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Unlocking the potential: machine learning
applications in electrocatalyst design for
electrochemical hydrogen energy transformation†

Rui Ding, ab Junhong Chen, *ab Yuxin Chen,*c Jianguo Liu,d Yoshio Bandoe

and Xuebin Wang *f

Machine learning (ML) is rapidly emerging as a pivotal tool in the hydrogen energy industry for the

creation and optimization of electrocatalysts, which enhance key electrochemical reactions like the

hydrogen evolution reaction (HER), the oxygen evolution reaction (OER), the hydrogen oxidation

reaction (HOR), and the oxygen reduction reaction (ORR). This comprehensive review demonstrates

how cutting-edge ML techniques are being leveraged in electrocatalyst design to overcome the time-

consuming limitations of traditional approaches. ML methods, using experimental data from high-

throughput experiments and computational data from simulations such as density functional theory

(DFT), readily identify complex correlations between electrocatalyst performance and key material

descriptors. Leveraging its unparalleled speed and accuracy, ML has facilitated the discovery of novel

candidates and the improvement of known products through its pattern recognition capabilities. This

review aims to provide a tailored breakdown of ML applications in a format that is readily accessible to

materials scientists. Hence, we comprehensively organize ML-driven research by commonly studied

material types for different electrochemical reactions to illustrate how ML adeptly navigates the complex

landscape of descriptors for these scenarios. We further highlight ML’s critical role in the future

discovery and development of electrocatalysts for hydrogen energy transformation. Potential challenges

and gaps to fill within this focused domain are also discussed. As a practical guide, we hope this work

will bridge the gap between communities and encourage novel paradigms in electrocatalysis research,

aiming for more effective and sustainable energy solutions.

1. Introduction

Pressing environmental issues facing our planet such as
climate change and the depletion of natural resources have
created a global demand for clean and sustainable energy
solutions. Hydrogen energy, known for its high energy density

and minimal environmental impact, is gaining significant
attention in the renewable energy sector as a clean and sustain-
able solution.1 The efficiency of hydrogen-electricity mutual
conversion technologies, such as fuel cells and electrolyzers,
is crucial for determining the amount of energy that can be
captured. These devices facilitate a two-way conversion process:
fuel cells convert hydrogen’s chemical energy into electrical
power without emitting pollutants or greenhouse gases, which
make them vital for generating clean electricity; conversely,
electrolyzers use electrical power to split water into hydrogen
and oxygen, offering a sustainable method to produce hydrogen
fuel. Together, these devices play pivotal roles in building a
sustainable energy system by efficiently transforming chemical
energy into electrical energy and vice versa.2 However, optimizing
these systems to enable an energy-efficient, low-cost conversion is
challenging. A wide array of parameters or descriptors are
required to accurately capture simultaneous processes and
complex interactions occurring across different scales, ranging
from microscale surface chemical reactions and mesoscale mass
transport to macroscale multiphysics coupling. Among the many
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challenges with optimization, designing an effective electrocata-
lyst is the most crucial. Electrocatalysts require large quantities of
precious metals to accelerate the electrochemical reactions,
particularly the hydrogen evolution reaction (HER) and oxygen
evolution reaction (OER) for energy storage, and the hydrogen
oxidation reaction (HOR) and oxygen reduction reaction (ORR)3,4

for energy release. Hence, optimizing the electrocatalysts to reach

a balance between economic viability and efficiency is critically
important to the scalability of hydrogen-related systems.5 Elec-
trocatalysts are one of the most widely studied components by
researchers in hydrogen energy technologies.

Despite advances in materials science and electrochemistry,
the conventional method of developing electrocatalysts is mostly
dependent on time-consuming trial-and-error processes. Such
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processes, either experimental synthesis and evaluation or
numerical simulation, heavily rely on the subjectivity and experi-
ence of researchers, and usually produce unsatisfying outcomes.
Corresponding limited design spaces have resulted in costly and
sluggish improvement of catalytic performances because of the
inability of the traditional research paradigm to manage complex
systems with a large number of variables. Thus, more effective
methods are urgently needed in this labor-intensive field to more
widely explore a greater variety of potential electrocatalyst candi-
dates and optimal combinations.

The rapid evolution of artificial intelligence (AI) and machine
learning (ML) has transformed various areas of human society.
ML has shown its potency across various scientific domains
including natural language processing (NLP),6–8 computer
vision,9,10 and drug discovery11,12 by revealing patterns and
relationships in data that may be difficult through conventional
analysis.13 In the field of hydrogen energy, ML is promising to
reshape the development of electrocatalysts—traditionally
guided by researcher intuition and subjectivity—by complement-
ing or enhancing traditional computational and experimental
approaches. Traditional theoretical simulation methods, while
capable of predicting experimental outcomes often with a high
degree of fidelity, are computationally intensive and often strug-
gle with optimization tasks in high-dimensional parameter
spaces requiring high-throughput calculations. For instance,
using density functional theory (DFT) to screen for the optimal
structure with the lowest reaction energy barrier might require
thousands to millions of attempts to traverse all possible con-
figurations—often prohibitive in computational resources. In
contrast, ML-driven surrogate models, capable of processing

vast, high-dimensional, multivariable datasets, can efficiently
explore these vast spaces at significantly lower costs. These
models accelerate brute force searches for optimal configura-
tions and unveil innovative insights into catalyst behavior that
traditional methods might overlook, such as correlation between
material descriptors. Hence, they enhance both the speed and
depth of insights in costly and time-consuming explorations like
high-throughput experiments and DFT simulations.14–17 This
enables the rapid discovery of new optimal candidates, the
improvement of existing candidates,18,19 and the fine-tuning of
catalytic performances, which are the core needs in the field.
Despite the relatively recent application of ML in electrocatalyst
research, with many studies predominantly utilizing ‘‘off-the-
shelf’’ methodologies and algorithms, a practical, material-
oriented perspective is essential to effectively implement ML in
diverse material scenarios. Moreover, ML’s ability to handle a
wide range of input variables, from atomic-level descriptors to
macroscale engineering factors, allows for a holistic optimiza-
tion of catalytic systems. The interpretability and reliability of
ML models is essential for deeper insights and thus can help to
more effectively distinguish qualitatively and quantitatively the
most decisive descriptors in a complex system and reveal the
mechanisms of catalyst behavior.20,21

This review offers comprehensive guidelines for materials
scientists and engineers new to ML, specifically focusing on
enhancing electrocatalyst designs for critical reactions such as
HER, OER, HOR, and ORR. It categorizes ML-driven research by
commonly studied material types such as metal alloys, 2D
materials, and single-atom catalysts—providing clear material-
oriented insights and facilitating connections between these
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materials and broader applications. This organizational
approach not only elucidates the connection between material
systems and their broader applications beyond hydrogen energy
(Fig. 1) but also enhances understanding by detailing key novel
material insights for each type of electrocatalyst. That is, for
each category, we delve into the most frequently used ML
algorithms and identify the critical parameters and descrip-
tors—whether derived from experimental data or theoretical
simulations—that serve as essential inputs for modeling these
materials. This analysis helps chemists, materials scientists,
and engineers grasp the most influential features in predicting
the performance of electrocatalysts. This is especially helpful for
hands-on practice by electrocatalyst researchers who are unfa-
miliar with ML, by facilitating their process in preparation of
datasets correspondingly. Overall, this tailored breakdown
makes ML applications more accessible, aiding materials scien-
tists in understanding and applying ML techniques effectively.
By summarizing descriptors and features commonly utilized in
ML modeling, we also present the unique integration strategies
with both theoretical and experimental approaches tailored to
different material systems. This leads to a comprehensive
understanding of how ML may be smoothly integrated at
different fidelity levels into the design of electrocatalysts for
hydrogen applications. Our in-depth discussion further exam-
ines current advancements and prospective avenues for future
expansion of this rapidly changing research field, and inspects
the challenges ahead, such as bridging fidelity gaps and facil-
itating knowledge integration. Conclusively, this review not only
offers a systematic exploration of ML’s transformative role in
advancing electrocatalyst design for hydrogen energy transfor-
mation but also serves as a practical guide tailored specifically
for electrocatalyst researchers. By demystifying ML applications

through a reader-accessible material-based focus, we advocate
for a paradigm shift toward more integrative, data-driven
research approaches in this field and beyond.

2. Practical machine learning pipeline
for hydrogen electrocatalyst design

This section bridges the gap for materials scientists who are
experienced in electrocatalysis but relatively new to ML. It
provides a practical guide on applying ML techniques to explore
design space and optimize electrocatalysts for HER, OER, HOR,
and ORR. Since comprehensive ML concepts and tutorials are
already well-documented,22–25 we will adopt a more concise
approach by following a typical pipeline (Fig. 2) that encapsulates
the majority of ML studies in this field. The pipeline, simplified
into three phases—Data, Model, and Application as shown in
Fig. 2—begins with dataset construction, moves through ML
surrogate model training, and culminates in identifying optimal
electrocatalyst candidates and understanding impactful descrip-
tors. We focus on the most commonly reported techniques and
practically useful concepts, covering the majority of ML methods
and models that appear in this specific field. These are the
toolkits most likely to assist readers in solving their own electro-
catalyst material system challenges and are presented with
clarity, conciseness, and reader-friendliness. We aim to provide
readers from the electrocatalyst community with a hands-on
guide, enabling them to build datasets and use ML techniques
efficiently in their material systems of interest.

2.1. Data

Successful ML models depend on quality and comprehensive
data. In materials science, ML uses complex mathematical
functions to identify patterns, mapping material descriptors
to predict outputs. This capability is particularly valuable in the
design and optimization of electrocatalysts for hydrogen energy
applications. By learning from extensive datasets, ML models
can quickly and accurately predict outcomes, offering a sig-
nificant advantage over traditional theoretical simulations such
as DFT or molecular dynamics (MD). These conventional
methods involve solving complex quantum mechanical equa-
tions iteratively, such as the Kohn–Sham equations in DFT or
the Newtonian equations of motion in MD, for each material
configuration.26 Such iterative processes require significant
computational resources and time, making it impractical to
efficiently explore the vast space of possible configurations.

ML models, once trained, are fast to execute and can
conduct large-scale screenings of uncharted possibilities, mak-
ing them invaluable as inexpensive surrogate tools in the
material design space. However, data are needed in the first
place for the targeted system. For instance, data derived from
DFT calculations can be used to screen the best alloy composi-
tions for optimal hydrogen species adsorption energy, where the
configurations of nanoparticles related to composition play a
pivotal role.27 Similarly, experimental synthesis and evaluation

Fig. 1 Schematic of the review scope for the electrocatalytic material
systems covered in this work.
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data can significantly improve metrics like the half-wave
potential in ORR for carbon-based catalysts.28

The importance of input features cannot be overstated, as
they directly impact the model’s performance and predictive
accuracy. Poorly chosen or limited features may lack the
necessary information about the material system, rendering even
the best models unable to learn effectively. Conversely, an
excessive number of features can lead to overfitting and increased
computational complexity. Most current research still relies on
customized, handcrafted features based on researchers’ subjec-
tive understanding of the targeted material systems. This
domain-specific expertise has not been thoroughly summarized,
highlighting a significant gap that this review aims to fill for
reaching a consensus. By summarizing the general features used
in current publications, we lay the groundwork for understanding
the most effective descriptors for various material systems, which
will be discussed in detail in the subsequent sections focused on
HER, OER, HOR and ORR.

2.1.1. Input features. Considering the data collection
costs—whether through computationally intensive DFT simu-
lations or experimental methods, it is crucial to select the right
features for the description of the targeted material system.
Proper feature engineering ensures the model’s accuracy,
robustness, and cost-effectiveness. Here, we provide an over-
view of the types of features typically employed in electrocata-
lysts for HER, OER, HOR, and ORR, as reported so far.

2.1.1.1. Structural & geometrical properties. Structural and
geometrical properties are foundational descriptors in the ML
modeling of electrocatalysts, and are often theoretical simula-
tion oriented. Describing the catalyst material via these features
provide crucial information about the physical arrangement
and spatial characteristics of atoms. Catalytic behavior is
dependent on the micro-environment of the catalytic adsorp-
tion site, which implies that within the same simulated slab,
different sites might exhibit different behaviors. Traditionally, a
traversal is needed across sites such as surface hollow, bridge,
and top sites, but now, if an ML model can learn how to map
the local environment of a site with its DFT-calculated behavior,
it can help us understand and screen electrocatalysts far more
efficiently.

Typical structural and geometrical descriptors include bond
lengths, bond angles, atomic radius, and coordination num-
bers. Bond length, defining the distance between bonded
atoms, impacts electronic properties and reactivity. For exam-
ple, transition metal (TM) atom bond lengths with adsorbates29

or neighboring TM atoms30 are used in predicting adsorption
energies. Bond angles indicate adjacent bond angles around a
central atom, for instance Fe–O–Fe31 angles. They influence
surface-catalyst interaction strength. Atomic radii determine
structural configurations, affecting how atoms pack and overall
material geometry, often described through covalent, ionic, and
van der Waals radius.32,33 Coordination numbers, indicating

Fig. 2 Pipeline for applying ML in electrocatalyst design: overview of the simplified three-phase pipeline (data, model, application) for applying ML
techniques to electrocatalyst design in hydrogen energy systems. This pipeline covers the majority of the studies discussed in this review related to ML
applications for HER, OER, HOR, and ORR electrocatalysts, with certain advanced methodologies or specific technologies omitted for conciseness and
clarity.
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nearest neighboring atoms around a catalytic site (or second
nearest34), are key in understanding local atomic environments
and correlating with catalytic activity. In particular, unsaturated
coordinated atoms are more active and can serve as reaction
sites. Researchers would utilize these descriptors for micro-
environment descriptions.

Besides these straightforward descriptors, there are other
manual feature engineering techniques, such as direct one-hot
encoding of atomic positions35 and number of certain types of
element atoms reflecting the local atomic environment,36

which describe the immediate surroundings of atoms of the
site. In general, comprehensive and appropriate descriptions of
these structural and geometrical attributes are crucial for ML
models to learn crystallographic knowledge.

2.1.1.2. Chemical & elemental properties. Building on the
structural and geometrical descriptors, chemical and elemental
properties further enrich the description of the catalyst’s crystal
structure by nuanced physical information of atoms. When
combined, these descriptors provide a comprehensive view of
the material, particularly from the theoretical simulation per-
spective like DFT simulations.

The Basic atomic properties are widely used in ML models
for elemental descriptions, including electronegativity, ioniza-
tion energy, atomic mass, group number, and periodic number,
are crucial in determining material characteristics.37,38 As TM
elements are usually the studied target, d-orbital and valence
electron characteristics hold significance, such as d-electron
count, d-band center (ed), valence electron number, occupied
and unoccupied d states near the Fermi level, and total d
electrons. These features are critical in understanding catalytic
behavior, influencing adsorption energies and reaction
kinetics.38–40 Electronic properties like electron affinity, charge
transfer, and density of states (DOS) at the Fermi level provide
insights into electronic behavior affecting catalytic performance.
Local density of states (LDOS)41 and total band filling42 describe
the electronic environment at catalytic sites, while charge dis-
tribution analyses like Bader charge analysis quantify electron
density distribution, offering local electronic insights. Inputs like
Bader charge at catalytic sites, charge transfers, and charge state
variations are commonly used in related studies for electronic
environment characterization.43,44

Many studies use a combination of primary and derived
features. For instance, a combination of primary atomic
features (empirical radius, mass, electron affinity) and derived
features (d-band center, formation energy of single-atom sites40)
provides a more comprehensive representation. The former
features are directly available, and the later ones may require
scenario-specific DFT calculations. Built on the foundation by
geometrical and structural descriptors, these descriptors
further provide detailed information about the material’s elec-
tronic structure and local chemical environments of the
catalytic sites.

2.1.1.3. Physics-informed descriptors. Beyond manual feature
engineering, there are frameworks that automatically generate

meaningful features from crystal structures. These descriptors
represent both structural and chemical properties of materials
in a physically informed manner, facilitating more efficient and
accurate predictions with less requirement of user domain
knowledge.

Descriptor generation methods generally transform atomic
structures into fixed-size numerical fingerprints, capturing
essential structural and chemical information.45 These descrip-
tors are designed to be physically meaningful and invariant to
rotations and translations, providing a robust representation of
the atomic environment. Among the representative popular
methods, smooth overlap of atomic positions46 (SOAP) captures
local atomic density using Gaussian functions, many-body
tensor representation47 (MBTR) considers interactions at multi-
ple levels, and atom-centered symmetry functions48 (ACSF)
encodes local atomic environments, all of which are particu-
larly useful for modeling short-range atomic interactions such
as adsorption energies and catalytic activities. These methods
are recognized in the community as able to comprehensively
represent both structural and chemical properties of the crystal
structures.

Pre-built deep learning frameworks for solid systems auto-
mate feature extraction by directly accepting raw atomic struc-
tures as input. They handle both descriptor generation and
supervised learning, using advanced neural network architec-
tures to capture complex dependencies and interactions within
crystal structures. Popular libraries include crystal graph convo-
lutional neural networks49 (CGCNN), which represents crystal
structures as graphs, allowing the model to learn directly from
the structure without manual feature engineering. SchNet50 uses
continuous filter convolutions to represent atoms and their
interactions, providing a flexible and accurate representation of
the atomic environment. SpinConv51 introduces spin convolu-
tions to capture rotational invariance and angular dependencies
in atomic interactions, achieving high performance on large-scale
datasets. DimeNet++52 by Gasteiger et al., an advanced version of
directional message passing neural network (DimeNet), excels at
capturing angular dependencies in atomic interactions, crucial
for modeling properties sensitive to atomic orientations. It also
prioritizes computational efficiency for large datasets and
complex systems. GemNet-OC,53 a further advancement also by
Gasteiger et al. in graph neural networks (GNNs) tailored for
materials science, enhances traditional methods by incorporat-
ing directional information about atomic interactions, making it
particularly effective for properties sensitive to relative atomic
orientations like bond angles and torsional interactions.
Recently, the community has proposed more state-of-the-art
methods: MACE,54 spherical channel network (SCN),55 equivar-
iant spherical channel network (eSCN),56 neural equivariant
interatomic potentials (NequIP),57 equiformer V158/V2,59 atomis-
tic line graph neural network (ALIGNN),60 crystal Hamiltonian
graph neural network (CHGNet),61 Matformer,62 M3GNet.63

These ‘‘off-the-shelf’’ deep learning libraries are recom-
mended when feature customization needs are limited. They
could automate feature extraction and eliminate the need for
manual feature engineering and the use of other libraries. They

Review Article Chem Soc Rev

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

9 
O

ct
ob

er
 2

02
4.

 D
ow

nl
oa

de
d 

on
 1

/1
1/

20
26

 5
:1

9:
08

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4cs00844h


11396 |  Chem. Soc. Rev., 2024, 53, 11390–11461 This journal is © The Royal Society of Chemistry 2024

are highly scalable for large datasets and complex systems. And
their predefined architectures streamline the modeling process,
making them efficient and user-friendly. In many communities,
especially those focused on DFT and MD simulations, these
frameworks are also referred to as ML potentials, as they serve
as efficient surrogates for computationally expensive quantum
mechanical calculations, enabling faster and more accurate
simulations. In general, physics informed descriptors represent
the current frontier methods that are preferred when the
research fidelity is based on DFT simulations.

2.1.1.4. Synthesis & experimental parameters. Current studies
involving experimental datasets for ML in hydrogen electroca-
talysts, sourced through high-throughput experimentation or
literature text mining, are generally more expensive. While
DFT-based ML studies often handle higher-dimensional feature
spaces due to complex electronic structures, experimental
datasets tend to have lower dimensionality and smaller
volumes. However, experimental studies offer higher fidelity
with real-world performance observations compared to theore-
tical DFT-based approaches. These studies typically include not
only chemical descriptors but also synthesis-related engineer-
ing parameters crucial for determining catalytic performance.

The experimental and synthesis-based parameters covered
in this review include a wide range of features. These features
comprise experimental observations like Tafel plots, mole frac-
tions of metal precursors, and primary atomic characteristics
such as empirical radius, mass, electron affinity, ionization
energy, and density. Additionally, empirical synthesis para-
meters like annealing temperature, heating rate, hold time,
and similar parameters for hydrothermal processes are crucial.
Other important parameters include material characterization
properties like lattice constant, crystal plane spacing, and
morphology-related information.

Given the diversity in material systems and synthesis meth-
ods, establishing a universally recommended way of preparing
experimental datasets is challenging. For instance, synthesis
steps for alloys differ from those for 2D materials like MoS2.
Therefore, the preparation process must be tailored to the
specific material system. However, a general approach involves
systematically documenting and standardizing all relevant
synthesis parameters and experimental conditions to ensure
reproducibility and consistency across different studies. This
comprehensive documentation enables the creation of high-
fidelity datasets crucial for accurate prediction and optimiza-
tion of electrocatalysts using ML.

2.1.2. Output targets. Output targets for HER/OER/HOR/
ORR studies are more consistent compared to input feature
engineering methods. Most theoretical works calculate two
types of energies: (1) binding energy or (2) corresponding Gibbs
free energy with the thermal correction term considered. These
energies change during species adsorption (H, OH, OOH, O, or
water molecules) at catalytic sites. Some studies further calcu-
late the theoretical overpotential derived from the adsorption
energies of different species throughout the entire electroche-
mical reaction process. This approach is grounded in the

foundational work by Nørskov et al. on the theoretical origin
of overpotentials on electrocatalyst surfaces for HER, OER, and
ORR. As for HER, Gibbs free energy change of hydrogen adsorp-
tion (DGH*) is the most commonly adopted descriptor.64,65 For
OER and ORR processes, more than one oxygen-containing
intermediates’ Gibbs free energies would be concerned to bal-
ance each reaction step in order to minimize overpotential.66–68

The detailed mechanisms will be covered in later sections
separately. These DFT-calculated energies have been widely
adopted in experimental studies to qualitatively align with obser-
vations of activities, bridging theoretical simulations with prac-
tical applications.

