do not follow strictly the
trend of tertiary carbenium ions, so that the barriers linking
tertiary cations to these TS are lower at the RPA level.

Equipped with the RPA high-level reference results, we
can now proceed to evaluation of the quality of
approximate methods based on various dispersion
correction methods to the PBE functional, which belongs
to most popular computationally inexpensive ab initio
simulation methods used in theoretical catalysis. For the
forward reaction mode, the approximate methods predict
change in ΔA‡ by −2.8 (PBE+TS/HI) to 6.2 kJ mol−1 (PBE
+D3(BJ)) with respect to the PBE+D2 method, whereby the
closest agreement with the RPA reference is achieved by
the PBE+D3(BJ) followed by the PBE+D4 and PBE+dDsC
methods (ΔA‡ of 75.4, 74.2, and 73.2 kJ mol−1,
respectively). In contrast, the PBE+TS/HI and PBE+MBD/FI
methods predict a qualitatively different trend, i.e., a slight
reduction in ΔA‡ (by −2.8 and −0.8 kJ mol−1, respectively).
Disappointingly somewhat, all the dispersion correction
methods predict incorrect trend for the free energy barrier
of the backward reaction mode, whereby the predicted
changes range between 3.5 (PBE+dDsC) to 7.5 kJ mol−1

(PBE+D3(0)). Importantly, the effect of dispersion
correction on the forward and backward barrier is similar
in most cases, leading to a very small effect on the free
energy of reaction. Exceptions are the PBE+TS/HI and PBE
+MBD/FI methods, which predict an increase in backward
and a decrease in forward barriers, leading to a significant
decrease in the free energy of reaction (−34.0 and −30.0 kJ
mol−1, respectively) in comparison to the PBE+D2 method
(−25.3 kJ mol−1), which is in striking contrast to the trend
observed for the RPA method (increase to −16.2 kJ mol−1).

Furthermore, comparison of the ΔA‡ and ΔU‡ values
presented in Table 4 reveals that although the general
entropy trend along the R → TS → P sequence obtained
by the different methods remain qualitatively the same as
that predicted by the RPA and PBE+D2 methods, the
quantitative differences are non-negligible. Hence, ΔA‡ −
ΔU‡ for the R → TS step ranges between 2.6 (PBE+TS)
and 7.0 kJ mol−1 (PBE+D3(BJ)), while that for the P → TS
step is between 30.5 (PBE+MBD) and 39.5 (PBE+TS). These

Table 4 Forward and backward isomerization free (ΔA‡) and internal
(ΔU‡) energies of activation (kJ mol−1) determined by Blue Moon
ensemble AIMD (PBE+D2) and MLPT (other levels) using various levels of
theory. Errors with respect to the RPA reference are shown in
parentheses

Method

Forward Backward

ΔA‡ ΔU‡ ΔA‡ ΔU‡

PBE+D2 69.2 (−7.1) 72.6 (−2.7) 94.5 (2.0) 60.6 (1.8)
PBE+D3(0) 72.9 (−3.4) 77.9 (2.6) 102.0 (9.5) 68.5 (9.7)
PBE+D3(BJ) 75.4 (−0.9) 82.4 (7.1) 101.6 (9.1) 68.4 (9.6)
PBE+D4 74.2 (−2.1) 80.7 (5.4) 100.9 (8.4) 69.5 (9.7)
PBE+TS 71.1 (−5.2) 74.8 (−0.5) 98.1 (5.6) 58.6 (−0.2)
PBE+TS/HI 66.4 (−9.9) 69.0 (−6.3) 100.4 (7.9) 68.8 (10.0)
PBE+dDsC 73.2 (−3.1) 77.6 (2.3) 98.0 (5.5) 62.3 (3.5)
PBE+MBD 70.7 (−5.6) 76.1 (0.8) 98.1 (5.6) 67.6 (8.8)
PBE+MBD/FI 68.4 (−7.9) 75.3 (0.0) 98.4 (5.9) 65.6 (6.8)
RPA 76.3 75.3 92.5 58.8

Fig. 4 Comparison of free energy diagrams computed by AIMD
PBE+D2 and MLPT RPA levels of theory for the isomerization reaction
from the monobranched alkene to the tertiary dibranched cation.
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results show that a significant portion of the deviation
between most levels of theory and RPA can be assigned to
entropic factors.

All these results suggest that the improvement in the
approximate results cannot be achieved via the choice of
the method for description of the long-range dispersion
interactions but rather through a careful selection of the
density functional approximation. In particular, the use of
hybrid functionals that incorporate a portion of Hartree–
Fock exchange can be expected to reduce some of the
errors of semi-local functionals, such as the self-
interaction or delocalization errors, possibly leading to
improvement of the description of ionic states and
reaction barriers. Unfortunately, in line with our previous
work,14,17 our attempted MLPT calculations with hybrid
functionals (namely HSE06 (ref. 81–83) and B3LYP84,85) did
not yield reliable results because of poor overlaps between
the configuration spaces sampled by the production and
target methods (Iw < 0.001). As proposed by Herzog
et al.,17 this problem can be overcome by performing
additional Monte Carlo calculations employing the Δ-ML
model trained within MLPT (so called MLMC approach).
However, these calculations would require performing
additional tens of thousands of explicit calculations of the
production method, and hence represent a significant
additional computational cost to an already very high cost
of the RPA simulations presented in this work.
Nevertheless, our qualitative static calculations (see Sec. SI
in the ESI†) suggest that hybrid functionals will not lead
to reliable results with respect to the RPA reference level.