Experimental data for electrocatalysts can be derived from
electrochemical tests, characterization of properties, or extrac-
tion from scientific literature. The most frequently measured
parameters are the overpotentials for OER and HER, with the
overpotential at 10 mA cm�2 (Z10) being a widely accepted
benchmark for comparing catalytic activities. For ORR, metrics
like mass activity and half-wave potential (E1/2) are preferred
due to their greater reproducibility and relevance to practical
performance. These electrochemical metrics are indeed well
adopted for assessing and comparing the activity of electro-
catalyst products within the hydrogen electrocatalyst commu-
nity. Additionally, some studies would prefer current density,69

while others focus on device-level metrics like maximum power
density and area-specific resistance.70 Beyond these primary
electrochemical measurements, other material system-specific
metrics include the morphology of polymerization products71

and electrochemical double-layer capacitance,72 etc. Given the
diversity of data, it is essential to standardize experimental
conditions and reporting methods to ensure the dataset’s
consistency and comparability, thereby enabling meaningful
predictions made by ML models.

A comprehensive summary of the 151 papers covered in this
review is provided in Table S1 (ESI†) through the online repository:
https://github.com/ruiding-uchicago/ML-in-Hydrogen-Energy-
Transformation-Electrocatalysts-Review/tree/main.

2.2. Model

After confirming the targeted material system for applying ML,
the next step is to train a surrogate model to learn patterns
within the data. Instead of a generic approach, we present a
concrete decision-tree-based use case as shown in Fig. 2 to
assist readers of the hydrogen electrocatalysts community. This
guide, inspired by a similar approach by Greener et al.,73 helps
users make informed decisions by inspecting the properties of
their dataset and their specific demands at each major node.
We will also introduce relevant basic ML concepts in this
section.

2.2.1. Label availability. In ML, a label is a known target
value used for training as models’ output. For electrocatalysts
focused on HER, OER, etc., labels are typically the measured or
calculated properties that indicate the performance of the
catalyst. Examples include measured overpotentials, current
densities, or DFT-calculated Gibbs free energy of adsorption.
Labeled data refers to datasets where these output targets are
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available for each data point, enabling supervised learning
where the model learns to predict the output from input
features. In contrast, unlabeled data lacks these target values.
Understanding whether the data is labeled or unlabeled is the
first crucial step in determining the appropriate ML approach.

2.2.1.1. Labeled data. Labeled data contains specific out-
comes, most often performance metrics of electrocatalysts that
the ML model aims to predict. Corresponding supervised
learning involves randomly splitting the data into training
and test sets. The training set teaches the model to map inputs
to outputs.74 And then the model’s ability to generalize and
accurately predict outcomes for previously unseen data is
evaluated on test set. A typical volume ratio between training
and test set could be 80% : 20% or 70% : 30%. In some cases,
researchers also use k-fold cross-validation (CV), a method
where the data is divided into k subsets, and the model is
trained and validated k times, each time using a different
subset as the validation set. This method ensures each data
point is used for training and validation, providing more robust
evaluation. The training and validation set should contain data
points not seen by the test set, allowing for unbiased perfor-
mance evaluation. Specifically, for electrocatalysis, supervised
learning is the most adopted paradigm. It offers an approach
for predicting the behavior and properties of electrocatalysts
based on their composition, structure, or synthesis parameters.

2.2.1.2. Unlabeled data. Unsupervised learning on unlabeled
data is relatively less studied in electrocatalysis research. Hydro-
gen electrocatalysis relies on performance metrics like over-
potential or binding energy, needing labeled data for accurate
prediction and optimization. The need for precise and quanti-
tative evaluation of electrocatalyst performance limits the
applicability of unsupervised methods, which are more suited
for exploratory data analysis rather than precise predictions.

Nevertheless, researchers can still use it to categorize data
based on similarities, with clustering as a popular method.75

Clustering organizes items in a collection according to their
similarities to one another in comparison to other groups.
Specifically in hydrogen electrocatalysis research, unsupervised
learning could be helpful in categorizing electrocatalysts based
on their intrinsic properties or performance indicators. By
groupings among samples, clustering could also potentially
identify unexpected behaviors or anomalies, which are either
potential exceptional candidates worthy of further investigation
or outliers to deprecate.

2.2.2. Data availability
2.2.2.1. Sufficient unbiased data. Sufficient unbiased data is

crucial for successful ML training and validation. Diverse,
representative data covering various compositions and struc-
tures is important. Insufficient data can prevent models from
learning the system’s true nature, leading to poor performance.
One common problem arising from insufficient data is over-
fitting. Overfitting occurs when a model learns not only the
underlying patterns but also the noise and outliers in the
training data, resulting in excellent performance on the training

set but poor generalization to unseen test set. This issue is
particularly prevalent in complex models trained on small data-
sets, where the model is more likely to overfit the training data.
Hence, it is generally recommended to collect more data when
such phenomenon occurs. Researchers should be cautious with
small datasets, as a randomly split test set may not be fully
representative, leading to bias and potentially masking overfit-
ting. This is particularly critical for experimental-based scenarios
(e.g., fewer than 100 synthesized and tested samples). It is
recommended to use cross-validation (e.g., k-fold cross-
validation with k = 5 or 10, or Monte Carlo cross-validation) for
a more comprehensive and robust evaluation.

Conversely, underfitting occurs when the model is too
simple to capture the underlying structure of the data, resulting
in poor performance on both the training and test sets. Under-
fitting is often due to overly conservative hyperparameters or an
insufficiently complex model architecture. Addressing under-
fitting involves increasing the model’s capacity and ensuring it
has enough flexibility to learn from the data. Additionally, the
number of features and their dimensions play a significant
role, which will be discussed in Section 2.2.4 Quality of
Features. In summary, the goal is a well-fitted ML model with
good generalization, starting with sufficient unbiased data.

2.2.2.2. Limited or no initial data. For HER/OER/HOR/ORR
electrocatalysts, some studies skip extensive database prepara-
tion step to directly find optimal candidates. Interactive
machine learning (IML) is a paradigm where the system inter-
acts with the environment to obtain useful information. IML
mirrors traditional material discovery, where researchers itera-
tively perform trial-and-error to update their understanding.
High labeling costs is often a challenge for hydrogen electro-
catalyst researchers, restricting initial data points and explora-
tion. Hence, two representative IML scenarios are commonly
reported in this field: active learning (AL) and black-box func-
tion optimization.

AL represents a transformative approach in ML where the
algorithm proactively queries information source to obtain
labels for new data points. This method contrasts with tradi-
tional supervised learning, which uses pre-established labeled
datasets passively. Supervised learning mines datasets for pat-
terns, whereas AL allows the model to choose data points based
on uncertainty sampling, representative sampling, or potential
to alter the model’s understanding.76 Specifically, for electro-
catalysis, AL becomes particularly valuable where data labeling
is costly or time-consuming like experimental sample synthesis.
By focusing on data points with the highest informational gain,
AL accelerates model training and enhances data utilization,
leading to a quicker improvement of model prediction.

Beyond AL applications, some works focus more directly on
optimizing black-box functions (e.g., fitness functions calcu-
lated through DFT simulations), which are typical metrics
discussed in 2.1.2. Bayesian optimization (BO), based on AL
principles, excels in balancing the exploration of new possibi-
lities and exploitation of known information.77 BO is more
concerned with how to obtain better target values, for example
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overpotentials, while AL is focused on the precision of model
prediction. This method employs a surrogate model, often a
Gaussian process (GP), to predict the performance of various
configurations within a Bayesian framework, thereby efficiently
managing the trade-off between potential exploration costs and
the value of targeted outcomes. Its ability to handle uncertainty
makes it valuable in resource-intensive data collection or optimiz-
ing functions with costly evaluations. Specifically, the BO + GP
combination could effectively guide the optimization of electro-
catalysts’ synthesis recipes and conditions for experimentally
measured performance. This scenario typically faces challenges
from limited labeled data, high labeling costs, and a limited query
budget, but the feature dimensionality is usually low.

2.2.3. Label granularity. As the next point of concern, label
granularity refers to the level of detail in the output predictions.
Coarse-grained labels are used for category prediction (classifi-
cation), where the goal is to distinguish between discrete
categories. Fine-grained labels are used for value prediction
(regression), where the goal is to predict continuous values.
Understanding the granularity of labels is crucial as it deter-
mines the appropriate type of ML model and evaluation metrics
to use. A well-fit ML model should be able to demonstrate
excellent metric values on both the training and test sets.

2.2.3.1. Category prediction. Classification for category pre-
diction usually could be used for distinguishing qualified or
non-qualified samples, for example defining DFT binding
energy within a certain preferred range. Metrics used to evalu-
ate classification models include:

Accuracy. Measures the proportion of correctly classified
samples out of the total samples and is one of the most
important metrics for classification tasks, especially in deep
learning.

Area under the receiver operating characteristic curve (AUC-
ROC). Represents the overall performance across all thresholds,
providing insights into the trade-off between true positive rate
and false positive rate.

Precision. Measures the accuracy of positive predictions,
indicating the proportion of true positive results in all positive
predictions.

Recall. Assesses the model’s ability to identify all relevant
instances, showing the proportion of true positive results in all
actual positive cases.

F1-score. Offers a balanced metric between precision and
recall, providing a single score that balances both aspects.

Among these, accuracy remains one of the most critical
metrics, providing a straightforward measure of how well the
model performs overall.

2.2.3.2. Value prediction. Regression tasks are more often
used in electrocatalysis because they directly predict the con-
tinuous value of metrics like overpotential, which helps
researchers identify the best samples. Metrics used to evaluate
regression models include:

Correlation coefficient (r). Gauges the linear relationship
between predicted and actual values, indicating how well the
model captures the trend.

Coefficient of determination (R2). Shows the variance
explained by the model, serving as a universal benchmark
due to its scale-invariant nature.

Mean absolute error (MAE). Quantifies prediction accuracy
by measuring the average magnitude of the errors in a set of
predictions, without considering their direction.

Mean squared error (MSE). Quantifies prediction accuracy
by measuring the average of the squares of the errors, penaliz-
ing larger errors more heavily.

Root mean squared error (RMSE). Provides error metrics in
the same units as the predictions, making it easier to interpret.

In the context of electrocatalyst ML modeling, where output
targets can vary greatly in magnitude and scale, the R2 metric is
particularly useful due to its adaptability and ability to provide
a standardized measure of model performance across different
scales and dimensions.

Some researchers who prioritize intuitive and interpretable
models apply symbolic regression. Symbolic regression aims to
find mathematical expressions that best fit the data, uncover-
ing underlying relationships in the form of human-readable
formulas. This method combines basic mathematical opera-
tions such as addition, subtraction, multiplication, division,
and exponentiation to derive simple yet powerful equations.
Symbolic regression also aims to find relationships between
material structural and electronic descriptors and output targets,
with a focus on interpretability rather than just predictive
accuracy.78 Although symbolic regression may not outperform
other black-box models that will be covered later in terms of
metrics such as R2 or MAE, it offers unique advantages. In such
cases, researchers focus on finding formulas or combinations of
certain descriptors to deepen their understanding of the material,
rather than directly using the obtained formula as an accurate
surrogate model to develop better electrocatalyst samples. This
approach, often considered part of statistical learning, is espe-
cially beneficial when a straightforward, interpretable model is
preferred over more complex, less transparent ones.

2.2.4. Quality of features. We’ve covered guidance on how
to choose a learning paradigm by examining label availability,
label granularity, and data availability so far. However, to
obtain a properly fitted model, the choice of ML algorithm is
the next critical decision. This choice is strongly dependent on
the quality of input features. High-quality features, whether
extensive and learnable or limited and fixed in dimensionality,
play a pivotal role in determining the success of the selected
algorithm and, ultimately, the model’s performance. To
address the varying quality of features, we introduce different
ML models tailored to these conditions. Though deep learning
is popular, it may not always be the best solution. Testing
various algorithms can produce illuminating results and lead to
the best solutions in designing electrocatalysts. Therefore,
choosing wisely according to the circumstances is critical.
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2.2.4.1. Extensive & learnable features. In accordance with
the consensus in the computer science field, as outlined by
Murphy in his seminal textbook,22 supervised learning models
are broadly discussed in three principal groups: ‘‘linear models’’,
‘‘deep neural networks’’ (DNNs) and ‘‘non-parametric models’’.
DNNs are often referred to as ‘‘representation learning models’’,
a term elucidated in the seminal work of Bengio et al.23 Non-
parametric models, on the other hand, are further refined into
exemplar-based models, kernel methods, and ensemble methods
which will be covered as ‘‘classic ML methods’’ in the next section
(Fig. 2).

Deep learning is linked to representation learning, as it uses
neural networks to automate feature extraction. Deep learning
can be regarded as a subset of representation learning, specifi-
cally involving neural networks with multiple layers that learn
representations through hierarchical feature extraction. Repre-
sentation learning also includes unsupervised techniques like
principal component analysis (PCA)79 and t-distributed stochas-
tic neighbor embedding (t-SNE).80 However, these clustering-
oriented techniques are less used for feature engineering to
improve model prediction accuracy in electrocatalyst develop-
ment. Thus, in our context, we use deep learning and repre-
sentation learning interchangeably to refer to the same learning
paradigm.

Representation learning allows a model to map input
features into a new latent space, capturing the data’s structure.
This is achieved through layers in neural networks, which
progressively learn more abstract representations. As Bengio
et al. articulated,23 deep learning techniques aim to learn
representations of data with multiple levels of abstraction.
Representation learning excels at handling extensive and learn-
able features, ideal for high-dimensional data. Essentially, deep
learning performs representation learning multiple times across
its layers, progressively refining the data representation to
capture complex patterns and relationships. For example, auto-
encoders and their variants like convolutional autoencoders81

use deep learning to achieve this transformation.
In electrocatalysis, deep learning is invaluable for handling

high-dimensional descriptors from Section 2.1.1. These descrip-
tors detail chemical properties and structural characteristics of
crystal structures. Neural networks excel over classical ML models
in processing rich, complex data. Starting with basic feedforward
neural networks (BFNNs), which are akin to multilayer perceptrons
(MLPs), these models can manage straightforward descriptors
effectively. PyTorch82 is a typical implementation library for it. As
descriptor complexity increases, sophisticated architectures like
convolutional neural networks (CNNs) and GNNs become neces-
sary. CNNs excel at identifying spatial features, suitable for captur-
ing atomic arrangements in a crystal lattice. GNNs handle graph-
represented data, ideal for molecular property prediction and
analyzing non-tabular relationships in crystal structures.

Frameworks like CGCNN and SchNet, introduced in Section
2.1.1.3, are prime examples of deep learning models for repre-
sentation learning. They automate feature extraction from raw
atomic structures. CGCNN represents crystal structures as
graphs, learning features through convolutional layers for

effective material property prediction. SchNet, using continu-
ous filter convolutions, captures the interactions between
atoms in a flexible and accurate manner. These advanced
neural network architectures demonstrate how deep structures
facilitate representation learning by efficiently handling exten-
sive and learnable features. In general, the ability of neural
networks to manage and learn from extensive and learnable
features makes them the first choice for DFT surrogate model-
ing tasks from a theoretical front. The complexity of the data at
the atomic level necessitates such techniques.

2.2.4.2. Limited & fixed features. Continuing from the pre-
vious discussion, deep learning, with its capacity for multi-level
representation abstraction, can effectively address underfitting
problems (2.2.2.1) by capturing complex patterns in high-
dimensional data. However, this strength poses a risk of over-
fitting in low-dimensional datasets with fewer features. Over-
fitting happens because deep learning models memorize
limited data instead of generalizing, especially with manually
crafted, fixed features. By ‘‘limited and fixed features’’, we refer
to two common situations: (1) DFT-based ML studies focus on
only the microenvironment of the catalytic site, describing only
nearby atoms. (2) Experimental ML studies with limited synth-
esis parameters result in smaller datasets. Here, classical ML
models are more suitable due to their simplicity and stability.
They can effectively handle such low-dimensional data without
overfitting.

Therefore, for limited and fixed features, classical ML
models are preferable. Table S1 (ESI†) shows that over 75% of
works use classical ML methods, highlighting their importance
in hydrogen electrocatalysts. A typical implementation library
used is Scikit-learn.83 Suitable classical ML methods include K-
nearest neighbors (KNN), support vector machines (SVM), and
GP. KNN,84 an instance-based learning method, excels in pattern
recognition by leveraging local similarities, making it suitable for
classifying electrocatalysts with low-dimensional features. Its
adaptability and interpretability add value, especially in under-
standing electrocatalyst data patterns. SVM85 excels in classifica-
tion by finding the optimal hyperplane for data categorization,
managing both linear and nonlinear decision boundaries
through kernel functions. This makes SVM useful for classifying
electrocatalysts based on distinctive features. GPs are notable for
their probabilistic approach to regression and classification,
offering predictions and uncertainty estimates, crucial for BO
and AL processes.86 This makes GPs invaluable in high-
throughput explorations where prediction confidence is essential
for sequential decision-making. GPs are typically the default
algorithm in these processes. The flexibility and Bayesian nature
of GPs support their application in complex, sequential tasks,
and are often combined with BO and AL to navigate high-
dimensional spaces efficiently. These traditional algorithms bal-
ance computational efficiency and meaningful insights from
sparse data, ideal for smaller, finite datasets and lower-
dimensional features. Their advantages in efficiency and rapid
deployment are essential for tasks needing quick model devel-
opment with budget constraints.
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Ensemble methods, leveraging the collective intelligence of
multiple models, have become key tools for improving predic-
tion robustness and accuracy. As a typical example of ensemble
methods, a Random Forest model builds on Decision Trees
(DTs), which serve as the foundational base learner, providing a
rule-based decision-making framework87 (see ‘‘trees, forests,
bagging, and boosting’’ from Murphy (2022)). This progression
from simple DTs to more sophisticated ensemble methods like
extra trees (ET) and random forests (RF) illustrates a transition
from single models to robust aggregated models.88 ETs and RFs
employ techniques such as bagging and feature randomization
to mitigate overfitting and improve diversity, making them
highly adaptable and scalable for a range of applications.
Among the advanced ensemble algorithms are gradient boosting
decision tree (GBDT) and corresponding derivatives---LightGBM,89

XGBoost,90 and CatBoost.91 These algorithms refine the
ensemble approach by focusing on correcting errors of pre-
vious models iteratively, which, when combined with gradient
optimization, allows for unparalleled accuracy in detecting
complex patterns. Their efficiency, ability to handle categori-
cal features, and scalability have made these GBDT variations
highly popular in ML.

For electrocatalysts, ensemble methods like RF and GBDT
are robust in handling intricate data landscapes. They adeptly
integrate diverse descriptors—chemical, engineering, struc-
tural, and operational—to predict catalytic performance with
remarkable precision. Given their adaptability to both low-
dimensional inputs and datasets with dozens of features, these
algorithms have become a staple in electrocatalyst ML research.
Their application spans from experimental datasets, including
synthesis conditions, to surrogate modeling for DFT, covering
atomic descriptors and crystal configurations. Ensemble meth-
ods provide high accuracy across various fidelity levels (experi-
mental/simulation) without the computational intensity or
overfitting risks of artificial neural networks (ANNs). Their
widespread use highlights their potential as a first-line
approach in electrocatalysis, providing a versatile tool for
innovative material discovery.

2.2.5. Model optimization & uncertainty quantification.
After the ML model is chosen, it should be trained on the
corresponding prepared dataset and evaluated on the test set.
Besides the critical steps of feature engineering and model
selection, obtaining a well-fit model with accurate prediction
might also require model optimization.

Hyperparameters are the external configurations that dictate
a model’s structure and learning process and must be deter-
mined before training begins. For deep learning, typical hyper-
parameters include learning rates, batch sizes, and the number
of layers. In the case of KNN, the number of neighbors is
crucial, while for SVM, the choice of kernel and regularization
parameter are essential. For GP, kernel functions and their
parameters are important. Ensemble methods like RF involve
hyperparameters such as the number of trees and the max-
imum depth of each tree.

Regularization techniques92 also play a vital role in model
optimization. They exist both in deep learning and boosting

models. Techniques such as L1 and L2 regularizations help in
reducing overfitting by penalizing large weights. Dropout,93 spe-
cific to neural networks, prevents the co-adaptation of features by
randomly disabling neurons during training. Early stopping94

halts training when performance on a validation set drops,
preventing overfitting to the training data. Batch normalization95

improves training speed and stability by adjusting and scaling
activations.

Model optimization is usually a custom trial-and-error pro-
cess dependent on the database. For the hydrogen electrocata-
lyst community, a deep understanding of the mathematical and
computational aspects of hyperparameters and algorithm
architectures is less significant. The practical approach is to
first use the default hyperparameter settings provided by the
ML library. If excellent predictive performance is not achieved,
consider whether feature engineering and model selection are
appropriate and if the data is unbiased and sufficient. If the
model shows good baseline performance, then refer to the
library’s manual to identify hyperparameters that can be
further tuned. Grid search, random search, and Bayesian
optimization are all viable methods for fine-tuning.

Uncertainty quantification (UQ) is also crucial for under-
standing and managing the uncertainty in ML models, typically
categorized into aleatoric (data-based) and epistemic (model-
based) uncertainties.96,97 Techniques such as model ensem-
bling and mean/variance estimation provide insights into pre-
diction variability, while deep kernel learning and distance-
based conformal prediction refine uncertainty estimates. Monte
Carlo dropout introduces randomness during training to assess
uncertainty, and evidential regression estimates uncertainty by
predicting distribution parameters. As commonly adopted in
BO, GP naturally incorporate UQ through their inherent prob-
abilistic framework. Greedy acquisition, epsilon-greedy, prob-
ability of improvement (PI), expected improvement (EI),
thompson sampling (TS), and upper confidence bound (UCB)
are effective strategies for leveraging UQ in decision-making.98

Additionally, information entropy serves as a data-based, model-
independent measure of uncertainty. For experimental hydro-
gen electrocatalyst development, UQ is indispensable as it
guides experimental efforts by identifying the most promising
candidates with the highest certainty, ultimately accelerating
the discovery of efficient and stable catalysts while minimizing
costly trial-and-error approaches.

2.3. Application

After obtaining an ML model capable of making accurate
predictions, the final application stage in HER/OER/HOR/
ORR research typically involves using the ML surrogate to
search for optimal candidates and further understanding the
decision-making process to gain material insights, such as
identifying the most important features of the studied material
system.

2.3.1. Searching for optimal candidate. Most of the works
demonstrate that after obtaining an ML model, researchers can
traverse the entire design space to identify optimal candidates.
For example, they can screen all possible combinations of
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crystal and catalytic site structures to find those with optimal
binding energies, or experimental synthesis recipes that lead to
superior macroscopic performance. Although using a trained
ML model for such inference is much faster, enabling large-
scale screening, certain techniques are needed when the
dimensionality is too high to find a global minimum efficiently.
One popular technique is the genetic algorithm (GA),99 which
speeds up the process of finding the optimum value by mimick-
ing natural evolutionary processes. It operates through selec-
tion, crossover, and mutation steps to explore the search space
and converge on high-quality solutions. This method is parti-
cularly effective in complex optimization problems where the
search space is vast and not easily navigable by brute force
search. Except for GA, other heuristic algorithms include
particle swarm optimization (PSO)100 and differential evolution
(DE).101 BO could also be used in this process.

2.3.2. Model interpretation for material insights. In
complex systems, comprehending the decision-making process
of ML models is important to gain deeper universal material
insights which are sometimes more valuable than simply find-
ing promising candidate. The most decisive feature/descriptor
that would determine the prediction is usually paid attention to.

Intrinsic feature importance, often calculated as the default
method by DT-based models serves as the basic interpretation.
Corresponding libraries typically use methods like Gini/entropy
(DT, RF and GBDT), gain (XGBoost), split (LightGBM), or
permutation (CatBoost) to rank feature contributions to the
output. They are straightforward ways based on impurity
reduction, prediction accuracy, or feature usage frequency. In
addition to these intrinsic methods, there are several more
advanced interpretation techniques to understand how input
features affect output targets, providing deeper insights into
the underlying mechanisms in the studied electrocatalyst sys-
tem. Partial dependency plots102 (PDPs) clarify the relationship
between a specific feature and the outcome by isolating its
effect while holding other features constant, making it easier to
visualize a feature’s impact on model predictions. For a more
detailed analysis, shapley additive explanations103 (SHAP)
break down predictions to quantify each feature’s contribution,
offering a nuanced view grounded in game theory. This method
ensures equitable attribution of prediction impacts, including
interactions between features. Similarly, local interpretable
model-agnostic explanations104 (LIME) provide local insight
by approximating how changes in input affect predictions,
making complex models more interpretable on a case-by-case
basis. Sensitivity analysis105 can further enrich understanding
by illustrating how minimal changes to inputs affect the pre-
dictions. This method offers intuitive, actionable insights into
the model’s behavior and helps in identifying the most sensi-
tive parameters in the electrocatalyst system.

Collectively, these interpretation techniques enable data
scientists and electrocatalyst domain experts to gain a more
thorough and transparent understanding of their ML models.
Identification and visualization of the feature impacts could
deepen the understanding of hydrogen electrocatalysts through
a unique data science approach.

2.4. Toolkits and libraries

The advancements in ML for materials science and specifically
electrocatalysts are significantly bolstered by the availability of
open-source toolkits and comprehensive benchmark datasets.
These resources not only facilitate the development and deploy-
ment of ML algorithms but also ensure accessibility and repro-
ducibility in research. For ANN-based tasks, TensorFlow106 and
PyTorch82 remain the go-to frameworks, offering extensive
libraries for designing, training, and deploying complex neural
network architectures. Domain-specific frameworks such as
CGCNN,49 Schnet,50 DimeNet++,52 GemNet-OC,53 MatErials
graph network (MEGNet),107 ForceNet,108 Spinconv,51 lattice con-
volutional neural network (LCNN),109 polarizable atom inter-
action neural network (PaiNN),110 NequIP,57 CHGNet61 and
M3GNet63 automate and comprehensively improve feature engi-
neering, streamlining the deep learning pre-built steps. As intro-
duced in Section 2.1.1.3, they are preferred for DFT-based
theoretical studies because they generate physics-informed
descriptors that represent both structural and chemical proper-
ties of materials, facilitating efficient and accurate predictions
with minimal user domain knowledge. Recently, Google Deep-
Mind released the graph networks for materials exploration
(GNoME) model,111 which scales graph networks to discover
millions of stable inorganic materials, significantly enhancing
the efficiency and scope of materials exploration. Such pretrained
models could be particularly impactful for electrocatalyst
research, enabling rapid identification and optimization of pro-
mising materials with minimal computational costs.

For classical ML applications that are more frequently
applied, Scikit-learn is the first choice that provides a compre-
hensive suite of algorithms for classification, regression, and
clustering that are suitable for various electrocatalyst analysis
tasks. Scikit-learn also offers basic realizations of RF and GBDT.
Additionally, TPOT112 and PyCaret113 serve as auto ML tools,
automating the machine learning pipeline and making them
accessible for beginners. For advanced cases, LightGBM,89

XGBoost,90 and CatBoost91 have independent packages that
offer highly optimized versions of GBDT, excelling in handling
tabular data for predictive modeling with efficiency and
scalability.

Chemical and crystallographic datasets are also crucial for
data preparation. The materials project,114 atomic simulation
environment (ASE),115 open quantum materials database
(OQMD),116 the joint automated repository for various inte-
grated simulations (JARVIS),117 and automatic FLOW for mate-
rials discovery (AFLOW)118 are pivotal in democratizing access
to vast repositories of chemical and crystallographic data. These
platforms provide pre-computed properties for thousands of
materials, enabling data-driven discovery and design of new
electrocatalysts. The open catalyst (OC) catalyst datasets, parti-
cularly OC20119 and OC22,120 are extensive collections to be
highlighted, with the former containing over 250 million single-
point calculations and the latter featuring 62 000 DFT relaxa-
tions. These datasets cover a wide range of reactions involving
various small molecules, such as CO, H2O, and O2, among
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others. This comprehensive scope is crucial for training ML
models that can generalize across different catalytic systems,
making them particularly valuable for advancing hydrogen
electrocatalyst studies. Suitable libraries also exist for feature
engineering, especially for theoretical studies. For generating
sophisticated descriptors, Dscribe45 offers a toolkit for creating
a wide array of materials and molecular descriptors that are
essential for ML models in materials science, typically coulomb
matrix, SOAP, MBTR, and ACSF introduced in Section 2.1.1.3.
Matminer121 is another valuable tool that facilitates the extrac-
tion and manipulation of materials data for ML applications.
When it comes to neural network potentials for molecular
dynamics (MD) simulations, libraries like Schnet50 and
DeePMD122 provide powerful frameworks for developing and
deploying accurate and efficient models. These tools allow for
the simulation of atomic-scale phenomena with unprecedented
detail, opening new avenues for understanding and optimizing
electrocatalytic materials. Together, these ML toolboxes and
resources form a robust ecosystem that supports the entire
lifecycle of materials discovery and development.

3. ML-aided design of HER
electrocatalysts

We now present the challenge for HER, followed by a compre-
hensive review of how ML techniques have been leveraged in
various material systems to accelerate the design of efficient
and cost-effective electrocatalysts for hydrogen evolution. Given
the vast design space and the complex interplay of various
factors influencing HER activity, ML has emerged as a powerful
tool to guide the rational design and optimization of HER
electrocatalysts. Later, we will also discuss the applications of
ML in designing electrocatalysts for other critical reactions,
such as the OER, HOR, and ORR.

HER takes place in the cathode of water electrolyzers. It is
the cornerstone in producing hydrogen as a clean-energy
resource driven by electrical energy input to split water. The
HER mechanism unfolds through a series of electrochemical
steps, each important for the overall reaction efficiency. The
Volmer step, which produces an adsorbed hydrogen atom (*H)
on the catalyst’s active site by electrochemically reducing a
proton (H+) with an electron (e�), is the first and most impor-
tant stage in HER because it creates the foundation for the
subsequent formation of gaseous hydrogen. After HER com-
pletes the Volmer step, it can proceed in one of two ways.
During the electrochemical desorption stage of the Heyrovsky
process, the *H releases the active site and combines with
another proton and electron to form gaseous H2. Alternatively,
the Tafel step rereleases the active site by recombining two *H
to form gaseous H2. A brief schematic of the reaction mecha-
nism is illustrated in Fig. 3.

The catalyst’s electronic properties have a significant influ-
ence on how effectively these steps are completed in an energy-
favorable manner. Particularly in acidic environments, the
activity of a HER catalyst is closely correlated with the Gibbs

free energy change of hydrogen adsorption (DGH*). The optimal
condition is an intermediate and balanced interaction between the
hydrogen adsorbate and the catalyst’s active site. Since these
conditions can limit the initial formation of hydrogen or obstruct
its release, it is preferable to have neither too strong nor too weak
adsorption. A value of DGH* near zero indicates theoretically high
intrinsic catalytic performance, which is expected to be observed
with low overpotential in corresponding electrochemistry
experiments.64,65 In alkaline conditions, however, HER becomes
more complex due to the inclusion of water dissociation as another
decisive step. This adds a layer of complexity to the reaction
mechanism, making the understanding of activity descriptors in
alkaline HER more challenging. Recent studies highlight the sig-
nificance of the cooperative action of different active components in
alkaline HER catalysts.123,124 Some components facilitate the activa-
tion of water molecules with a low energy barrier, while others
optimize the desorption of hydrogen atoms. This cooperative
mechanism suggests both new opportunities and challenges due
to the complexity in developing more effective HER electrocatalysts.
After decades of exploration, platinum-based noble metal catalysts
are currently the most widely used in commercial applications due
to their exceptional efficiency.125 However, due to the high cost and
limited availability of these materials, research has mainly concen-
trated on two objectives: enhancing the intrinsic catalytic efficiency
of HER and reducing the requirement for costly noble metals.
Research on catalysts based on nonprecious metals has also thrived
to achieve this goal, including efforts on carbon materials, transition
metal (TM) compounds, and other novel systems.126 Due to the
nature of the potentially vast candidate design space, ML techniques
could greatly aid these explorations.

3.1. Metal/alloy-based catalysts

3.1.1. Pt-based. As previously discussed, Pt and its alloys
have been at the forefront of HER catalyst studies due to their

Fig. 3 Schematic of HER mechanism.
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exceptional catalytic properties. This led to the first introduc-
tion in the field of applying ML techniques to optimize Pt,
binary Pt alloys, and more complex compositions such as
ternary or high-entropy alloys.

Two primary data sources are usually used in subfields like
electrocatalysts in materials science for ML, especially when
designing electrocatalysts for HER: theoretical simulations like
DFT, and experimental data. For the former, first-principles
descriptors such as electronic structure and crystal geometric
configurations are frequently included in input features. ML
models act as surrogate models for quickly predicting out-
comes such as energies and forces which might theoretically
indicate catalytic activity or stability. Such a high-throughput
screening would typically consume significant computational
resources. The ML-DFT strategy is valued in a theoretical
perspective, efficiently screening candidates from vast possibi-
lities, especially between electrocatalyst materials that have
intrinsic differences like crystal structures and element types.
Even with lower fidelity, several benefits to using simulation
data, such as DFT, as a source for ML should be noted,
including greater speed, lower barrier of automation in high-
throughput dataset preparation, and the capacity to identify
underlying mechanisms. One study that has illustrated such
advantages is reported by Gu et al.,127 who focused on jagged Pt
nanowires for alkaline HER. In the study, the local environ-
ments of 3413 binding sites on jagged Pt nanowires were used
to obtain input features (descriptors) for ML model training
(Fig. 4a). ACSF,48 CGCNN,49 nearest atom distance-Gaussian
process, and SchNet50 were applied and compared for this
representation task. ACSF is recognized as the best, with the
lowest MAE of 0.043 eV. With this experimentally well-validated
ML model, the researchers could further correlate the activity of
different sites on the nanowire with their intuitive descriptor:
coordination number and site types (top, bridge, hollow) via
unsupervised learning. The results identified an auto bifunc-
tional catalysis mechanism (Fig. 4b and c) where distinct sites
on the Pt nanowire surface synergistically contribute to the
HER process: the stronger binding sites adsorb protons, and
the weaker binding sites activate hydrogen. Such a discovery
that would originally require an immense number of simula-
tion calculations for statistical analysis is now enabled by the
ML-DFT technique. In another study that discusses the HER
mechanism, Ooka et al. investigation into hydrogen surface-
binding energies on Pt, diverging from the convention of
thermoneutrality, offers a significant shift in understanding
the HER design rule.128 Their database is based on experimen-
tally acquired electrochemical data, and they employed a novel
approach by integrating regression modeling with GA to effec-
tively capture the non-linear dynamics of the HER process,
allowing for a more accurate estimation of the binding ener-
gies. Their findings highlight the importance of considering
overpotentials in catalyst design and suggest that optimal
catalytic efficiency may require binding energies that are not
thermoneutral, especially under conditions far from equili-
brium. This insight opens new pathways into the design of
more efficient HER electrocatalysts.

Except for deepening the understanding and design rule
from the fundamental mechanism level, ML models are more
widely recognized as powerful tools in screening the design
parameters of HER electrocatalysts, such as the element types
and corresponding composition in alloys. Li et al. investigated
the (100) surfaces of binary alloy systems formed by strong- (Pd
and Pt) and weak-binding (Ag, Au, and Cu) transition metals27

(Fig. 5a). To predict the DFT-calculated H binding energies
(DEH*, which does not consider thermal correction: tempera-
ture and entropy), which are HER activity descriptors, a data-
base with more than 450 entries and the manually chosen input
features of 26 physical properties like electronegativity,
d-orbital information, and d-band center are used. With a
simple BPNN (Fig. 5b), the researchers could identify the
superiority of Pd2Au2-d/Pd0.75Au0.25 among other competitors.
Similarly, Jäger et al. focused on a specific model system of 55-
atom bimetallic icosahedral Pt nanoclusters composed of bin-
ary combinations of the elements Ti, Fe, Co, Ni, and Cu.41 Their
strategy for input feature engineering is to combine electronic
descriptors with structural descriptors: SOAP-derived descrip-
tors and the local density of states together. By using kernel
ridge (KR) regressor as the ML algorithm along with an addi-
tional training set supplement in the loop, an MAE of 0.1 eV
could be reached by 1767 DFT calculations. As the result,
researchers revealed not only the advantage of Ni in binary,
but also NiCo and NiTi in ternary Pt alloy. Li et al. also adopted
the idea of iteratively generating a new training dataset by
applying AL with a query strategy that measured the deviations
of DFT-calculated adsorption energies129 (Fig. 5c). By further
applying previously introduced state-of-the-art GNN frame-
work: DimeNet++52 and labeled site crystal graph,130 the
authors finally screened out Cu3Pt(100) and FeCuPt2(100) and
(001) as potential candidates for replacing Pt(111). Zhang et al.
uniquely focused on Pt-modified amorphous alloy (Pt@
PdNiCuP) and the features used to describe the adsorption
sites consist of simple geometric elements.131 Nevertheless, the
ML-assisted results align well with the previous experimental
study132 and identify a theoretical best composition of the five
elements in this complex system for further exploration. For
real experimental exploration that is more practical and valu-
able, the use of AL is a powerful and low-cost option. Kim et al.
innovatively apply AL on both binary and ternary Pt-based
systems, demonstrating its efficacy in rapidly identifying opti-
mal multi-metallic alloy catalysts for HER with significantly
reduced experimental costs.133 By iteratively updating a GP
model with experimental data, their method efficiently narrows
down the vast design space. The AL process initially started
with 73 preliminary random data points and conducted two
loops with 40 additional data points explored in each. The
exploration studied both binary and ternary (Fig. 5d and e) alloy
systems. Even with such a limited data size, it still effectively
led to the discovery of a high-performing Pt0.65Ru0.30Ni0.05

catalyst with an overpotential of merely 54.2 mV, which remark-
ably surpasses the electrocatalytic efficiency of pure Pt. Beyond
directly guiding experiments with ML, the literature contains a
wealth of domain expertise that can be leveraged for ML
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Fig. 4 ML studies on pure Pt electrocatalysts for HER. (a) Integrated simulation process for jagged Pt nanowires. This involves a synergistic approach that
uses force field analysis, DFT, ML techniques, and kinetic modeling, aiming at a comprehensive multiscale simulation of the alkaline HER on jagged Pt
nanowires. Validation of the model is achieved through comparison with experimental data, with a focus on elucidating the underlying mechanism,
which encompasses the Volmer, Heyrovsky, and Tafel reactions, as depicted in the lower left plot. (b) Illustration of the bifunctional mechanism, where
protons adsorb at a Volmer-favorable site and migrate to a Tafel-favorable site for H2(g) formation. (c) Simplified visualization of the nanowire indicating
reaction preferences at different binding sites (top, bridge, and hollow sites marked by circles, squares, and triangles, respectively). Color coding (blue for
Tafel, red for Volmer reactions) reflects relative reaction rates. (a–c are reproduced from ref. 127 with permission).
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modeling to offer a holistic view. Yang et al. effectively used a
comprehensive database derived from an extensive literature
review in their work.37 They employed the sure independence
screening and sparsifying operator (SISSO) method, a form of
supervised regression, to refine and enhance the predictive
accuracy of the Nørskov model65 for HER kinetics on various
metal surfaces.

3.1.2. Non-Pt metals. In an effort to go beyond Pt-based
catalysts, non-Pt metal electrocatalysts such as Ag, Cu, and their

alloys provide HER applications with a plentiful and cost-
effective substitute for Pt-based catalysts. Their wide range of
structural and compositional characteristics, from complex
binary and ternary systems to single-atom alloys, also make
them ideal for applying ML techniques to discover new catalytic
mechanisms and enhance performance.

Among noble metals, Pd is also commonly studied as a
promising candidate to boost HER as an electrocatalyst.134 Gao
et al. investigated the amorphous alloy Pd40Ni10Cu30P20, a

Fig. 5 (a) Schematic of the random sampling method for (100) bimetallic alloys. The four-fold ensemble that offers H’s particular adsorption environment
is represented by red squares. (b) The BPNN model’s algorithmic architecture with input features used in ref. 27 (a and b are reproduced from ref. 27 with
permission). (c) Schematic representation of AL in catalyst discovery via DFT (c is reproduced from ref. 129 with permission). (d) and (e) AL results for ternary
composition: with each iteration, the triangular diagrams for the (d) uncertainty and (e) overpotential of the Pt–Ru–Ni system are updated. Red dotted
circles highlight shifts in predictions without additional data at specific points post-iteration (d and e are reproduced from ref. 133 with permission).
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promising candidate for HER (Fig. 6a).135 The electrocatalytic
performance of this complex system was analyzed using the
SOAP as the input feature generator and GP as the ML algorithm
(Fig. 6b), which successfully mapped the catalytic activities of
sites on the alloy surface with a small MSE of 0.018 (eV).2 Using
this ML surrogate model, the ideal atomic ratio (Pd : Cu : P : Ni =
0.51 : 0.33 : 0.09 : 0.07) for optimal HER activity was found via
sampling 40 000 active sites. Hoyt et al. performed a thorough
investigation on H adsorption energies on Ag alloys (211)

surfaces.136 They trained different ML algorithms on the dataset
obtained from more than 5000 DFT calculations. Remarkable
accuracy was shown by their innovative employment of the best-
performing RF model along with a combination of standard
chemical and structural descriptors as input features. On the
median, the RF’s absolute test error was merely 14 meV. Except
for predicting with precision, the as-trained ML model also
helps to reveal intricate electronic structure effects and counter-
intuitive behaviors in dopant atoms, further underscoring the

Fig. 6 (a) Left: The atomic structure of the Pd40Ni10Cu30P20 amorphous alloy. Right: The DFT-optimized structure of the Pd40Ni10Cu30P20 amorphous
alloy. (b) Algorithm framework of SOAP-ML model construction (a and b are reproduced from ref. 135 with permission). (c) Right: Depiction of the
[MxAu25�x(SCH3)18 + H]q system (M = Pd, Cu, x between 0 and 1, q between �2 and 2) and Left: Its corresponding graph representation. Various metal
doping and hydrogen adsorption sites are highlighted. Color coding is as follows: orange for gold, yellow for sulfur, turquoise for carbon, white for methyl
hydrogen, and violet-tinted gold atoms indicating dopant location types. Three green spheres represent potential H adsorption sites (c is reproduced
from ref. 137 with permission). (d) The optimal adsorption sites for H on the surface of different 55-atom Cu binary clusters with |DGH*| o 0.1 eV
(reproduced from ref. 34 with permission).
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potential of ML to uncover novel insights in electrocatalysts as a
popular subfield in materials science.

Pihlajamäki et al. uniquely considered the possible organic
ligands on metal clusters, investigating Cu- and Pd-doped 25-
atom Au monolayer-protected clusters with thiolate ligands on
the surface (Fig. 6c).137 The innovation of this work is that
instead of directly applying GNN, the authors employed graph-
based representations of the local atomic environment of
hydrogen, incorporating geometric, graph theoretical, and
tabulated features which enabled the prediction of interaction
energies between hydrogen and the nanoclusters with a high
degree of accuracy. Such a strategy allows relatively simple
distance-based kernel models to reach a CV RMSE of below
0.1 eV. Hence, this work not only provided insights into the
HER catalysis behavior of the complex nanocluster system, but
also demonstrated the power of combining graph-based meth-
ods for feature engineering. Through similar DFT-ML strate-
gies, recent researchers have also explored binary alloy systems:
Cu55�nMn

34 (Fig. 6d) (M = Co, Ni, Ru, and Rh) clusters or ternary
alloy system: NiCoCu.36 Except for predicting a theoretical
optimum composition, ML models also allow these works to
gain deeper insights into the relationship between the local
microstructures of the active sites and the hydrogen adsorption
behavior that determines the HER activities.

Besides exploring systems with predefined metal elements,
ML models can also be extended further to screen from a vast
candidate space of different combinations of metal elements.
Chen et al. used the CGCNN to explore a substantial dataset of
38 484 structures, leading to the identification of 43 promising
alloys from an initial pool of as many as 2973 candidates138

(Fig. 7a). This approach, integrating ML potential for efficient
structural description and simple physical properties, demon-
strated a balance between computational efficiency and accu-
racy. The use of final configurations obtained via the SchNet50

calculator as input features was key in accurately predicting the
hydrogen adsorption values. The framework’s efficacy was
further validated by the close match of computational predic-
tions with experimental results for selected candidates like
AgPd alloy, showcasing the practical potential of ML in accel-
erating the discovery of new electrocatalysts from the various
possible combinations of the elements. Similarly, Zhang et al.
explored a vast candidate space of binary alloys for HER;139

however, they chose to leverage ensemble methods and classi-
cal ML algorithms. As a result, the best performing LightGBM
model, which is less computationally intensive than deep
learning models, achieved a remarkable R2 score of 0.921 and
an RMSE of 0.224 eV. Notably, they also employed the SHAP
method post-training to extract insightful interpretations; they
found an interesting descriptor: mean of group number of
elements in an alloy to be the most impactful on the model’s
DGH* value prediction.