3.3 Comparison with experimental and kinetic modelling
results

With these new data in hand, we can now compare the
improvement brought by the RPA MLPT approach with the
previous estimates, using as reference data extracted from
the kinetic modelling of experimental data (bifunctional
hydroisomerization of n-heptane) acquired thanks to a
high-throughput setup, as reported in ref. 19. The
comparison between computational and experimental
results is not straightforward as the reaction network
consists of forty type B isomerization steps, including the
ones (forward and backward) investigated in the present
work (termed TS5b in ref. 19). A single-event kinetic
model was built on the basis of previous AIMD
calculations for the cracking steps37 and on static
calculations made on purpose for the whole set of type B
isomerization steps.

The agreement between experiments and the ab initio-
based kinetic model was not optimal at the first try. The
difference between the free energy barriers of the type B
isomerization and B1 cracking needed to be adjusted to
reproduce accurately the isomerization over cracking
selectivity. The choice was made to keep the isomerization
barrier unchanged, and to increase the cracking barrier by

15 kJ mol−1, but one may have chosen to decrease by 15
kJ mol−1 the isomerization barriers, keeping the cracking
barrier unchanged. A similar improvement of the
description of the isomerization versus cracking selectivity
would have been modelled. The isomerization/cracking
selectivity is indeed monitored by the free energy barrier
difference between the two kinds of events, independently
of their absolute value. Thus, we consider as “reference
data” the free energy barrier differences between type B
isomerization and B1 cracking, but not the absolute values
themselves.

Table 5 reports the free energy barriers for the currently
considered type B isomerization and for the B1 cracking step,
by the various computational approaches undertaken (AIMD
at the PBE+D2 level, RPA MLPT) and the one used in the
optimal kinetic model. From these values, the difference
between free energy barriers of type B isomerization and B1

cracking (kJ mol−1) was determined and reported in Table 6.
It can be seen very clearly that the RPA level provides much
better results when comparing to the available reference data
than the PBE+D2 AIMD calculations. Chemical accuracy
(deviation with respect to experiment within 4.2 kJ mol−1) is
approached with RPA MLPT (remaining deviation from
experimental data of 5.0 and 6.4 kJ mol−1 for the forward and
backward isomerization steps, respectively). These results are
consistent with those obtained in our previous work14 for the
type B isomerization reaction involving tertiary cations only
(Fig. 1a) showing that the improvement achieved by replacing
the PBE+D2 by the RPA level of theory is significant
regardless of the nature of the reactant under consideration
(π-complex or cation).

Table 5 Free energy barriers (kJ mol−1) at 500 K of the forward and
backward type B isomerization step (Isom. B) considered in the present
work and for the B1 cracking step obtained using AIMD at the PBE+D2,
MLPT at the RPA level and the kinetic modelling based on experimental
data. For the forward isomerization step and the cracking step, the
reactant state is considered to be a π-complex

Step PBE+D2 AIMD RPA MLPT Kinetic modelling

Isom. B, forward 69.2 76.3 74.7
Isom. B, backward 94.5 92.5 89.5
B1 cracking 60.1 71.6 75.0

Table 6 Differences between free energy barriers of type B
isomerization and B1 cracking (kJ mol−1), for the forward and backward
isomerization steps, determined by AIMD at the PBE+D2 level (data
extracted from ref. 35 and 37), by MLPT at the RPA level (data from ref.
14 and present work), and those used in the optimal kinetic model (from
ref. 19). The latter being compared to experimental results is considered
as a reference data. Deviation of the computed parameters with respect
to the reference data is reported into brackets

Isomerization step PBE+D2 AIMD RPA MLPT Kinetic modelling

Forward 9.1 (9.4) 4.7 (5.0) −0.3
Backward 34.4 (19.9) 20.9 (6.4) 14.5
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4 Conclusions

In the present work, an accurate quantification of the barrier
of the Brønsted acidic zeolite-catalyzed type B isomerization
of a monobranched C7 alkene (4-methyl-hex-1-ene) into a
dibranched tertiary cation was reported at the RPA level and
PBE method linked with various dispersion corrections. The
combination of AIMD with RPA was made possible thanks to
MLPT within a few weeks, whereas it is not feasible to date to
perform full AIMD at the RPA level of theory.

The isomerization reaction considered here is of interest
because it links a neutral reactant (a π-complex) to a cationic
species (a tertiary carbenium ions). Analyzing the respective
stabilization of neutral and ionic species when shifting from
PBE+D2 to RPA indicates that PBE+D2 overstabilizes cationic
species with respect to neutral ones, in agreement with
previous reports made on shorter-chain species. The transition
state of the isomerization is a non-classical carbenium ion,
called an edge protonated cyclopropane. Accordingly, its
stabilization is weaker than that of the π-complex, but stronger
than that of the classical tertiary carbenium ion, leading to a
slight decrease of the backward isomerization barrier.

Using a level of theory as high as RPA appeared to be
mandatory to approach chemical accuracy. Deviations with
respect to reference experimental data, extracted thanks to
kinetic modelling, were as low as 5.0 and 6.4 kJ mol−1 when
considering the difference between the B1 cracking barrier
and the forward/backward isomerization barrier respectively.
This free energy barrier difference is indeed the relevant
kinetic parameter to compare to, as absolute barriers of
independent events cannot unambiguously be determined
with the current experimental results. Applying the MLPT
approach to a variety of dispersion correction schemes to the
PBE energies, reveals that such changes are not sufficient to
reduce the deviation with respect to reference data.

The use of MLPT has thus the potential of being
instrumental in accessing high levels of theory while
accounting for dynamic effects in heterogeneous catalysis, a
first step toward the predictive kinetic modeling of catalytic
reactions starting from ab initio calculations.
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