As broader interest among different metal elements for
forming alloys would largely increase the candidate space,
and the demand for calculations of over thousands of config-
urations by DFT to prepare a dataset for ML could be more
expensive. Hence, an efficient approach to leverage AL for a

higher efficiency is needed. Tran and Ulissi reported in 2018 a
pioneering work that employs a novel ML framework for
integrating AL and surrogate-based optimization to streamline
the discovery of electrocatalysts for CO2 reduction and HER.140

Their approach, applied to an extensive, order-of-magnitude-
improved database of 1499 intermetallic crystals leading to
17 507 unique surfaces and 1.6 million adsorption sites, signifi-
cantly narrows down the search space while maintaining the
model’s evolving accuracy. This method not only reduced the
computational cost but also finally led to the identification of
131 candidate surfaces for CO2 reduction and 258 surfaces for
H2 evolution (Fig. 7b and c, to be noted, like some of previously
mentioned research. This work chooses to use DEH* that has
not included the entropy and zero-point energy as the HER
activity metric. Most of the other ML-related works in this
section for HER choose to use DGH*, which has the optimal
value of 0 eV as mentioned previously), highlighting its relia-
bility for accelerating the exploration of efficient electrocata-
lysts in an immense candidate space. Kayode et al. have also
implemented BO in their recent study.141 The authors applied
this approach to efficiently screen for high-performance, single-
atom alloys and bimetallic catalysts, which are crucial in not
only HER but also for reactions such as alkane transformations
and for CO2 reduction. The BO workflow was effective even with
limited initial datasets (as few as two to eight data points), and
it employed simple yet insightful input features such as group
and period numbers. Notably, their approach, which requires
significantly fewer DFT calculations compared to traditional
methods, still successfully led to the identification of promis-
ing candidates such as Hf1Cu for alkane transformations, Y1Au,
Y1Cu, and Y1Ag for CO2 reduction, and Ag–Ir binary alloy for
HER. These works demonstrated the practical utility and flex-
ibility of adaptive learning techniques like AL and BO in
handling an electrocatalyst system with vast searching space.

3.2. Carbon-based materials

3.2.1. Graphene-based carbon structures. In addition to
metal-based materials, carbon-based materials are quite effec-
tive as electrocatalysts for energy storage and conversion,142

including HER.143 Because of its great conductivity, accessibil-
ity, and affordability, graphene is an excellent material for
electrocatalysis in HER.144 The incorporation of various
dopants into graphene structures offers a pathway to tailor
and enhance electrocatalytic performance, leveraging the mate-
rial’s intrinsic properties. Hence, the integration of ML
approaches in this domain would also present an innovative
avenue to systematically explore and optimize dopant combi-
nations, further elevating the efficacy of carbon-based electro-
catalysts for HER applications.

Using nitrogen (N) as the candidate dopant, Lv et al. inves-
tigated the possibility of developing bifunctional electrocata-
lysts via g-graphyne (allotrope of carbon, distinct from
graphene, with unique lattice structure) nanoribbons for both
HER and ORR.145 Among the different ML algorithms, they
screened out the best performing LightGBM model and a
special set of input features (Fig. 8a) such as atomic distances
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Fig. 7 (a) Schematic of the ML framework for the high-throughput screening of electrocatalysts: on the left in the ‘‘constructing adsorption database’’ section,
the depiction includes adsorption sites for binary alloys. These are represented as ontop, bridge, and hollow sites, indicated by a black star, red ‘‘+’’, and blue ‘‘�’’,
respectively (reproduced from ref. 138 with permission). (b) t-distributed stochastic neighbor embedding visualization of all simulated adsorption sites using DFT:
the visual representation shows the adsorption energy values in eV. Stronger binding sites are superimposed over weaker ones. Notably, the clusters/materials in
dark purple are labeled for their potential as promising candidates. (c) Normalized distribution of low coverage DEH* (electronic energy change) values from DFT
Workflow: this graph presents the distribution of DEH* values. Dashed lines highlight the 0.1 eV range around the optimal DEH* value of �0.27 eV. Note, the
authors of ref. 140 chose DEH* rather than DGH* for HER, hence the optimal value is not 0 eV (b and c are Reproduced from ref. 140 with permission).
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(d2, d3) and charges associated with the active site (Q2, Q3). With
the dataset’s size near 300, the MAE of overpotential was as low
as 0.072 and 0.066 V for ORR and HER, respectively. They
further applied SHAP for feature importance analysis to provide

important new information, emphasizing in particular the
strong impact of the chemical environment around the active
sites (Fig. 8b). However, Kronberg et al. explored an innovative
approach to further leverage SHAP in a continuous 10 � 5-fold

Fig. 8 (a) Heat map of the Pearson correlation coefficient among the selected features for ML modeling of g-graphyne nanoribbons, (b) measurement
of the feature importance using the SHAP method (a and b are reproduced from ref. 145 with permission). (c) Left: Global SHAP importance rankings for
the top 10 features in adsorption energy prediction: Bar heights represent CV averages, with error bars showing �1 standard deviation across outer CV
folds. Each bar is annotated with correlation coefficients between the SHAP values and the feature values. Right: Local SHAP value distributions for the 10
most impactful features: this is shown across all test set observations. Vertical data point dispersion indicates dense clusters of similar fj values, with
color-coding reflective of corresponding feature values (c is reproduced from ref. 146 with permission).
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nested CV loop, rather than as a typical one-time post-
explanation after model training.146 By applying this innovative
method on various dataset subsets, they were able to dynami-
cally assess the RF model’s generalization performance and
feature importance on a dataset with roughly 6500 DFT-
calculated configurations. They also achieved strong model
stability and accuracy by fine-tuning the hyperparameters
inside the inner CV loops. Furthermore, the integration of
SHAP into this layered CV framework allowed for a detailed,
iterative examination of the feature attributions, providing
important insights into the complex interplay between the
structural, chemical, and electronic factors influencing the
hydrogen adsorption on N-doped carbon nanotubes (Fig. 8c).
Moreover, the work of Ebikade et al. takes a direct experimental
approach instead of depending on theoretical simulations.147

Expecting higher costs through experiments, the authors wisely
applied the iterative AL strategy. Their input features consti-
tuted a nine-dimensional parameter space that takes into
account structural characteristics like N species and pore
volume in addition to synthesis conditions like hold time and
final temperature. Despite resource limitations, this approach
resulted in effective exploration and optimization in a compli-
cated multidimensional space. The authors were able to deter-
mine the ideal final conditions with better HER performance
than earlier reports,148,149 all in less than 20 experimental runs.

Moreover, graphitic N content was identified as the most
decisive material feature for electrochemical performance.

TM metal atoms doped into a graphene matrix could serve
effectively as electrochemical reaction catalytic centers while
tuning local electronic structures of the carbon materials.150

Among the popular experimentally reported doped TM-(N)C
structures, Liu et al. have made significant strides in integrat-
ing ML with theoretical methods as well as experimental
validation to explore cobalt single-atom catalysts (Co SACs).151

Using supervised learning, particularly a BPNN with three
hidden layers, they analyzed MD-extended X-ray absorption
fine structure (EXAFS) spectra to accurately determine the local
chemical environments of Co SACs. This ML approach, trained
on a dataset of 1000 configurations generated from EXAFS
simulations, enabled the elucidation of the atomic structure
of edge-rich Co single atoms, revealing proportions that were
65.49% of Co-4N-plane (Co-4N-P), 13.64% in Co-2N-armchair
(Co-4N-A), and 20.86% in Co-2N-zigzag (Co-4N-Z). Except for
the outstanding electrochemical performance for HER, the
leveraged ML method in this work has successfully deepened
understanding of the HER mechanism on this electrocatalyst
system. Besides Co–(N)C, there is a wide range of TMs that are
potential candidates. Fung et al. investigated the vast possibi-
lities of 3d–5d TM atoms doped in N-doped two-dimensional
(2D) graphene (Fig. 9a) and nanographenes of several sizes.152

Fig. 9 (a) Three examples of optimized structures of H adsorption on the transition-metal single atom embedded on N-doped graphene (reproduced
from ref. 152 with permission). (b) The relevance factor of different input variables by sensitivity analysis (reproduced from ref. 40 with permission).
(c) Schematic of the topology-based, multi-scale convolution kernel ML model (reproduced from ref. 38 with permission).
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Using descriptors such as d-band centers, formation energies,
and atomic properties, they applied regression models such as
KR regression and neural networks and achieved notable
accuracy, with the RMSE as low as 0.15 eV. Despite that V,
Rh, and Ir have been identified as the top candidates that could
significantly enhance HER activity, SISSO was applied to
directly provide a straightforward formula. Similarly, Baghban
et al. reported approximately the same screening candidate
space in the same system,40 and they have drawn consistent
results identifying Ir, Rh, Fe, V, Sc, and Co as the most
promising TM dopants. Moreover, the contribution of this work
is that sensitivity analysis as a post-method has been applied to
bring deeper insights into feature importance (Fig. 9b). Several
valence electrons and the covalent radius have shown a high
relevancy of 0.74, indicating their dominant impact on the
adsorption energy. Recently, Zhou et al. further delved into the
complex interplay between TM and their surrounding atoms in
single-atom catalysts, investigating configurations where N atoms in
typical TM–N4 structures are directly substituted with C atoms with
different degrees.38 They employed a novel topology-based, multi-
scale convolution kernel ML algorithm and used input features like
atomic group number and electron count. The strategy employs
multi-scale convolution kernels of varying sizes, enabling the simul-
taneous extraction of both global and local information from the
material’s feature matrix (Fig. 9c). Notably, Zhou et al. also leveraged
ML models to predict not only the typically studied DGH* but also,
comprehensively, the energies of H2 dissociation and water mole-
cule adsorption. The models have achieved impressive prediction
accuracies (R2 scores ranging from 0.931 to 0.965), which allowed
the authors to identify promising electrocatalyst materials for HER
and hydrogen sensing, such as Pt and Sc atoms in specific
coordination environments.

Researchers have also explored other more complex varia-
tions, like dual-TM-atom doped graphene153 (TM1TM2@N6)
and TM-graphdyine (GDY).154 As expected, ML surrogate
modeling of DFT has also been proven effective in these
systems by successfully screening out the best candidate con-
figurations, AuCo/NiNi@N6 and GDY-Eu/Sm, while saving
immense computational costs.

3.2.2. Special carbon structures. Besides the commonly
studied graphene, other 2D carbon structures can serve as
flexible substrates for capturing and anchoring heteroatoms,
leading to vast exploration space and possibilities. Graphitic
carbon nitride (g-C3N4) is distinguished by its well-defined 2D
structure, featuring a distinctive arrangement of cavities
formed by tri-s-triazine units linked through planar amine
bonding. These structural voids, or cavities, are not merely
physical spaces, but play a critical role in the material’s
chemical reactivity and physical properties by facilitating the
capture and distribution of heteroatoms and molecules. The
homogeneous, high-density distribution of nitrogen atoms
within the matrix further contributes to the unique electronic
and physical properties of g-C3N4, making it an excellent
substrate like graphene.155 Jyothirmai et al. extensively studied
TM single atoms on four different types of anchoring sites
on g-C3N4

156 (Fig. 10a). High-throughput DFT calculation

identified that B@N1, Mn@N1, and Co@N1 have promising
HER performance (Fig. 10b). The authors further trained ML
models combined with feature engineering to remove redun-
dant features and successfully obtained a best-performing
support vector regressor (SVR) with an R2 of 0.95 and a low
MAE of 0.08 eV. With it, not only the top three candidates for
g-C3N4 were further validated, the feature importance ranking
analysis also provided valuable insights into the structure–
activity relationship. Umer et al., however, broadened the scope
beyond g-C3N4, incorporating more substrates like p-conjugated
polymer, pyridinic graphene, and hexagonal boron nitride with
single- and double-vacancy defects157 (Fig. 10c). Their most
notable innovation is addressing the practical issue of catalyst
stability by innovatively implementing a classification-regression
approach. They initially used an ET classification model to identify
stable candidates via thermodynamic stability energy (Estab) and
dissolution potential (Udiss). Then, the authors employed a Cat-
Boost regressor to predict HER activities. With good accuracy, an
RMSE of 0.18 eV and an R2 score of 0.88, the model has finally led
to the discovery of 20 efficient candidates, such as Pd@B4 and
Ru@N2C2, that are both stable and active. Similarly, Wang et al.
reported multiple N–C systems as a substrate for TM dopants, with
the addition of phthalocyanine (Pc), covalent organic frameworks
(COFs), and metal–organic frameworks (MOFs).158 In this work,
ML is primarily used to determine the most important factors that
could affect HER activity (Fig. 10d). The authors used recursive
feature removal to prevent dimensionality catastrophes caused by
an excessive number of input features. Correspondingly, the top
performing GBDT regressor achieved an acceptable R2 and MAE of
0.87 and 0.25 eV, respectively, with the help of the key 14 features.
This enabled the authors to further demonstrate the pattern that
the most important parameters influencing the HER process are
the geometric structure surrounding the TM active center and the
electronic structure of the d orbitals for the TM atom. Based on the
same purpose, Tahini et al. investigated fullerene C60 (Fig. 10e)
using ML models to unravel the origin of activity, and found that
the most decisive feature related to the electronic property of the
active C atom rather than the captured TM atom.42

3.3. TM compounds

3.3.1. Chalcogenides. In the pursuit of efficient, durable,
and cost-effective electrocatalysts for HER, in addition to the
previously discussed metal and carbon materials, nonmetal TM
compounds have emerged as promising alternatives to noble
metal catalysts.159 These catalysts, which typically include TM
chalcogenides,160,161 phosphides,162 carbides,163 and MXenes,164

have demonstrated remarkable HER performance that is compar-
able to Pt-containing catalysts, owing to their ability to fine-tune
electronic structures and improve interaction with substrates.
Therefore, the abundant possibilities in doping control strategies
have also led to numerous recent works employing ML methods
to accelerate research in this system. Among them, transition
metal chalcogenides (TMCs) are the most extensively studied
systems by experts in this field.

Beginning with the basic pure 2D MoS2 clusters, Jäger et al.
extensively investigated the system,165 focusing on the training
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set size and structural descriptors (SOAP, MBTR, ACSF etc.) that
could better predict the potential energy surface (Fig. 11a),
reflected in the DEH*. They employed a comprehensive dataset
of approximately 10 000 DFT-based single-point calculations,
featuring MoS2 and AuCu nanoclusters, to train their models.
The study highlighted the effectiveness of the SOAP descriptor

in accurately predicting hydrogen adsorption energy, with a
notable MAE of 0.13 eV for MoS2 clusters. Wei et al., however,
drive their exploration based on experiments in order to
optimize the synthesis conditions of MoS2 within a BO
framework.166 They employed hydrothermal synthesis techni-
ques with parameters such as temperature, reaction time, and

Fig. 10 (a) The top view of the g-C3N4 catalyst’s optimized shape. The C and N atoms are represented by the blue and gray colored balls, respectively.
Different dopant locations are indicated by the dashed circles with letters: Two-fold coordinated nitrogen bonded to two C atoms (N1), triazine ring-
connecting nitrogen (N2), and carbon bridging three N atoms. (b) The structure and charge density differences of: B@N1-site, Mn@N1-site, and Co@N1-
site, in the order of left to right. Electron depletion and accumulation are indicated by the blue and yellow isosurfaces (0.002 e Å�3), respectively (a and b
are reproduced from ref. 156 with permission). (c) 2D materials structures with TM embedded at various defect sites (reproduced from ref. 157 with
permission). Color code: metal, magenta; B, light pink; N, blue; C, gray; O, red; H, cyan. (d) The feature importance of the GBDT model (reproduced from
ref. 158 with permission). (e) Left: The periodic table with the elements that have been thought to have endohedral sites in C60 shaded in orange. Right:
Schematics showing dopants may be positioned inside the cage in the middle or off-center (reproduced from ref. 42 with permission).
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precursor concentrations as input features for their ML model.
The ML approach, particularly using GP belief models and the
upper confidence bound policy, effectively identified optimal
synthesis conditions, resulting in the optimum sample with
notable HER performance. The ML approach or the HER per-
formance is evidenced by its low overpotential at 10 mA cm�2

(Z10 = 240 mV) and Tafel slope (64 mV dec�1). Patra et al.
employed GA alongside MD and high-resolution transmission
electron microscopy (HRTEM) to investigate the defect dynamics

in 2D MoS2.167 Their approach determined that extended line
defects are more stable sulfur vacancy configurations than
isolated vacancies. This finding further elucidated the critical
role of defects in the 2H-to-1T phase transition and demon-
strated the effectiveness of ML in advancing the understanding
of complex material phenomena.

Incorporating heteroatoms as dopants into TMCs serving as
substrates can lead to modifications in local electronic struc-
tures and other material characteristics, meriting detailed

Fig. 11 (a) Learning curves for different MoS2 datasets show the MAE for different training set sizes (reproduced from ref. 165 with permission). (b) Basal
plane of 2H-MoS2 and its local structural deformations (insets) when Fe, Co, Ni and Cu are doped at substitutional Mo sites (reproduced from ref. 168 with
permission). (c) Structure models of two example chalcogenides-supported TM single-atom catalysts: Ni@ZnS and Sn@CoS, and (d) BPNN input and
output schematic (c and d are reproduced from ref. 169 with permission).
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exploration. Hakala et al. delved into typical cases where
common TMs such as single Fe, Co, Ni, Cu atoms are doped
into MoS2

168 (Fig. 11b). They applied RF for both classification
and regression tasks, targeting regularly chosen DGH* as the
output feature for accessing HER potentials. The ML model
revealed that the type of edge (Mo or S) and the specific dopant
(Fe, Co, Ni, Cu) are the most decisive factors that would
determine the hydrogen adsorption characteristics. Tu et al.
further extended the diversity by including more TM dopants
and more sulfides beyond MoS2: CdS, CoS, FeS, and ZnS.169 But
unlike the last work’s assumption, in which the TM atoms have
directly replaced Mo atoms, the TM atoms in this work are
loaded on the surface (Fig. 11c). A three-layer BPNN (Fig. 11d)
could reach a promising R2 over 0.95 and MSE less than
0.016 (eV)2 for predicting DGH* after training. With it, the
authors successfully identified Sn@CoS and Ni@ZnS as the
most promising catalysts among candidates with a theoretical
DGH* of only 0.04 eV and �0.05 eV, respectively.

In addition to the sulfides, the chalcogen elements in TMCs
can include Se or Te. Similar to the previously mentioned MoS2

structure, transition metal dichalcogenides (TMDCs) can be
experimentally synthesized into monolayers of 2D materials.
This would yield a rich specific surface area and abundant
active sites. Further considering combinations of various 2D
TMDCs for heterojunction structures, the potential exploration
space for ML applications could be extensively expanded. Lee
et al. proposed to use symbolic regression to find optimal
descriptors for predicting DGH* on 2D TMDCs.170 Their novel
genetic descriptor search method efficiently identified descrip-
tors without intensive calculations, using a dataset of only
70 TMDCs. Like other typical ML algorithms, this approach
successfully leveraged 27 primary TMD features, including
atomic radii and valence electrons, to generate descriptors that
align with chemical knowledge. The model has facilitated the
discovery of optimal materials for catalytic performance
by successfully identifying MnS2/FeS2/TaS2 with chalcogen
vacancy as best candidates. Ran et al. also studied various 2D
TMDCs (Fig. 12a) and combined both black-box ML modeling
with symbolic strategy using linear square regression.171 By
narrowing down from 27 features to five key features, including
local electronegativity and valence electron number, they devel-
oped ML models using RF and BPNN (possibly with skip-layer
connections). These models achieved a high fitting degree (up
to 0.94) but were poor in explainability. Linear square regres-
sion (Fig. 12b) revealed a quantitative expression as DGH* =
0.093 � (0.195*LEf + 0.205*LEs) – 0.15 Vtmx (LEf/LEs: nearest/
next nearest neighbor local electronegativity; Vtmx: average
valence electron number of TM-X). This formula could reach
an impressive R2 of 0.74 (Fig. 12c), further indicating that DGH*
decreases with the valence electron number and electronega-
tivity of local structure. Doping a second TM into existing
TMDCs significantly expands the pool of potential catalysts
for ML exploration. Lee et al. studied TM-doped MX2 systems
(Fig. 12d), employing an ML approach that used 28 atomic
features to predict DGH*.172 The tree-based regression models
revealed that the most influential are (i) the number of valence

electrons, (ii) the distance of the valence electrons, and (iii) the
electronegativity of the TM dopant. Chen et al. additionally
explored macroscopic patterns in a similar system,173 revealing
that certain doping concentrations in TMDCs significantly
influence the DGH*, indicating enhanced HER performance at
specific alloying ratios (Fig. 12e). They attributed this trend to
the alloying effect, which alters the electronic structure and p-
band center of the adsorption sites, thereby modulating the
catalytic activity for HER. Lastly, novel heterojunctions could be
obtained by stacking different 2D materials like TMDCs. Addi-
tionally, the formation of interfaces can potentially optimize
electrical conductivity, electronic structures, and the density of
active sites.174,175 Ge et al. considered in their study the
heterostructures formed by different 2D MX2 single layers,176

taking the rotation angle, bond length, layer distance, and the
ratio of bandgaps of two materials into consideration. Using
the simple least absolute shrinkage and selection operator
(LASSO) regression method, they efficiently identified key
physical descriptors affecting the adsorption performance of
these heterostructures. This approach led to the discovery of
MoTe2/WTe2, with a 3001 rotation angle as the optimal struc-
ture, achieving remarkably low overpotentials of 0.03 V for HER
and 0.17 V for OER. Pham et al. ambitiously broadened the
investigated space beyond the heterostructure formed by MX2

layers, but also MX2 with M0X0 (e.g., ZnO, GaN) layers.177 To
describe such complex systems for ML models, they meticu-
lously screened 46 input features derived from atomic proper-
ties and positional information, and the ML surrogate model
successfully identified MoS2/ZnO as the best candidate. This is
proven by both its exceptional theoretical performance via a
DGH* of �0.02 eV and dynamical stability without imaginary
frequency in phonon dispersion calculations.

3.3.2. Phosphides, carbides, and borides. In addition to
chalcogenides, other TM compounds like phosphides, carbides,
and borides have been proven effective in HER electrocatalysts.178

Wexler et al. investigated the Ni2P system,179 focusing on enhan-
cing the HER activity at the Ni3-hollow site through nonmetal
surface doping, particularly with chalcogens (Fig. 13a). They
trained regularized RF to predict DGH* and further identified the
Ni–Ni bond length as a critical structural descriptor. Following
this, their ML analysis, using a dataset of 55 DFT-derived struc-
tures, demonstrated that such dopants predominantly exert a
‘‘chemical pressure’’ effect on Ni3P2 (0001), a structural influence
surpassing electronic interactions and emphasizing the para-
mount importance of geometric considerations in the enhance-
ment of electrocatalytic performance. Zhang et al. focused on
comparatively more complicated amorphous Ni2P surfaces by
uniquely separating the relaxation and the adsorption processes
apart.180 They first used GA to obtain a stable configuration of the
complex amorphous system, then deployed a novel two-step ML
approach (Fig. 13b) to predict hydrogen adsorption energies EH

(like ref. 165 and equals to Efrozen + Erelax). Initially, they applied
GBDT and a high-dimensional neural network model to predict
the frozen adsorption energy Efrozen, relying solely on the local
structural environment. Subsequently, they introduced an atomic
expansion method to estimate the relaxation energy Erelax induced
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by hydrogen adsorption, effectively incorporating structural flex-
ibilities into the model. This innovative ‘‘two steps’’ approach
allowed for a more accurate prediction of total adsorption energies
as well as the consequent recognition of five local active site
patterns that are superior for HER. Hu et al. put their interest in
another stoichiometric composition of Ni5P4,181 which is experi-
mentally validated to be superior for HER.182 Similarly, in the
system they found that the bond number and relative position
with neighbors are crucial for catalytic activity, and a detailed

investigation revealed how these factors affect the efficiency of top
P and bridge Ni–Ni sites. Cao et al. investigated CoP systems with
potential TM dopants, employing a multi-level screening metho-
dology that combined DFT calculations and symbolic
regression.183 Their study revealed the critical role of the work
function difference (DF) and d-band center in regulating DGH* in
the system. Subsequently, they experimentally validated ML pre-
dictions by synthesizing Al, Mo, and V-doped CoP samples. The Al-
CoP showed a low Z10 of 75 mV, which could be attributed to a

Fig. 12 (a) Workflow of multilevel, high-throughput calculations for seeking metallic, lowest-energy, �0.09 eV r DGH* r 0.09 eV 2D-TMD materials.
(b) Illustration of the linear regression fitting process. (c) distribution of the DGH* versus the descriptor obtained by least-squares regression (a–c are
reproduced from ref. 171 with permission). (d) Geometric structure and colored periodic table representation of TM@MX2: in this illustration, the TMs are
depicted in blue, M elements (Cr, Mo, and W) in green, and X elements (S, Se, and Te) in red (reproduced from ref. 172 with permission). (e) Lowest DGH*
values for hydrogen adsorption on a W(1�x)VxS2 system across various compositions (x): the graph displays how DGH* values change with different V
concentrations in W(1�x)VxS2. Insets provide visual examples of adsorption configurations that result in the lowest DGH*. In these configurations, V, W, S,
and hydrogen atoms are represented in red, grey, yellow, and pink, respectively (reproduced from ref. 173 with permission).
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Fig. 13 (a) (i)DGH* predictions by the regularized RF versus DFT: the black-dashed line indicates perfect correlation. (ii) Top 10 descriptors’ relative importance from the
model. (iii) Descriptor definitions: The three Ni atoms closest to the first doping site are labeled a, b, and g, based on proximity. (iv) Impact onDGH* by Ni–Ni bond length:
the role of chemical (via nonmetal doping) and mechanical pressure (by immobilizing surface Ni atoms), identifying the optimal Ni–Ni bond length for HER as 2.97 to
3.07 Å, with adjustments for bond contraction upon H adsorption, highlighted by a green dotted line (reproduced from ref. 179 with permission). (b) Workflow of the
proposed stepwise strategy for predicting adsorption energy EH on amorphous catalyst surfaces using ML: this includes two key stages – (I) calculating frozen adsorption
energy, where the initial adsorption energy is estimated without considering atomic rearrangements, and (II) determining structural relaxation energy, which accounts for
the energy changes resulting from structural adjustments upon adsorption (reproduced from ref. 180 with permission). (c) Schematic structure of 3� 3 PC3 monolayer
(reproduced from ref. 185 with permission). (d) Top and side views of the TM/C3B monolayer structure (reproduced from ref. 186 with permission).
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larger surface area that introduces a higher density of active sites.
The doping has also endowed the active sites with a higher average
turnover frequency. Yan et al. extensively explored the realm of
various TM phosphides up to ternary systems.184 Their approach
incorporated a rich dataset comprising data from existing litera-
ture and self-contributed calculations, encompassing diverse TM
phosphides systems. Notably, their feature importance analysis
shed light on the critical influence of factors such as the p orbital
electron number and atomic volume, uncovering valuable insights
into the design of efficient TM phosphide catalysts, which is
partially consistent with previous studies focused on Ni/Co phos-
phides. Lu et al. studied TM single atoms anchored on phosphorus
carbide (PC3) monolayers as catalysts185 (Fig. 13c). In addition to
identifying Fe, Nb, and Mo@PC3 as the top candidates based on
their catalytic activity, the authors used ML for data mining. The
results revealed that the first ionization energy, bond length of
TM–H, and d band center were the most influential descriptors for
H atom adsorption activity on TM@PC3. In a parallel exploration
of TM-doped materials, Chen et al. delved into a similar system of
TM-doped diamondlike boride C3B monolayers for both HER and
OER186 (Fig. 13d). Their investigation unveiled Fe, Ag, Re, and Ir as
promising candidates for HER, while Ni- and Pt-doped C3B
demonstrated the potential to function as bifunctional catalysts.
Employing a similar ML data mining approach, they also identi-
fied the first ionization energy and the number of d electrons as
impactful, consistent with the previously mentioned study on PC3.

3.3.3. MXenes. MXene-related systems (MxXyTz, M = TM;
X = typically C and/or N; some studies also include B; T: terminal
group, typically chalcogenide elements.) are promising for HER
due to their high electronic conductivity, large active surface
area, and structural stability, which facilitate enhanced cataly-
tic activity and efficiency.187 While MXenes’ sensitivity to oxida-
tion is a consideration, it is less critical in the low-potential
environments typical of HER processes. Their compositional
versatility allows for extensive tuning of properties through
element substitution and surface functionalization, making
ML a powerful tool for accelerating discovery. Liang et al.
studied a typical widely studied system of Ti-based MXenes
with a Ti3C2T2 basic structure (Fig. 14a).44 Using a set of 32
elemental properties as input features, they successfully pre-
dicted not only DGH* but also the per-atom cohesive energies.
Notably, their approach revealed 21 novel MXene catalysts with
HER activity surpassing that of Pt, and seven of them were
dynamically and thermally stable. Similarly, Wang et al. also
explored the Ti2CO2 system with doped single TM atoms.188

They identified several promising candidates, notably Ti2CO2–
W, which exhibits exceptional catalytic activity, conductivity,
and stability due to p–d orbital hybridization effects. Moreover,
the authors used symbolic regression to obtain a predictive
descriptor based on the Fermi level and M–O bond lengths. As a
result, this descriptor not only facilitates the discovery of
efficient HER catalysts within the Ti2CO2 system source
domain, but also could show considerable potential in terms
of accuracy to similar Zr2CO2 and Ta2CO2 systems. In their
subsequent research,43 the team shifted from using symbolic
regression for single descriptor identification to applying a

comprehensive input feature study for single TM atom-doped
Mo-based Mon+1CnTx systems (Fig. 14b). In addition to identify-
ing Ru, Zn, and Os as the best elements, this nuanced approach
led to the identification of five key descriptors, including Fermi
level and d-band center, thus significantly enhancing the pre-
diction accuracy for DGH* in Mo2CO2 systems. Furthermore,
they successfully extended these ML-derived descriptors to the
W2CO2 system, highlighting the robustness and transferability
of their ML methodology in electrocatalyst discovery. Sun et al.
considered a single-TM atom doped particularly in MBenes
with n = 1, 2 of the layer ratio.189 Their results led to the
identification of Co2B2 and Mn/Co2B2 as the best catalyst
candidates, with near-zero DGH* values. Besides, their ML data
mining highlighted the Bader charge transfer and the d-band
center as the most decisive descriptors, in good agreement with
the previous two works.

Aside from single-atom TM doping, the TM element in
MXenes could be further tuned in different ratios and types.
Wang et al. studied 2D MXene-ordered binary alloy M2M0X2O2

and M2M0
2X3O2, allowing the second TM to exist in large

amounts.192 Their interdisciplinary ML approach identified
110 promising MXene catalyst candidates with superior HER
activity compared to Pt, out of a pool of as many as 2520
candidates. Abraham et al., however, further expanded the
search space for 2D MXene-based catalysts by including F, S,
and Cl terminations alongside O (Fig. 14c).190 They trained a
GBDT regressor with feature selection and hyperparameter
optimization on 1125 systems to further predict the activity of
all possible 4500 MM0XT2-type MXenes. But in the post-ML
analysis for insights in structural and electronic descriptors,
they revealed that the number of valence electrons and the
electron affinity of the terminating groups are decisive. Simi-
larly, Zheng et al. considered M2X, M3X2, and M4X3 structures
with different M and X, also with and without the S as T
(Fig. 14d). Notably, they also took hydrogen coverage into
consideration.191 As a result, Os2B and Sc–N based S-MXenes
exhibited promising catalytic activity, with DGH* values
approaching zero over a wide range of hydrogen coverages.
Additionally, their ML data mining revealed that the atomic
mass and electronegativity of the T atom play crucial roles in
determining catalytic performance. Although we can see that it
is in good agreement with ref. 190 where T is considered as a
variable, it is different from ref. 192 for M2M0X2O2 and
M2M0

2X3O2 systems. As the authors of ref. 192 have only
considered O as the terminal element, geometrical and electro-
nic features related to the alloying effect are found to be the
most important. Such comparisons between different ML
works on similar systems should remind readers of the multi-
faceted nature of materials discovery and catalyst optimization,
where the importance of specific descriptors and factors can
vary depending on the alloying effects, terminations, composi-
tion of the electrocatalysts, and, most importantly, the search
space that was defined.

3.3.4. Emerging materials. In the quest for efficient elec-
trocatalysts for HER, the exploration has already extended
beyond the well-trodden paths of previously mentioned
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Fig. 14 (a) Optimized atomic structure of single-atom-loaded MXenes with surface termination elements and single-atom elements, excluding Cr and Mn for the
single atom position and C for the surface termination position (reproduced from ref. 44 with permission). (b) Top and side views of a 3� 3� 1 supercell of Mo-based
MXene structures. (i) M2C structure: Top, fcc, and hcp sites indicating potential O adsorption areas; (ii) Mo2CO2 with functional group O; (iii) single-atom-doped model
of Mo2CO2-STM (single transition metal), where STM includes 3d, 4d, and 5d metals. S0, S1, and S2 denote three types of O equivalent positions for H adsorption. The Tc
atom is excluded due to its radioactivity (reproduced from ref. 43 with permission). (c) The selected elements for MM0XT2 MXenes (M/M0 = Sc, Ti, V, Cr, Mn, Y, Zr, Nb,
Mo, or W; X = B, C, or N; T = O, F, Cl, or S), leading to optimized structures of pristine and functionalized MXenes (reproduced from ref. 190 with permission). (d) Left:
Side views of bare MXenes, with early transition metals (purple) and C/N (gray) depicted. Right: Color block map showing DGH* for bare MXenes, where gray, yellow,
orange, and wine-red circles indicate DGH* intervals of o�1.5, �1.5 to�1.0, �1.0 to�0.5, and�0.5–0.2 eV, respectively (reproduced from ref. 191 with permission).
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chalcogenides, phosphides, and MXenes to encompass a
diverse array of emerging materials, showcasing the potential of
innovative compositions and structures in enhancing electrocata-
lytic performance. Zheng et al. investigated pnictides like novel 2D
MA2Z4 type materials, where A is C, Si, Ge, or Sn, and Z stands for
N, P, or As.193 They uniquely applied recursive feature elimination
and genetic programming to refine and reduce the feature set for
their ML model, optimizing prediction accuracy and computa-
tional efficiency by identifying an optimal feature dimension. As a
result, the model with optimized features could predict DGH* with
a low RMSE of 0.14 eV. Based on this, NbSi2N4 and VSi2N4 were
further studied as the most promising HER catalysts. Chen et al.
explored the application of ML to stable b phase 2D-arsenenes
doped with heteroatoms.194 To address the challenge of a skewed
distribution in their dataset, where the number of materials with
ideal catalytic performance was significantly smaller than those
with less desirable properties, they implemented the novel syn-
thetic minority oversampling technique (SMOTE). This data aug-
mentation method effectively balanced the dataset, enhancing the
generalization performance of their ensemble learning model and
preventing the overfitting typically associated with stochastic over-
sampling. By generating 120-dimensional input feature vectors
using Matminer,121 their approach significantly improved, achiev-
ing a prediction accuracy of 81% for identifying promising cata-
lysts. This is a substantial increase from the 69% accuracy
observed without SMOTE preprocessing. This strategic use of
SMOTE enabled the successful identification of 13 Fe-doped
arsenenes as potential HER catalysts. Liu et al. investigated novel
single-atom TM doped on 2D GaPS4 materials.195 The GBDT
regressor surrogate model achieved a high R2 score of 0.935, which
led to the identification of Pt@VS1-GaPS4 as an optimal catalyst
with desirable stability (Udiss 4 1 V versus SHE) and activity
(|DGH*| o 0.2 eV). Their data mining also found a strong correla-
tion of electron affinity and first ionization energy with adsorption
behavior in the system, while strain engineering notably further
enhanced the catalytic efficacy of Pt@VS1-GaPS4. Yang et al. used
the comprehensive database 2DMatPedia196 based on high-
throughput first-principles calculations, which includes as many
as 1037 exfoliable 2D materials.197 They prescreened materials
based on criteria such as exfoliation energy and electrical con-
ductivity, and, most importantly, differential DGH* as a key
thermodynamic descriptor for screening. This resulted in the
identification of nine promising 2D catalysts, including NbS2

and IrTe2, with active basal planes showing potential HER perfor-
mance comparable to that of Pt-based catalysts. Wu et al. further
applied ML on the 2DMatPedia database,198 leveraging a CGCNN
to efficiently predict adsorption energies. Their approach, using
properties of atoms and bonds as input features, achieved a
remarkable prediction accuracy of 95.2%, enabling the rapid
identification of 38 stable and high-performance catalysts from
an immense pool with more than 6531 candidates.

3.4. Statistical analysis and summary

The ML approaches across metal/alloy, carbon-based, and TM
compound electrocatalysts for HER, as introduced in this
section, reveal a vibrant and dynamic field that is rapidly

evolving to meet the challenges of sustainable energy. A com-
mon theme is the integration of ML with high-throughput
computational methods, typically via DFT and, in some cases,
MD or experimental data, to accelerate electrocatalyst discovery
and optimization. Iterative model refinement, leveraging tech-
niques like feature importance analysis, is a shared strategy
across material classes. Adaptive learning and surrogate-based
optimization are particularly notable for their efficiency in
research methodologies. Across all material classes, DGH* is
commonly adopted as an indicator metric for HER activity,
though some studies prefer hydrogen binding energy DEH*,
which is DGH* without thermal correction. Interpretation meth-
ods like feature importance ranking and SHAP are utilized to
identify critical descriptors, enhancing the interpretability of
ML models. This approach not only aids in pinpointing factors
governing catalytic performance but also highlights the
nuanced differences in what makes each material class effective.

The nuanced differences in algorithm application, feature
selection, and paradigm adoption reflect the unique character-
istics and complexities of each material class. Hence, we have
visualized the statistical data of input features, applied ML
algorithms, etc., for meta insights as shown in Fig. 15 (based on
Table S1, ESI†). The bar plot summaries provide a direct trend
of popular choices of input features chosen and identified as
decisive, and ML algorithms used and identified as the best-
performing.

Features. Through Fig. 15a, atomic intrinsic physical proper-
ties are the most popular, with electronegativity and first ioniza-
tion energy frequencies significantly exceeding others. Fig. 15b
provides more valuable results regarding the most important
features identified by ML model interpretation results in the
publications. The d-band center and the number of valence
electrons are the top two features, followed by covalent radius
and bond length. This might indicate that the electronic struc-
ture of valence electrons, particularly the d-band electrons of
active metal atoms (whether within alloy crystal lattices or doped
into carbon or TM compounds such as MXene), largely deter-
mines adsorption behavior and thus catalytic activity. This is
particularly suitable for TM compounds and carbon structures, as
these materials often exhibit complex electronic structures where
the site d-band characteristics play a crucial role in determining
their catalytic properties and adsorption behavior. For studies
focused on metal and alloy electrocatalysts, coordination number
is emphasized as a unique descriptor, representing the local
microenvironment rather than the properties of the site itself.
Whether the catalytic atom is unsaturated or saturated in coor-
dination greatly impacts its electronic structure and adsorption
behavior. Metal and alloy systems typically exhibit densely packed
structures, such as the face-centered cubic structure of Pt, leading
to shorter bond lengths. The valence electron properties of active
site atoms are significantly influenced by their neighboring
atoms. Consequently, catalytic studies on metals and alloys place
great importance on crystal facets, with researchers considering
whether active sites are coordinatively saturated or unsaturated,
as this can significantly affect site activity. Therefore, crystal-
lographic structural information is crucial for metal and alloy
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electrocatalyst studies. We hence suggest researchers interested
in this system adopt physical-informed advanced frameworks
like SOAP, ACSF, CGCNN, or instead have comprehensive con-
sideration of structural relations description during manual
feature engineering.

Dataset and ML algorithms. In Fig. 15c, the distributions of
datasets prepared in HER-related ML research works are pro-
vided. A clear trend is that for metal/alloy, the average dataset
size is significantly larger than that of carbon structures, with

TM compounds having the smallest average dataset size with a
median value lower than 100. These differences might be due to
the complexity of TM compounds’ structures, but they are
considered the most promising material system. Hence, based
on Fig. 15d, the top three most utilized ML algorithms are RF,
GBDT, and SVM, generally suitable for limited size datasets. In
comparison, MLP, the basic ANN without special layers is
becoming a popular choice for carbon structures and metal/
alloy studies. As summarized in Fig. 15e, it was further revealed

Fig. 15 Statistics for the HER section, including (a) utilized input features; (b) most important features recognized by ML model interpretation. (c)
distribution of the dataset sizes used. (d) Utilized ML algorithms; (e) best ML algorithms.
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that representative/deep learning methods are the most fre-
quently reported best-performing methods, surpassing com-
monly chosen GBDT and RF. The advantages might derive from
their better non-linear ability to learn and numerically surro-
gate modeling the complex structural and electronic interac-
tions. CGCNN is notable, as its graph representation strategy
has proven effective in all three categories. However, research-
ers should still note that neural network frameworks are
suitable for large and complex datasets, typically several thou-
sand structures, as shown by the metal/alloy peak in Fig. 15c.
Classical ML algorithms such as GP, RF, GBDT, and SVM might
still be robust, with better interpretability when the dataset
preparation budget is limited or target candidate space is of
lower magnitude like for carbon structures or TM compounds.

4. ML-aided design of OER
electrocatalysts

Building upon the prior discussion of the HER in electrolysis
processes, it is crucial to delve into the equally significant, yet
more challenging counterpart: the OER. While HER is necessary
for hydrogen production, it is the OER that often dictates the
efficiency and feasibility of the overall water-splitting process,
particularly in practical water electrolyzers. The OER is marked
by its anodic oxidation of water to produce oxygen, a step
characterized by considerably more challenging kinetics due
to a complex four-electron transfer mechanism. This complexity
not only sets OER as the rate-determining step (RDS) in electro-
lysis but also elevates its importance as the main bottleneck to
achieving overall system efficiency and sustainability. Despite
the effectiveness of state-of-the-art Ir and Ru oxide catalysts in
facilitating OER,199,200 their high cost and scarcity pose signifi-
cant hurdles. This reality has intensified efforts to explore
alternative catalysts that can offer both economic viability and
high performance, marking it a critical area of research in the
advancement of energy conversion technologies.

The fundamental mechanistic understanding of OER has
evolved, recognizing two primary pathways: the adsorbate evolu-
tion mechanism (AEM) and the lattice oxygen mechanism (LOM).
AEM, the traditional pathway, emphasizes the sequential adsorp-
tion and desorption of intermediates on the catalyst surface, with
the activity significantly influenced by the binding energies of
these intermediates. Under alkaline conditions, the four steps
involved four OH� ions and the intermediate converted from
*OH to *O then finally *OOH:5 (1) * + OH� - *OH + e�; (2)
*OH + OH� - *O + H2O + e�; (3) *O + OH� - *OOH + e�; (4)
*OOH + OH� - * + O2 + H2O + e�. As for AEM in acidic
conditions, the four steps and the corresponding oxygen-
containing intermediates are the same with OH� replaced by H+:
(1) * + H2O - *OH + H+ + e�; (2) *OH - *O + H+ + e�; (3) *O +
H2O - *OOH + H+ + e�; (4) *OOH - * + O2 + H+ + e�. This
mechanism aligns with the Sabatier principle, where optimal
catalyst activity is achieved when intermediates are neither bound
too strongly nor too weakly to the catalyst surface. However, the
inherent scaling relationships among the adsorption energies of

the intermediates pose limitations to the activity enhancement
achievable through AEM. In contrast, LOM offers a paradigm shift
by implicating the lattice oxygen atoms of a certain type of catalyst
material (typically perovskite) in the OER process,201 bypassing the
limitations imposed by scaling relationships in AEM. This mecha-
nism suggests that oxygen evolution can proceed through the
participation of lattice oxygen, leading to the formation and
subsequent refill of oxygen vacancies. This insight into the active
involvement of lattice oxygen has been supported by experimental
evidence such as oxygen isotope labeling and advanced spectro-
scopic techniques,202 underscoring the dynamic nature of catalyst
surfaces during OER. A brief schematic of OER mechanism is
provided in Fig. 16.

Both mechanisms are underpinned by the thermodynamics
and kinetics of intermediate species formation and evolution,
with the Gibbs free energy change of adsorption playing a
central role in determining catalytic activity. The activity of
OER catalysts is often depicted in volcano plots, illustrating
the trade-off between intermediate adsorption energies that are
too strong or too weak. This relationship has been instrumental
in guiding the theoretical screening and rational design of new
OER catalysts, leveraging descriptors such as the difference in
the Gibbs free energy change of adsorption between critical
intermediates. Specifically, difference in the Gibbs free energy
change of adsorption between O and OH, namely, DGO*–DGOH*
was found by Norskov et al.203 to be a concise but effective
descriptor of the theoretical overpotential of OER in common
AEM pathways. Meanwhile, DGO* is proposed by Kolpak et al.204

to be the descriptor when LOM is taken as the mechanism.
Nevertheless, due to the complexity of catalyst surfaces, compu-
tation and examination on all the four steps to find the real RDS
is more comprehensive and reliable. The exploration of OER
mechanisms has also highlighted the significance of the elec-
trocatalyst’s electronic structure, particularly the d-band center
theory for metal-based electrocatalysts, in influencing the adsor-
bate binding strength and, consequently, catalytic activity.205

Like HER, as previously mentioned, the operational envir-
onment—whether alkaline or acidic—plays a pivotal role in
dictating the choice of materials and the mechanisms at play.
Commonly used catalysts in both environments include oxides
of noble TMs like Ir, Ru. However, the differences between
alkaline and acidic conditions have profound implications on
the catalyst’s performance and durability. In alkaline media,
catalysts often exhibit lower overpotentials and enhanced stabi-
lity due to the less corrosive nature of the environment, which is
conducive to the use of a broader range of materials, including
non-noble metals and their oxides. This versatility facilitates the
development of cost-effective and efficient catalysts. Alkaline
conditions also allow for the exploitation of mechanisms like
LOM with greater efficacy, which is attributed to the favorable
interaction between OH� ions and the catalyst surface. Con-
versely, acidic environments necessitate the use of more
corrosion-resistant materials, typically noble metals, to with-
stand the harsh conditions, thereby limiting the material
choices. Hence, for both situations in addressing the limitations
of noble metal-based catalysts, research has pivoted toward
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developing non-noble metal catalysts, including TM oxides,
hydroxides, and perovskites,206 as well as carbon-based207 and
hybrid compound.208 These efforts are driven by the dual goals
of achieving high catalytic activity and stability while reducing
costs. The rational design of these catalysts often involves
strategies such as doping, alloying, and surface modification
to optimize electronic structures, enhance active site availabil-
ity, and promote favorable adsorption energetics. In light of
these considerations, the intricate challenges of OER present a
prime opportunity for the application of ML to unravel and
optimize the multifaceted design of catalysts.

4.1. TM oxides

4.1.1. Noble metal-based oxides. As previously discussed,
researchers have identified RuO2 and IrO2-based electrocatalyst
systems as the most promising transition metal candidates over
the years because of their enhanced electrical characteristics.199,200

Early in 2016, senior researchers Ulissi and Nørskov (who laid the
foundation for the OER mechanism) et al., used ML to automate
the discovery and construction of surface-phase diagrams for
electrocatalysis on IrO2 and MoS2 surfaces.209 By applying GP
regression with adsorbate coverages as the input features, they
efficiently predicted free-energy landscapes, reducing the compu-
tational effort from approximately 90 to just 20 DFT relaxations for
accurate Pourbaix diagram construction. Timmermann et al. also
used GP, but different from directly predicting OER activity
descriptors, their target was to train a Gaussian approximation
potential (GAP) to facilitate the global geometry optimization of

rutile IrO2 surfaces through simulated annealing.210 This
approach, powered by a dataset comprising 136 DFT-calculated
structures, led to the discovery of thermodynamically stable sur-
face complexions on (101) and (111) facets. This methodology
revealed the significant potential of these surface complexions in
reducing environments, a conclusion that was supported by
comprehensive experimental investigations. Considering many
unstudied IrO2 and IrO3 polymorphs, Ulissi et al. advanced the
ML application using CGCNN to predict various DG values.211 They
not only included different types of intermediates (O, OH, OOH),
but also took surface H coverage into account. Their approach not
only identified active sites with significantly lower overpotentials
between 0.22 to 0.28 V, but also offered concrete design strategies,
such as exposing more active low-index surfaces, creating smaller
nanoparticles, and increasing the oxidation states of surface Ir
atoms. Finally, as previously introduced, AL is an effective strategy
when an exploration budget is limited. Flores et al. used an AL
framework with GP regression.212 By incorporating uncertainty
quantification through the GP lower-confidence-bound acquisition
function, the study achieved a substantial reduction in required
DFT calculations, needing fewer than 30 calculations to acquire
the most stable polymorphs. Through this approach, they not only
reaffirmed the stability of the known structures but also discovered
a previously unknown, highly stable a-IrO3 phase as a novel
candidate.

ML-assisted investigation on RuO2 has also been reported.
Timmermann et al., building upon their innovative application
of GAP for the surface structure determination of rutile IrO2,

Fig. 16 Schematic of the OER mechanism.
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extended their methodology to include RuO2,213 showcasing
the versatility and efficiency of their approach for discovering
novel surface structures. In this advancement, they employed a
data-efficient iterative training protocol for GAPs, leveraging
sparse GP regression alongside simulated annealing, to explore
and optimize the surface geometries of both IrO2 and RuO2.
This refined ML process, enriched by a dataset that eventually
encompassed an additional 143 structures beyond the initial
bootstrapping set, not only reaffirmed the discovery of thermo-
dynamically stable surface complexions on IrO2 but also
unveiled similar energetically favorable complexions on RuO2.
Similarly, GAP was also used in the DFT calculation part by
Singh et al. in their experimental exploration on Na-substituted
disordered rock salt as OER electrocatalysts.214 Feng et al.
introduced CrystalGNN with a dynamic embedding layer to
self-update the atomic features adaptively along with the itera-
tion of the neural network (Fig. 17a).215 Impressively, by accu-
rately predicting the formation energies of more than 10 500
IrO2 configurations, they discovered eight previously unre-
ported metastable phases. They also innovatively used transfer
learning to enable the discovery of RuO2 and MnO2, showcasing
significant improvements in prediction efficiency and accuracy
for these electrocatalysts, thereby highlighting the potential of
transferring the capability of as-trained ML models across
different electrocatalyst systems. TM dopants into IrO2 and
RuO2 are another well-studied strategy to enhance their activity
and durability.216 Researchers have already reported successful
doping by TM elements including, Mn,217 Ni,218 Co,219 Mo,220

Cu,221 and Pb,222 etc. Xu et al. focused on doped RuO2 and IrO2

electrocatalysts,223 leveraging the SISSO method for data-driven
descriptor engineering to predict OER adsorption enthalpies
with remarkable accuracy. Their novel approach, involving an
extensive dataset of 684 DFT calculations and innovative input
features, enabled the identification of promising dopants like
Co and Fe that are in agreement with experimental validations.

Researchers have also directly applied ML in experimental
exploration despite higher expenses. Jiang et al. approached the
design of bifunctional oxygen electrocatalysts for ORR and OER
from a unique perspective of chemical bonds for composite
electrocatalyst material systems.225 They used a dataset from
151 published studies to develop ML models that predict the
E1/2, Z10, and their difference as metrics of potential catalysts
based on their chemical bonds. By employing SHAP values, they
identified a promising combination of C–N, C–C, Fe–N, Ru–O,
and C–P bonds, demonstrating a novel and efficient strategy for
electrocatalyst discovery that led to a promising RuO2@Fe–N–P–C
catalyst. In their most recent study, Kim et al. further refine the
application of AL to electrocatalyst experimental discovery by
targeting bifunctional catalysts for both HER and OER,224 extend-
ing their elemental palette to eight: Pt, Pd, Ru, Ni, Fe, Cu, Co, and
Sn (Fig. 17b). They also applied the previous data133 for training
the initial model. Their expanded approach efficiently pinpointed
an optimal catalyst composition, Pt0.15Pd0.30Ru0.30Cu0.25, achiev-
ing a notable cell voltage of 1.56 V at 10 mA cm�2 for water
splitting. This advancement is facilitated by a refined Pareto AL
framework using GP regressors for multi-objective optimization.

By integrating more than 110 experimental data points from
possible 77 946 points over five iterations, the method exhibited a
remarkable efficiency in navigating the complex design space for
bifunctional catalysts.

4.1.2. Earth-abundant metal oxides. Earth-abundant TM
elements have also been commonly studied due to their lower
cost and great potential, especially in alkaline electrolytes. Sun
et al. reported training an RF regressor based on 300 DFT-
calculated spinel oxides to predict band centers of oxygen 2p,
octahedral cations (MO) d, and tetragonal cations (MT) d in
AB2O4 spinel systems226 (Fig. 18a), achieving an MAE of just
0.05 eV. This ML-driven approach further led to the identifi-
cation of [Mn]T[Al0.5Mn1.5]OO4 as a highly active OER catalyst,
which was experimentally validated to exhibit an impressive
overpotential of only 240 mV at a current density of 25 mA cm�2,
positioning it at the pinnacle of OER performance among
spinel oxides. Likewise, Sugawara et al. studied Fe-based oxides
in alkaline media,31 but they uniquely used DFT-based input
features such as Fe–O bond length, metal–metal interatomic
distance, and metal–O–metal bond angle, while targeting
experimentally obtained specific activity (mA cm�2) and over-
potentials as the output features. Their ML-data mining further
revealed the Fe–O bond length as the most critical structural
descriptor for OER efficiency in the system.

Following the same idea, there are also a series of experi-
ment data-based ML research works regarding Z10 as the output
fitting target to explore similar systems from binary to quinary:
FeNiOxHy,

230 (Ni–Fe–Co)Ox,32 (Ni–Fe–Co–Ce)Ox,231 pseudo-
quaternary metal oxide combinations from six earth-abundant
TM (Co, Ni, Fe, Mn, etc.) elements,232 NiaCobFecX1�a�b�c.

233

These studies leverage various ML techniques, including ANNs,
SVR, and deep symbolic regression, to analyze and predict over-
potential in these earth-abundant TM oxide systems. The studies
collectively examined thousands of data points by experiments,
spanning compositions of binary to quinary systems. The
research demonstrated that experimental dataset-based ML
models could also uncover complex mechanism relationships
in electrocatalysis. Like in the work that Jiang et al. investigated
(Ni–Fe–Co)Ox ternary systems,32 the ML model revealed a
complex relationship, indicating that the variance in the first
ionization energies and outermost d-orbital electron numbers of
catalyst compositions correlates linearly with the reduction in
overpotential. As expected, by achieving significant accuracy in
forecasting electrocatalyst performance, these works could show
the successful prediction of optimal catalyst compositions. For
example, in the following work by Jiang et al., they successfully
synthesized a novel Ni0.77Fe0.13La0.1 (OH)x sample with an ultra-
low Z10 of only 226 mV under ML’s guidance.233 Wei et al.,
however, noticed that Z10 is not the only effective descriptor.72

They used a domain knowledge database to predict electroche-
mical double-layer capacitance (Cdl) for earth-abundant TM-
layered double hydroxides (LDHs) in OER. By incorporating
features such as chemical compositions, structural morphology,
and testing conditions into their models, they identified Ce as a
pivotal element in modifying the double-layer capacitance of
LDHs. The importance of enhancing OER activity is further
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Fig. 17 (a) Framework of CrystalGNN and workflow of the dynamic embedding layer (reproduced from ref. 215 with permission). (b) The exploration
process for efficient bifunctional multimetallic alloy catalysts integrates computational and experimental strategies. It begins with a comprehensive
search for potential catalysts, followed by the experimental validation of selected candidates. Throughout this process, a Pareto AL cycle is employed to
refine predictions and focus on promising alloys. Data points from predictions are categorized into three types: discarded points, which are
overshadowed by superior options; uncertain points, requiring further analysis to determine their value; and Pareto front points, which represent
optimal candidates undominated by others, highlighting the most efficient catalysts for further development (reproduced from ref. 224 with permission).
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validated by the authors’ experiments. Timoshenko et al.
proposed to use EXAFS and X-ray absorption near-edge structure
(XANES) spectra data to predict the partial bond length

distributions227 (Fig. 18b) for deeper comprehension of the
structural and chemical transformations in CoxFe3�xO4 nanoca-
talysts during OER. By leveraging a combination of unsupervised

Fig. 18 (a) The ML model’s prediction on covalency competition in spinel oxides; inset compares the model predictions to DFT for Max(DT, DO), with counts
on the y-axis (reproduced by ref. 226 with permission). (b) Schematic of ML trained on EXAFS and XANES data (reproduced by ref. 227 with permission). (c)
Models of the crystalline–amorphous interface (close packed atoms) paired with differential charge density outcomes (atom-bonds), where yellow indicates
charge accumulation and blue signifies charge depletion. The structure is obtained by high-dimensional neural network potential-boosted MD and DFT
provided by the DeePMD-kit package (reproduced from ref. 228 with permission). (d) DFT calculations boosted by ML force field on 9e-HEA: Left shows the
model without oxidation. Center and right depict models with pre-oxidation for *O and *OOH intermediates, respectively. Black circles highlight Ni as
catalytically active sites, with red and white spheres for O and H atoms. (reproduced from ref. 229 with permission).
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and supervised ML methods, including PCA and ANN, they were
able to elucidate the evolution of tetrahedrally and octahedrally
coordinated species. They unveiled that the active OER mecha-
nism likely involves the reversible formation and oxidation of
Co3+–O6 octahedral clusters, which vary with the Co-to-Fe ratio
and the electrochemical conditions. In conclusion, the works
described in this section have firmly demonstrated the power of
ML in guiding the discovery of efficient non-noble metal OER
electrocatalysts and deepening our comprehension of their
mechanisms, with comparatively less abundant but higher fide-
lity experimental datasets.

Recently, researchers have extended interest in multi-
element alloys containing five or more metals, namely high-
entropy alloys (HEAs) for OER, but such systems could hardly be
investigated efficiently without the help of ML. Before experi-
mental synthesis, Cui et al. applied ML-boosted MD and DFT via
high-dimensional neural network potential to provide guidance in
the FeCoNiMoAl HEA system228 (Fig. 18c). The results revealed
optimized atomic configurations and electronic structures, thereby
significantly reducing the electron transfer resistance, and enhan-
cing the catalytic active sites for OER. Through this computational
approach, the team successfully synthesized HEA fibers, demon-
strating superior OER performance with an overpotential of 470
mV at 2 A cm�2 and remarkable stability. Moreover, Tajuddin et al.
applied a similar strategy but more boldly investigated 9e (ele-
ment)-HEAs including Ti, Cr, Mn, Fe, Co, Ni, Zr, Nb, and Mo,229

where ML force fields were also generated from DFT-MD simula-
tions to estimate the Gibbs free energy for both OER and HER in
challenging acid electrolytes (Fig. 18d). They used an innovative
top-down approach for designing HEAs, focusing on the self-
selection and self-reconstruction of elements under operational
conditions, which enabled the automatic identification of both
catalytically active and passivation sites on the alloy surface. Their
findings revealed that certain elements like Mn and Fe are as
effective as platinum for HER, and the combination of elements in
the nonary alloy achieved high catalytic activity and remarkable
stability during OER.

4.1.3. Advanced oxide systems. In the quest for efficient
OER, advanced oxide systems, particularly perovskite and pyro-
chlore structures, are emerging as frontrunners due to their
unique electronic structures, high covalency in metal–oxygen
bonding, and potential to reduce reliance on scarce noble
metals.234,235 For the typical ABO3 perovskite systems, early in
2015, Hong et al. managed to gather publication data236 and
explored the intrinsic OER activity through a comprehensive
statistical analysis of 14 physical and chemical descriptors, high-
lighting the critical role of electron occupancy and metal–oxygen
covalency. Although they use the term ‘‘statistical learning’’ rather
than currently commonly used ‘‘machine learning’’, they still
managed to employ advanced regression techniques, including
penalized methods and factor analysis, to predict OER activities
with notable accuracy, achieving prediction errors within 0.5
standard deviations. From a theoretical perspective, Wang et al.
proposed a surface center-environment strategy for feature engi-
neering, integrating 114 descriptors derived from the elemental
and structural characteristics of perovskites into RF regressors237

(Fig. 19a). This approach enabled the accurate prediction of DFT-
calculated Gibbs adsorption free energies and overpotentials for
both existing and 610 newly hypothesized structures, revealing
perovskites with notably low overpotentials such as YRuO3, YIrO3,
and YFeO3. Weng et al., considering the higher cost of experi-
mental synthesis, applied symbolic regression based on merely 18
samples and successfully identified a decisive descriptor m/t, where
m and t are the octahedral and tolerance factors, respectively.78

This innovative approach further accelerated the discovery of new
high-activity catalysts such as Cs0.4La0.6Mn0.25Co0.75O3 and
Cs0.3La0.7NiO3. These new catalysts, synthesized under the gui-
dance of data science, have shown a remarkable activity boost
compared to previous works in the literature. Similarly, Li et al.
also used symbolic regression to analyze more than 105 experi-
mental perovskite-type OER electrocatalysts,238 identifying the
simple yet impactful descriptor Nd/(0.55 � rB), which correlates
B-site cation properties with OER activity and leads to the proposal
of Ni4+, Co4+, and Fe4+ as optimal candidates.

In addition to typical ABO3 type perovskites, other advanced
oxide systems have been studied using ML. Li et al. investigated
AA0B2O6-type double perovskites,240 employing an adaptive learn-
ing strategy with GP regressors. Their approach led to the
discovery of several novel perovskites with promising OER activ-
ity, such as KRbCo2O6 and BaPbTi2O6, highlighting the model’s
effectiveness in guiding the design of next generation electro-
catalysts that have a calculated overpotential of B0.5 V and
tolerance factors greater than 0.90. Song et al. also investigated
double perovskite catalysts, using a multi-task symbolic regres-
sion method to distill universal activity descriptors from diverse
datasets gathered via publications.241 They successfully applied
the ML-derived 2D descriptor to predict and experimentally
validate two new nickel-based perovskites, Cs0.4La0.6NiO3 and
K0.5Ce0.5NiO3. Wang et al. focused on pyrochlore compounds,
which are promising for acidic conditions.239 The team innova-
tively implemented a nuanced transfer learning strategy to
navigate the vast compositional space (Fig. 19b). By leveraging
a two-stage model, where the first stage trained on the formation
energies of inorganic compounds to craft a nuanced representa-
tion of individual elements and the second stage applied this
knowledge to predict the critical properties of pyrochlore oxides,
the team efficiently pinpointed 61 promising candidates from an
initial set of 6912. Tran et al. comprehensively built the ‘‘Open
Catalyst 2022’’ dataset,120 which comprehensively includes 62 331
DFT relaxations and approximately 10 million single-point calcu-
lations across various oxide materials. They utilized advanced
neural network frameworks, including GemNet-OC,53 SchNet,50

DimeNet++,52 ForceNet,108 SpinConv,51 GNN, and PaiNN,242 with
GemNet-OC demonstrating the best performance. Their work
highlights the effectiveness of fine-tuning pre-trained models on
this large, specialized dataset, improving prediction accuracy for
complex oxide surfaces and providing key insights into the
stability and energy dynamics of these electrocatalysts.

4.2. Carbon-based structures

4.2.1. Basic carbon structures. Similar to HER, carbon-
based electrocatalyst materials have proven promising for
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OER due to their low cost, high electrical conductivity, environ-
mental friendliness, and ability to enhance catalytic performance
through structural and compositional modifications such as het-
eroatom doping and nanostructuring,243 which could benefit from
ML techniques. Kapse et al. systematically studied the graphene
nanoribbon systems with N, S, P as dopants.244 Besides the

identification of optimal active sites (Fig. 20a) and configurations
with only 0.29 V overpotential, their work revealed the significant
role of p-electron-based descriptors in determining catalytic activ-
ity via an ML model. TM-doped, nitrogen-carbon, single-atom
catalysts on graphene are a more popular and frequently studied
system for hydrogen-related electrochemistry (Fig. 20b), as we

Fig. 19 (a) The surface center-environment model for ML input feature construction includes the central surface atom (B), top surface environment
(excluding B), and subsurface atoms. ML targets DGO*, DGOH*, DGOOH*, and ZOER, with D representing the elementary properties of the center and the
surrounding atoms (reproduced from ref. 237 with permission). (b) Transfer learning pipeline to predict the property of unknown pyrochlore oxides
(reproduced from ref. 239 with permission).
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introduced for HER in Section 3.2.1. Hence, there are also several
similar works using ML to investigate the electrocatalyst system’s
potential in OER245–248 (2020; 2021; 2021; 2023). However, it
should be noted that all these studies are based on DFT calcula-
tions, possibly because current experimentally validated systems
are mostly TM oxides while other systems still remain in the
theoretical stage.

These studies collectively highlight the potential of ML to
reduce the computational cost associated with DFT calcula-
tions. Commonly, the input features for ML models in these
studies include atomic and electronic properties of the TMs,
such as atomic mass, atomic radius, d-electron number, and
electronegativity. Moreover, as we concluded in Section 3.4 for
HER, the structural properties of the catalyst, including the

coordination environment and bond connectivity, are also
preferred and considered in carbon materials. Material insights
gleaned from these studies generally underline the importance
of electronic structure and atom-environment interactions in
determining catalytic activity. For instance, the electron num-
ber of the d orbital, the oxide and hydride formation enthal-
pies, and the electronegativity values of the central TM atom
and its surrounding atoms emerge as critical descriptors. These
features directly relate to the catalyst’s ability to facilitate
electron transfer and bond formation/breaking during the
OER process. Finally, across the works, elements such as Fe,
Co, Ni, and non-precious metals embedded in nitrogen-doped
graphene are often identified as promising candidates for
efficient OER catalysts.

Fig. 20 (a) Model structure of the optimal site on a zigzag nanoribbon (reproduced from ref. 244 with permission). (b) Schematic of graphene-
supported SACs for ML models: Single vacancy (three carbon atoms), double vacancy (four nitrogen/carbon atoms), and four pyridine nitrogen
configurations. TM atoms in orange, neighboring N/C in green, and other C atoms in gray (reproduced from ref. 245 with permission). (c) Atomic
structures of TM dual-metal catalysts on carbon surfaces include 23 defect types across seven N-doping levels (e.g., 4C-2N for two nitrogen
substitutions) and 729 compositional combinations, totaling 16 767 unique DAC structures (reproduced from ref. 249 with permission). (d) Top and side
views of MN4–O–MN4 show upper (orange) and lower (magenta) transition metals (M1 and M2). Red, blue, and gray depict oxygen, nitrogen, and carbon
atoms, respectively (reproduced from ref. 250 with permission).
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In addition to the regular TM–N–C system that we have
discussed, some researchers also considered related variants. Wu
et al. explored the potential of double-atom catalysts in carbon
matrices, which has increased the complexity (Fig. 20c).249 They
innovatively applied a topological information-based feature-
engineering method to handle model input that integrates
atomic properties and the structural topology of active sites
and their substrate environment. They also found an effective
intrinsic descriptor for clarity. Besides the d-band properties
of two TM atoms, the descriptor also includes the number
and electronegativity of nearby C and N atoms, reflecting
their unique impacts. Shan et al., however, think of another
possibility in which the TM–N4 active sites are bridge-bonded
by an O atom (Fig. 20d).250 Their calculation results pinpointed
CoN4–O–RhN4 and RhN4–O–AgN4 as standout monofunctional
catalysts for ORR and OER, respectively, and CoN4–O–AgN4

as an exceptionally efficient bifunctional catalyst. The electro-
nic structure analysis reveals that the d-band centers of
the active sites in the bifunctional catalysts result in moderate
TM atom adsorption on intermediates due to the synergistic
effects from bridge-bonded O ligands. This finding aligns with
the previously discussed research on single-layer TM–N–C
systems.

4.2.2. Carbon nitrides. As one of the special carbon struc-
tures previously mentioned in Section 3.2.2, graphitic carbon
nitride (g-C3N4), with its unique 2D structure, high nitrogen
content, and semiconductor properties, provides a versatile and
chemically stable framework for hosting transition metal
atoms. Therefore, it could serve as a promising alternative to
graphene as an efficient electrocatalyst platform. Niu et al.
studied the standard g-C3N4 as a substrate for hosting TM
single atoms (Fig. 21a).39 Despite the identification of Rh as the
best candidate for both OER and ORR, ML was used for data
mining, which had revealed the most impactful descriptors on
adsorption behavior as first ionization energy and charge
transfer of the center TM atom. Ying et al. similarly investigated
C2N-supported SACs and expanded their work to include N1C1

and N1S1 coordination.251 Their analysis identified the oxide
formation enthalpy and outer electron number as key predic-
tors for catalytic performance, leading to the discovery of Rh,
Au, and Pd@C2N as outstanding bifunctional catalysts for OER
and ORR activities. Wan et al. further broadened the searching
space to include various CxNy structures from C3N to C3N5

(Fig. 21b).252 Through detailed analysis, they discovered RhPc,
Co–N–C, and Rh–C4N3 as superior electrocatalysts, partially in
alignment with ref. 39. The feature importance analysis high-
lighted the electron number of the d orbital as a crucial
descriptor for catalytic performance. Finally, Zhang et al. stu-
died the dual TM atom-doping situation in g-C3N4 (Fig. 21c),30

revealing that specific combinations of heteronuclear struc-
tures like Ag–Pd and Au–Co to be OER active. As for ML data
mining, it was found that not only the TM atoms’ d-band
centers are as impactful as expected, but also the geometric
structures’, such as the distance between the two metal atoms
and the average bond lengths between the surrounding N
atoms and TM atoms.

4.3. Emerging material systems

Like carbon-based materials, other emerging materials have been
studied for their potential in boosting OER as electrocatalysts from
theoretical perspectives, such as 2D TM compounds like MXenes.
These studies generally consider both OER and ORR reactions due
to same intermediate species and apply the standard ML workflow
to train DFT surrogate models. Anand et al. investigated O-
terminated M2M0X2O2-type doped MXenes (Fig. 22a) by Fe/Co/
Ni,253 using an ML classifier to classify the MXenes into efficient
and non-efficient catalysts for HER/ORR/OER. Their study revealed
Ni–Sc2YN2O2 and Ni–Cr2ScC2O2 as efficient bifunctional catalysts
with lower overpotentials. The data mining process also revealed the
d-band center, which would impact the charge transfer pathway, as
the most critical descriptor, in alignment with the previously
mentioned studies. Similarly, Ma et al. focused on dual-transition
metal Janus-MXenes-based SACs, particularly Pt-doped variants.254

By leveraging a feature set that encompassed atomic, electronic, and
environmental characteristics, they demonstrated that the adsorp-
tion energy of *OH, the binding energy of Pt on the substrate, and
the d-band center of the Pt atom are critical descriptors impacting
OER/ORR overpotential. This approach enabled the identification of
SACs with significantly reduced overpotentials, notably Pt–VO–
MnTiCO2 and Pt–VO–PdTiCO2. Chen et al. focused on more
complex M–N4–Gr(aphene)/MXene heterojunction nanosheets sys-
tems (Fig. 22b), employing ML to analyze the catalytic activities of 78
such candidates.255 Their approach successfully identified key
electrocatalysts like Ni–N4–Gr/Nb2C and Ru–N4–Gr/Nb2C. The
importance analysis again revealed the d and p electron number
of the TM active site as the most influential descriptor in determin-
ing the catalytic efficiency.

Researchers have also investigated other unique TM com-
pound systems. Liu et al. studied 2D GaPS4 as a substrate for
hosting TM single atoms on sulfur vacancies,257 namely
TM@VS-GaPS4. Using a GBDT regressor, they identified key
descriptors such as the number of d electrons, bond length,
and electronegativity as crucial in their ML data mining, and
Pt@VS1-GaPS4 was identified as the most outstanding candidate
in this system. Similarly, Li et al. investigated single TM atoms
anchored on MnPS3 (Fig. 22c),256 identifying Rh/MnPS3 and Ni/
MnPS3 as the best candidates. Unsurprisingly, the ML analysis
revealed the number of d electrons in the TM atoms influenced
the adsorption strength of OH* species, thus becoming the
crucial feature. In addition, the authors of ref. 186 studied OER
besides HER on a monolayer C3B substrate. It should be
reminded that their results revealed Ni and Pt as the best
doping candidates, and ML data mining revealed that the
number of d electrons surpasses other most important features:
electronegativity, atomic radius, and first ionization energy of
the TM as the most significant factor.

Although these studies investigated different substrates for
hosting TM atoms, ranging from MXenes with different struc-
tures/doping strategies to GaPS4, MnPS3 and C3B, we can see
that the results are similar. TM d-band-related features such as
the number of d electrons should be considered the most
decisive feature in determining oxygen intermediate adsorption
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Fig. 21 (a) Illustration of the configuration of TM/VN-CN and the considered TM atoms as SAC candidates (reproduced from ref. 39 with permission).
(b) Atomic structures of prevalent carbon nitrides, their CxNy-based SACs with single TM atoms indicated by blue circles, and screened transition metals
on CxNys (reproduced from ref. 252 with permission). (c) Optimized g-CN structure, selection of metal atoms (Sc to Au), and binding configurations of M2
dimers on g-CN, showing both M atoms bonded with either three or two N atoms. Additionally, calculated formation energies (Ef) and Udiss for M2/g-CN
are presented (reproduced from ref. 30 with permission).
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Fig. 22 (a) Schematic illustration of the side and top views of the investigated O-terminated M2M0X2O2-type doped MXenes. TM acts as the active site
for the adsorption of intermediates (reproduced with ref. 253 with permission). (b) Top view and front view of the M–N4–Gr(aphene)/MXene
heterojunction structure (reproduced from ref. 255 with permission). (c) The optimized structures of the 2D MnPS3 monolayer and the TM/MnPS3

catalysts (reproduced from ref. 256 with permission).
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behaviors. Moreover, Ni and Pt are consistently discovered to be
optimal candidates in these 2D systems. We might also con-
sider it as the embodiment of robustness, transferability,
repeatability, and reliability of ML. In contrast to the previously
mentioned studies that are highly homogeneous in terms of
methodology and research system, Craig et al. uniquely inves-
tigated molecular OER catalysts,33 targeting TM catalysts coor-
dinated with specific ligands such as porphyrins using an AL
approach. This method was adeptly applied to identify catalysts
capable of operating through an extra oxidation mechanism, a
novel area in OER catalyst research. The balance they sought
between low overpotentials, and achievable proton transfer
barriers was critically dependent on the use of GP regressors
for predicting binding energies. A significant aspect of their
methodology was the employment of reduced autocorrelation
functions to generate input features, paired with a bespoke
acquisition function developed for their AL framework.

4.4. Membrane electrode assembly (MEA) perspective

So far, we have introduced the significant progress in the
application of ML to boost the design of electrocatalysts for
HER and OER in electrolyzers. Most research efforts predomi-
nantly rely on theoretical simulations such as DFT, and those
works that are experimentally based were often limited to half-
cell tests using experimental datasets. However, for practical
applications, the focus must shift to a more macroscopic per-
spective, considering the complexities of the membrane electrode
assembly (MEA) that encompasses not just chemical but also
engineering parameters. This approach necessitates a compre-
hensive understanding of the MEA’s multifaceted nature, where
chemical intricacies intertwine with a myriad of engineering
parameters, including catalyst loading,258 ionomer mass
fraction,259 membrane characteristics,260 and the dynamics of
the gas–liquid–solid interface.261 These factors, compounded by
the complexity of balancing electrochemical reactions, proton
and charge transfer, reactant diffusion, and varying operating
conditions, are pivotal for achieving the desired efficiency and
sustainability in real-world applications. This holistic view, con-
sidering the MEA’s operational environment and its microscale
to macroscale processes, is essential for optimizing precious
metal utilization and enhancing the overall performance and
durability of the whole device.

Ding et al. comprehensively studied the various aspects of
MEA optimization in proton exchange membrane (PEM) water
electrolyzers, including OER electrocatalyst design rules for
MEA that best balance cost and durability.69 They compiled
an extensive database from 122 research papers, resulting in
578 entries which included detailed operating conditions,
electrocatalyst compositions, and performance metrics. Their
models showed great regression prediction performance for
both MEA’s activity and long-term stability, especially in the
large current density area which is most important for the
electrolyzer efficiency. The best-performing model for predict-
ing current density at 1.9 V achieved an impressive R2 of 0.943
(Fig. 23a), demonstrating the model’s accuracy. Furthermore,
the researchers realized that basic feature importance ranking

was not enough to capture the nuanced interplay of factors
influencing MEA performance. Hence, they innovatively
noticed the importance of qualitative black-box interpretation
for engineering and industry targets like MEA, so they used
advanced 2D SHAP and PDP interaction plots to visualize the
complex relationships between variables. They also innovatively
proposed to use Friedman’s H statistics method262 to analyze
the non-linear interaction degree between input features to
help with inspecting the most impactful feature interaction
pairs (Fig. 23b). Their analysis finally revealed that certain
combinations of MEA design features, such as Ir weight per-
centage in anode electrocatalysts, would be suggested to be
around 80% to balance durability and activity (Fig. 23c). Simi-
larly, Günay et al. presented another comprehensive study,263

incorporating a wide array of components like porous transport
layers and various electrode electrocatalysts in their analysis.
They meticulously compiled a database from 30 recent pub-
lications, culminating in 789 data points which included intri-
cate details like electrode compositions and operational
parameters. The researchers adeptly applied a combination of
ML techniques, including PCA and classification and regres-
sion tree modeling, to unravel the complex interrelations in
PEM electrolyzer performance. Their nuanced approach
enabled them to identify key performance indicators such as
the mole fractions of Ni and Co on electrode surfaces, leading
to the precise prediction of electrolyzer polarization with an
impressive RMSE of 0.18 A cm�2 (Fig. 23d). Moreover, the study
shed light on high-performance electrocatalysts for PEM elec-
trolyzers, affirming the superiority of proton conductor electro-
lyzers over their anion exchange counterparts and highlighting
the potential risks associated with certain materials like unsup-
ported/V-doped TiO2.

Although electrocatalysts fundamentally operate at the
microscale, their real-world industrial application necessitates
a transition to a more holistic approach in future research.
Using actual MEA data, the research community should now
focus on understanding and optimizing the interplay between
the intricate microscale phenomena of electrocatalysts and the
macroscale operational dynamics of electrolyzer systems. This
shift is crucial for tailoring electrocatalyst designs that not only
excel in theoretical and laboratory settings, but also thrive in
practical commercial electrolyzers, thereby bridging the gap
between experimental research and industrial application for
sustainable and efficient hydrogen production.

4.5. Statistical analysis and summary

In this section, we present an analysis of the progress made in
applying ML to the study of OER electrocatalysts, focusing on
various material systems. We categorize related studies into TM
oxides, carbon-based structures, and emerging systems like 2D
TM compounds. Similar to Section 3.4, a high-level analysis of
features and ML algorithms of these 48 publications in Fig. 24
would be helpful for researchers preparing their ML studies on
systems of interest.

Features. Fig. 24a shows a general consistency in the most
adopted input features between OER and previously discussed
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HER studies. However, while HER studies prefer the number of
valence electrons, OER studies specifically use the number of d
electrons. Another difference is that structural descriptors like
bond length and tolerance factor have also gained high rank-
ings. Fig. 24b further indicates that the most important feature
identified is the number of d electrons, which has obvious
advantages in comparison. Bond length takes second place,
surpassing other atomic physical properties. Tolerance factor,
charge transfer energy, and oxide/hydride formation energies
have also gained attention. Therefore, it can be concluded that

HER emphasizes electronic interactions and atomic-scale con-
figurations, whereas OER emphasizes surface chemistry and
structural properties. This difference reflects the unique chal-
lenges inherent to each electrocatalytic process, as OER
involves a more complex four-electron reaction. The conversion
between intermediate species (*O, *OH, *OOH) and the unique
LOM mechanism, involving surrounding lattice O atoms,
significantly highlights the importance of structural effects.

When further breaking down the results based on material
categories, notable differences can be discerned. TM oxides

Fig. 23 (a) Best ML algorithms’ performance in predicting current density at 1.9 V, with 21 features shown by red points plotting predicted values against
actual values; proximity to the Y = X reference line (blue) indicates accuracy. The gray area shows the common prediction range. Bar charts display the
average and standard deviation of current densities, with MAE, MSE, and RMSE gauging prediction errors; lower values signify better model performance.
(b) Second-order Friedman H-statistic matrices after weighted averaging of the ML models trained with the selected core features for the regression of
current density. (c) 2D PDP interaction plots of Ir wt% and Ru wt% in different tasks for modeling current densities at different voltages. (a–c are
reproduced from ref. 69 with permission). (d) Regression tree model prediction of the electrolyzer polarization curve’s unseen observations (reproduced
from ref. 263 with permission).
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typically have catalytic sites on specific crystal facets exposed in
a homogeneous phase with short-range periodicity, whereas
carbon-based and other TM compound systems often involve
atomically dispersed TM heteroatoms incorporated into the

substrate material. While both categories identify the number
of d electrons as the most decisive feature, TM oxides focus
more on electronic properties and chemical stability, while
carbon-based and other TM compound systems rely heavily

Fig. 24 Statistics for the OER section, including (a) utilized input features; (b) most important features recognized by ML model interpretation.
(c) Distribution of the dataset sizes used. (d) Utilized ML algorithms; (e) best ML algorithms.
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on their structural configuration due to their diverse bonding
environments.

Dataset and algorithms. As indicated by Fig. 24c, dataset
sizes reported in the publications generally range from several
dozen to several hundred. Correspondingly, as summarized in
Table S1 (ESI†), among the 48 studies in this section, 39 include
classical ML methods, with 33 of these exclusively using
classical ML methods. This trend is also shown in Fig. 24d,
with the top five frequently leveraged ML methods being RF,
GP, SVM, GBDT, and KNN. The popularity of neural networks is
generally lower in comparison. Fig. 24e emphasizes that RF and
GP are the top two algorithms, cited as the best-performing far
more often than others. In general, deep learning or physically
informed descriptor frameworks like CGCNN are less popular
and currently have no advantage in OER-related research. This
may be because OER material systems are more complex, and
descriptor feature engineering relies more on the subjective
experience of researchers. Another reason is that calculating
theoretical OER activity requires computing the adsorption
energies of more intermediates, increasing the cost of dataset
preparation and hindering deep learning from unleashing its
capabilities.

Finally, when breaking down the data into material cate-
gories, minor preference differences can be observed. Though
both categories favor ensemble algorithms like RF and GBDT,
TM oxides uniquely favor GP. GP is the most used for TM oxide
systems and is reported as the best-performing algorithm as
frequently as RF. This preference might be due to the popular-
ity of AL and BO in TM oxide studies. Among the corresponding
five studies, GP is adopted for its inherent flexibility and ability
to provide uncertainty estimates. Additionally, symbolic regres-
sion, despite its weaker fitting ability, is uniquely favored in TM
oxide studies. This trend might indicate that for TM oxides,
researchers prefer interpretability over ML model capability.
Due to the more complex OER mechanism on TM oxide
surfaces and limited budget in query, researchers prefer using
ML strategies to identify key decisive design factors rather than
directly predicting OER activities, for example, straightforward
combination of formulas like the octahedral factor divided by
the tolerance factor in perovskites.

5. ML-aided design of HOR
electrocatalysts

Building on the foundational knowledge of HER and OER in
water electrolyzers, it is vital to recognize the significance of
their reverse processes in fuel cell technologies. Both anion
exchange membrane fuel cells (AEMFCs) and proton exchange
membrane fuel cells (PEMFCs) are pivotal in this context, where
both HOR and ORR play crucial roles. These fuel cells, which
had been the subject of intensive research before electrolyzers,
boast several advantages. Notably, they offer a high energy
conversion efficiency and cleaner energy alternatives compared
to traditional combustion-based technologies. Intriguingly,
the components of fuel cells mirror those in electrolyzers,

particularly in the reliance on electrocatalysts. Here, the depen-
dence on Pt-based noble metals is pronounced, as previously
discussed, underscoring a significant challenge in fuel cell
technology. In PEMFCs, the ORR is often a rate-limiting step
due to its complex four-electron process. HOR, in contrast,
proceeds very swiftly in acidic environments. As previously
mentioned for HER, the reverse reaction goes first through
either the Tafel (H2 + 2* 2 2*H) or Heyrovsky step (H2 + * 2

*H + H+ + e�), then the Volmer step (*H 2 H+ + * + e�) to finish
the process. Currently, research on the HOR in acidic condi-
tions, particularly using Pt/C catalysts, has reached a stage of
common knowledge, with the consensus that only a small
amount of Pt/C is required to effectively drive the reaction.264

This has rendered the reaction economically viable and, as a
result, further investigations in this area are not currently being
pursued extensively. However, the narrative changes drastically in
alkaline conditions. The kinetics of HOR in alkaline media are
markedly slower, presenting a unique set of challenges.265 In
short, this disparity in the reaction kinetics between acidic and
alkaline conditions stems from several factors.266 In alkaline
media, the interaction between hydrogen and catalyst surfaces
is altered, often leading to weaker adsorption and subsequent
recombination processes. This results in a significant increase in
the energy barrier for the reaction, thus slowing down the HOR.
Moreover, the involvement of hydroxide ions in the reaction
mechanism adds complexity, as it influences both the adsorption
and desorption steps of hydrogen on the catalyst surface. Thus,
the performance of AEMFCs is critically dependent on developing
effective HOR catalysts that can overcome these kinetic limita-
tions. A schematic of the HOR mechanism in alkaline is shown in
Fig. 25.

To address this, recent research has been directed toward
exploring non-precious metal catalysts and innovative electrocatalyst

Fig. 25 Schematic of the HOR mechanism.
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designs that can enhance HOR activity in alkaline conditions. This
includes the use of TM alloys, carbides, nitrides, and engineered
nanostructures that aim to optimize the hydrogen binding energy
and facilitate effective adsorption–desorption processes.267

Despite fewer numbers, some research still seeks to use ML in
boosting HOR electrocatalysts design, especially in HEA systems.

Men et al., in their experimental study of the PdNiRuIrRh HEA
system,268 employed ML potential-based Monte Carlo simula-
tions (Fig. 26a) for an in-depth analysis of the alloy’s catalytic
properties. They used a novel approach to construct the deep
potential for the HEA, involving a dual neural network setup and
a sophisticated training process via the deep potential generator,

Fig. 26 (a) Optimization of the HEA nanoparticle model via ML–MC simulations. (b) The schematic of the process dissolving surface metal atoms in HEA
nanoparticle to evaluate the stability. The energies of various nanoparticle systems are obtained based on the trained ML potential. (a and b are
reproduced by ref. 268 with permission). (c) Left: Neural network-predicted onset potential for the alkaline HOR of an SnPtRh array. Right: Experimental
onset potential for an SnPtRh array with slight discrepancies, notably along the Pt–Rh binary line (reproduced by ref. 269 with permission).
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which iteratively refined the dataset based on DFT calculations.
This method enabled the accurate prediction of high-
dimensional potential energy surfaces, leading to the identifi-
cation of key surface atomic distributions and coordination
environments, such as the critical Pd–Pd–Ni and Pd–Pd–Pd
bonding environments and Ni/Ru oxophilic sites. The study’s
findings revealed a significant enhancement in the HEA’s HOR
activity, with a mass activity of 3.25 mA mg�1, far surpassing that
of conventional Pt/C catalysts. Moreover, the authors further used
ML’s potential to simulate the particle surface dissolution pro-
cess, which provided insights into the enhanced stability
mechanisms of the HEA nanoparticles (Fig. 26b). Hitt et al.,
however, had applied ML to drive their entire experimental
exploration based on the parallel fluorescent screening of a broad
array of alloy electrocatalysts.269 Using a unique combination of
experimental data comprised of catalyst compositions, onset
potentials, and extensive material characterization, they applied
ML to not only predict new active catalysts, but also to uncover
key insights such as the critical role of average work function
and metal-oxygen bond enthalpy to determine the catalytic
activity (Fig. 26c). Their approach notably identifies Pt6Sn4 as a
highly effective alloy, surpassing traditional Pt/C in alkaline
polymer membrane fuel cells with a higher power density of
132 mW cm�2 mgPt�1. In conclusion, less studied HOR in
alkaline conditions remains challenging and could benefit from
ML in boosting the catalyst design in complex alloy systems and
revealing the mechanisms.

6. ML-aided design of ORR
electrocatalysts

Building on the comprehensive insights previously discussed for
HER, OER, and HOR, we turn our attention to the ORR, a process
that is equally critical and challenging. Like OER, the reverse
process ORR is a multi-step reaction involving four electrons.
Though sharing similar oxygen-containing intermediate species
like *O, *OH, *OOH, its mechanism is more intricate, comprising
both direct and indirect pathways.67,68 The direct pathway is a
four-electron process: O2 + 4H+ + 4e� - 2H2O in acidic or O2 +
2H2O + 4e� - 4OH� in alkaline electrolytes. However, in
contrast, possibilities exist to go through another indirect path-
way that involves a two-electron process. This process initially
forms hydrogen peroxide (H2O2) or peroxide anions (HO2

�) as an
intermediate, which can either be released as a product or further
reduced to water: O2 + 2H+ + 2e�- H2O2; H2O2 + 2H+ + 2e�-

2H2O in acidic or O2 + H2O + 2e�- HO2
� + OH�; HO2

� + H2O +
2e�- 3OH� in alkaline electrolytes. This bifurcation makes the
ORR not only energetically demanding but also complex in terms
of catalysis and reaction kinetics. Hence, in the quest for optimal
ORR catalysts, selectivity is a critical parameter that must be
carefully considered. The inadvertent production of H2O2 or
HO2

� during the ORR can have detrimental effects, as these
species not only are corrosive, but they also compromise the long-
term performance and overall efficiency of fuel cells on a macro-
scopic scale. Hence, the development of ORR catalysts that favor

the direct four-electron pathway, thus minimizing the formation
of these harmful intermediates, is a key objective in enhancing
the viability and sustainability of fuel cell technologies. A sche-
matic of the ORR mechanism is shown in Fig. 27.

For ORR electrocatalysts, currently there is a heavy reliance
on Pt-based noble metals in commercial applications.270 The
superior catalytic performance of Pt and its alloys has set a high
benchmark both in ORR efficiency and predominantly four-
electron direct reaction selectivity. However, due to the high
cost and scarcity of Pt, researchers have been exploring alter-
native strategies such as doping Pt with other elements to
enhance its catalytic activity or stability, and more recently,
the use of high-entropy alloys (HEAs).271 HEAs have gained
significant attention in the field of ORR due to their unique
properties arising from their complex compositions. Despite
these benefits, there remains a strong interest in non-precious
metal-based electrocatalysts, especially carbon-based catalysts
such as TM–N–C.272 These catalysts, particularly those featur-
ing single-atom sites, have shown promising ORR activity. The
use of transition metals such as Fe and Co combined with
nitrogen-doped carbon structures has led to the development of
catalysts that offer a cost-effective alternative to Pt-based
electrocatalysts.273 Given the complexity of ORR mechanisms
and the diverse range of catalysts being explored, this field also
presents an ideal scenario for the application of ML techniques.

6.1. Metal/alloy-based catalysts

Pt-based electrocatalysts stand at the forefront of ORR applica-
tions, primarily due to their exceptional catalytic activity and
durability.270 One of the pivotal advantages of Pt in ORR catalysis
is its ability to facilitate the electron transfer process, a critical
factor in fuel cell efficiency. Another proficiency stems from the
unique electronic structure of Pt, particularly its d-band center,
which plays a crucial role in binding oxygen-containing

Fig. 27 Schematic of the ORR mechanism.
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intermediates. The d-band model, as elucidated by Nørskov et al.
(2004),274 demonstrates how the electronic properties of Pt,
including the d-band center and Pt–Pt distances, significantly
influence the adsorption energy of intermediates and, conse-
quently, the ORR activity. This understanding has guided the
evolution of Pt-based electrocatalysts, leading to the development
of advanced nanoarchitectures that maximize active site exposure
and enhance mass transport, thereby boosting the ORR perfor-
mance. By optimizing these electronic interactions through
strategies such as alloying with other elements and designing
open nanostructures,275 researchers aim to help Pt-based
catalysts achieve a delicate balance of optimal oxygen-binding
energies for efficient ORR pathways and low noble metal cost.
Moreover, stability is not to be ignored under the demanding
conditions of fuel cells. To simultaneously achieve excellence
across multiple metrics, the doping design of Pt-based metal
alloys requires the careful modulation of numerous parameters,
presenting a prime opportunity for the application of ML
techniques.

6.1.1. Undoped noble metal. Starting from pure Pt nano-
particles, Robacado et al. employed a sophisticated approach
using the geometrical features and electronic properties of
various Pt surfaces and isolated nanoparticles to predict
oxygen-binding energy.276 This study revealed that for Pt sur-
faces, the average nearest-neighbor Pt–Pt distance and the
generalized coordination number are key descriptors. And for
Pt nanoparticles, a combination of five descriptors, including
nearest neighbor (NN) bond orders and d-band centers, is
significant. The most critical finding was a simple linear
combination of five descriptors via structural and electronic
properties depending on NN and second NN atoms. This
combination formula could reach an R2 of 0.976 as a proof of
well describing the chemisorption of O atoms. Instead of
predicting adsorption energies, Nigussa proposed to use
Amp277 and ænet278 packages to train ML potentials for under-
standing the reaction paths and electronic structures on plati-
num surfaces,279 specifically focusing on the (100), (110), and
(111) facets. This approach revealed the (110) surface’s superior
catalytic role in facilitating the dissociation processes for
hydrogen and oxygen, with detailed insights into the electronic
interactions and charge transfers that are critical for the fuel
cell efficiency. Similarly, Yang et al. also trained an ML
potential for energies and forces as surrogate model for MD
calculations in the Au (100)–water interface system,280 employ-
ing Behler–Parrinello symmetry functions as input. This
approach led to a detailed understanding of the ORR on Au
(100), particularly uncovering an associative reaction mecha-
nism (Fig. 28a) without the formation of *O intermediates and
identifying a low energy barrier of 0.3 eV, a finding that aligns
closely with experimental observations and highlights the
significant influence of water molecules in the reaction process.
Parker et al. proposed to comprehensively use both unsuper-
vised and supervised ML techniques in investigating Pt nanopar-
ticle structures.281 They innovatively employed a combination of
iterative label spreading (ILS) and archetypal analysis strategies.
The unsupervised learning phase (Fig. 28b), particularly

clustering, was pivotal in distinguishing between ordered and
disordered Pt nanoparticles, laying the groundwork for more
targeted analysis. In the subsequent classification phase
(Fig. 28c), these two distinct nanoparticle types were identified,
which then guided the regression analysis to predict the normal-
ized concentrations of surface microstructures and surface facets.
This layered approach highlighted the influence of nanoparticle
disorder (Fig. 28d) on ORR efficiency and the role of size and
surface facets in determining HER and HOR performance, offer-
ing a nuanced understanding that is essential for the advanced
design of Pt-based catalysts for energy applications. In their
following study, they further advanced the understanding of
disordered Pt nanoparticles to identify key structural prototypes
and archetypes from a dataset of 1300 particles.282 Unlike their
previous work which focused on classifying and regressing the
structural features of Pt nanoparticles, this study distinctly
categorized nanoparticles into pure and representative types,
unveiling seven archetypes and two prototypes which collectively
embody the full spectrum of structural diversity and complexity.
Hence, they offered a refined theoretical basis for discussing the
structure/property relationships in non-ideal Pt nanocatalysts.

6.1.2. Binary and ternary alloys. To tune the electronic
structure and reduce the amount of Pt usage, doping other
TM elements into Pt to form alloys has long been a strategy
adopted by researchers. For a typical PtNi binary alloy cluster
system, Zhen et al. developed a physically niche genetic-ML
approach to efficiently explore the vast structural space of
Pt(85�x)–Nix nanoclusters (Fig. 29a),283 pinpointing the Pt43–
Ni42 composition as the most stable configuration (Fig. 29b).
They identified the segregation-extent bond order parameter
and the shell-resolved undercoordination ratio as key features
impacting the structural stability, offering insights into the
detailed surface-sites occupations and the solid solution nature
of these nanoclusters. Their work not only aligns closely with
experimental observations but also provides a reliable theore-
tical reference for the future design and optimization of Pt–Ni
systems. Similarly, Chen et al. investigated the 55-atom Au@Pt
nanocluster, employing an ML neural network potential trained
on DFT data to analyze gold segregation effects.284 They used
ab initio molecular dynamics (AIMD) and GA to explore the
cluster’s configurational space, which revealed that gold atoms
tend to segregate to the surface and thus form a distorted
amorphous structure. This gold segregation significantly
enhances the ORR activity. In addition to Au, Rück et al. further
considered other transition metals including Ag, Pd, Cu,
Ni, focusing on the size effect which required the effective
medium theory (EMT) as a simulation tool.285 The ML model
that predicts strain on Pt core–shell nanocatalysts with site-
specific precision revealed that the optimal mass activities for
ORR are significantly influenced by nanoparticle size, strain
effects, and core material. Key findings include the identifi-
cation of optimal nanoparticle sizes for each core material
(Fig. 29c) (e.g., 1.94 nm for Cu and Ni, and 2.83–2.88 nm for
Ag and Au) and the conclusion that compressive strain on
Pt@Cu and Pt@Ni enhances mass activities, while Pt@Au
and Pt@Ag showed best activities under weak compressive
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strain. Finally, Zhang et al. broadened the search of the interest
area to include wide range of TM elements for PtM-, Pt3M-, and
PtM3-type alloys.286 Their comprehensive workflow integrated
high-throughput DFT calculations with an AL approach. In
three rounds of AL, they pinpointed Pt3Co (211) as the most
promising candidate. Moreover, SISSO was applied to reveal

that the electronegativity difference between Pt and hetero-
atoms, the number of valence electrons in the heteroatoms,
and the ratio of heteroatoms around Pt structure are most
impactful in the binary Pt alloy systems.

Besides binary alloys, researchers have also investigated
possibilities in ternary alloys. Chun et al. studied PtFeCu

Fig. 28 (a) Snapshots for O2 in bulk water, the initial state, the transitional state, and the final state. The substrate is Au (100) surface (reproduced from
ref. 280 with permission). (b) Left: t-SNE plot of 1300 platinum nanoparticles showing x–y distribution based on similarity in 121 dimensions. Right: Order-
labeled minimum distance plot from ILS clustering with two peaks indicating distinct clusters, color-graded from blue to red based on label iteration. (c)
Left: t-SNE distribution of 1300 Pt nanoparticles, colored by ILS-assigned clusters. Right: Confusion matrix confirming perfect separability of classes,
primarily influenced by processing conditions and order parameters. (d) Examples of Pt nanoparticles in the set, of comparable size, with atoms encoded
by the coordination number. Atoms are color-coded by coordination number: dark blue for 7, light blue for 8, green for 9, yellow for 10, and red for 11. (i)
Class 1 Pt nanoparticle featuring abundant surface microstructures, (ii) Class 1 with numerous surface facets, (iii) Class 2 with a high density of surface
microstructures, and (iv) Class 2 rich in surface facets. (b-d are reproduced by ref. 281 with permission).
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ternary alloys and trained neural network potentials to predict
forces and energies in the crystal, enabling high-throughput
screening of 396 862 structures to pinpoint the most active and
stable configurations.287 The DFT-ML emulator guided the
identification of candidate compositions for experimental
exploration: Pt0.82Fe0.18 (PtFe), Pt0.82Fe0.12Cu0.06 (PtFehighCulow),
and Pt0.8Fe0.08Cu0.12 (PtFelowCuhigh). Moreover, the authors
revealed the atomic distribution of Cu as a critical factor for
enhancing activity and stability. In a half-cell test, the best

Pt0.82Fe0.12Cu0.06 synthesized not only showed a three-fold
higher mass activity than that of Pt/C (Fig. 29d), but also
performed well in accelerated stability tests. Kang et al. also
applied a similar strategy, incorporating neural network
potential with Monte Carlo and MD simulations as an efficient
emulator for the ternary PtNiCu system.288 They adeptly
employed Gaussian descriptors for radial and angular symme-
try functions (G2 and G4) as input features to predict the total
energy of nanoparticles, leading to the discovery of an optimal

Fig. 29 (a) Structure of a randomly ordered Pt–Ni 85 atom octahedron. (b) Global search results of physically niche genetic-ML in the homotopic space
of a Pt(85–x)–Nix nanocluster. (a and b are reproduced from ref. 283 with permission). (c) Upper: Training (green), testing (red) nanoparticles sizes used,
and ML predictions of strain, with size scale truncated at 2.86 nm. Bottom: Forecasted optimal mass activities for nanoparticles with Pt shells and fcc core
metals vary by size and distribution (reproduced from ref. 285 with permission). (d) Mass activity at 0.9 V (versus RHE) before and after 30 000 accelerated
stress test cycles (reproduced from ref. 287 with permission).
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2.6 nm icosahedron ternary nanocatalyst, comprising 60% Pt
and 40% Ni/Cu, as the best theoretical candidate with
enhanced activity and stability for ORR in acidic environments.
Lee et al. further broadened the choice of the doping element to
include a wider range of TMs in a Pt15MmNn (m + n = 5) system,
representing typical Pt3M systems.289 They employed CGCNN to
efficiently predict the stability (DHf) and activity (DEO) of more
than two million surface structures, using crystal structures as
input to identify 29 ternary Pt alloys with enhanced ORR activity
and stability under acidic conditions. This approach revealed that
certain combinations, notably those including elements like Ir
and Rh as secondary doping elements, could significantly stabi-
lize the Pt-skin surface. Park et al. used a modified CGCNN, a
slab-graph convolutional neural network,35 which significantly
enhanced the prediction of adsorption energies by incorporating
slab-graph constructions tailored for catalytic system applica-
tions. Their interest is in the ternary core–shell structure like
X3Y@Z, which demands exploration of the vast ternary alloy
space. As a result, the authors successfully identified Cu3Au as
core and Pt as shell as a superior catalyst, demonstrating a
roughly two-fold increase in kinetic current density and a sig-
nificant reduction in Pt usage through experimental validation.

6.1.3. High-entropy alloys. High-entropy alloy (HEA) systems
could benefit from the synergistic effect among multiple metal
elements for optimized electronic and other properties, delivering
superior performances. However, compared to the previously
mentioned binary and ternary alloys, the challenges for explora-
tion in the candidate spaces increase exponentially. Hence, ML is
needed to boost the process. The research groups of Rossmeisl,
Schumann, and Ludwig have collaborated from 2018 to 2022 on
such an effort. Focusing on HEA as ORR electrocatalysts, they have
developed a series of impactful and comprehensive research works
that can serve as excellent research examples. Their first pioneer-
ing work290 focused on the surface HEA consisting of Ir, Pd, Pt, Rh,
and Ru. By using the compositions of the nearest-neighbor atoms
as input features (Fig. 30a), a simple least squares algorithm is
trained as a DFT surrogate model to predict DEOH and DEO for
screening HEA compositions. They discovered the optimized HEA
composition Ir10.2Pd32.0Pt9.30Rh19.6Ru28.9, which significantly sur-
passes the catalytic activity of pure Pt. Building on this, the
following work expanded the methodology by integrating compu-
tational predictions with high-throughput experimentation to
refine the search for optimal Ag–Ir–Pd–Pt–Ru complex solid solu-
tions compositions.291 Leveraging a dataset of 3317 DFT-calculated
binding energies, the authors employed linear regression and
sequential least squares programming to predict electrocatalytic
activity. The ML surrogate model guided the synthesis and char-
acterization of thin-film material libraries, revealing Ag5Ir5Pt20-
Pd35Ru35 and Ag5Ir5Pd17Pt68Ru5 as compositions with the highest
ORR activity. By further analyzing the distribution of DEOH and
DEO, the authors also proposed a model that estimated the total
current density at 0.82 V (Fig. 30b), aligning theoretical predictions
with experimental outcomes. Subsequent scanning droplet cell
measurements in 0.1 M HClO4 electrolyte validated these compo-
sitions, confirming their superior ORR activity through systematic
high-throughput experimentation.

Further advancing the field, their third paper introduced BO
to efficiently navigate the compositional space of Ag–Ir–Pd–Pt–
Ru and Ir–Pd–Pt–Rh–Ru systems292 (Fig. 30c). Using a kinetic
model informed by DFT calculations, the study input features
involved molar fraction vectors for alloy compositions. The
authors targeted the optimization of current density corres-
ponding to different compositions that were computed based
on models proposed in the previous work.291 This approach
allowed for the prediction and experimental validation of
optimal catalytic activities with a significantly reduced experi-
mental dataset in only about 50 attempts, exemplified by
discovering optimal binary alloys such as Ag14Pd86, Ir35Pt65,
and Pd65Ru35 with high ORR activity. Recently, the authors
advanced their methodology from previous works by incorpor-
ating a unique combinatorial strategy, building upon their
established foundation of integrating computational predic-
tions with high-throughput experimentation. This latest effort
systematically covered the vast composition space of Ru–Rh–
Pd–Ir–Pt.293 By deploying a data-guided experimentation
approach, which involved permutations of deposition source
arrangements, they efficiently expanded the experimentally
explored composition space beyond their earlier achievements
with BO and DFT surrogate models. This methodology enabled
the identification of an optimal electrocatalytic composition,
Ru25Rh15Pd31Ir15Pt14, demonstrating the enhanced power of
combining advanced simulation with large experimental data-
sets (Fig. 30d). The study also revealed the critical importance
of Ru and Pd content for enhancing electrocatalytic activity in
HEA systems for ORR. Across these studies, the team adeptly
navigated from scale-specific, DFT-based microscale predic-
tions to macroscale experimental validations, highlighting a
transition from conventional DFT surrogate models to employ-
ing advanced optimization and high-throughput experimental
approaches. This progression demonstrates a strategic applica-
tion of ML to bridge theoretical models with empirical evi-
dence, effectively exploring the complex composition space of
HEAs for identifying superior electrocatalysts.

There are also several other notable works. Lu et al. inves-
tigated the Ir–Pd–Pt–Rh–Ru system,294 like ref. 290, but chose
neural networks for regression modeling, uniquely applying
them to decouple the ligand and coordination effects in HEA
catalysts. By leveraging a neural network trained on DFT-
calculated adsorption energies, they achieved a MAE of
0.09 eV. Moreover, their approach allowed them to dive deeper
into mechanisms. They identified that coordination number and
element identity are critical factors in determining the adsorp-
tion energy. This derived the pattern that more undercoordi-
nated sites bind to *OH more strongly, ending up with higher
ORR activities. Similarly, Saidi reported a work on Pt-free
multinary PdAuAgTi alloy.295 By focusing on the DEOH as the
ORR activity descriptor, the study identified an optimal com-
position range of 8–12 at% Ti, which showed enhanced ORR
performance close to that of Pt. Further, the research unveiled
that substituting Au and Ag with more cost-effective elements
like Cu and Zn not only maintained but potentially improved
the catalytic activity, thereby opening avenues for more
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economically viable catalyst options. Yuan et al. further inves-
tigated the HEA without noble metals in the system of CoFeNi–
X (X = Mo, Mn, or Cr).296 Through a standard DFT-ML strategy,

they found that Mo and Cr could enhance the formation of
bridge and on-top binding sites, which are crucial for ORR
processes. Remarkably, they demonstrated that the typical
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scaling relationship between DEOH and DEO remains consistent
across equimolar HEAs, yet stoichiometric adjustments can
disrupt this balance. Of particular note, we found that in this
section’s research works the output fitting targets are all DEOH

and DEO, rather than the commonly used DG previously
adopted by works in the HER and OER studies. We speculate
that the focus on adsorption energies in these studies is due to
the complexity of the thermodynamics on HEA surfaces, where
site variations cause different thermodynamic behaviors. This
simplifies catalytic activity exploration by prioritizing a key step
in electrocatalysis and avoiding the detailed thermodynamic
corrections that could usually be managed with constants in
other research works.

6.2. Carbon-based materials

Carbon-based materials, particularly those doped with hetero-
atoms like N or TM, have been extensively studied as promising
substitution candidates for Pt as ORR catalysts due to their high
activity, stability, and cost-effectiveness.297 Like previously intro-
duced research on carbon-based materials, these materials ben-
efit from the unique electronic properties imparted by
heteroatom doping and the catalytic activity provided by transi-
tion metal sites to enable efficient ORR pathways.298,299 However,
unlike the situation for HER and OER in the ML studies
discussed in Sections 3.2 and 4.2, which are mainly based on
theoretical simulations, ORR carbon catalysts have long been
studied experimentally. In addition, considering the homogene-
ity in research methods, in this section we divide the ML research
on carbon-based ORR catalysts into two categories: those based
on theoretical simulations and those based on experimental data.
This distinction allows for a comprehensive understanding of the
ORR mechanisms and the optimization of catalyst designs
through both theoretical and practical approaches.

6.2.1. Theoretical simulation-based studies. Starting from
metal-free carbon, besides the previously discussed ref. 145
which the authors also discussed ORR overpotential, graphene
nanoribbons (Fig. 31a) have raised the interest of Kapse
et al.300 Their results showed that the p orbital descriptors---the
density of states at the Fermi level and relative p orbital
occupancy—as pivotal for predicting ORR activities. They also
found that the ML model could be extensively applied to similar
carbon systems in different sizes, supporting validation of the
insights in larger graphene configurations. Lv et al. investigated
another type of N-doped g-graphdiyne301 nanoribbon, focusing

on the edge effects to enhance the ORR and HER activity. They
identified the distance between the adsorption site and the
closest atom, along with the atomic charge of the adsorption
site, as key determinants of electrocatalytic performance. This
analytical method revealed that sp2-N doping near the edges
significantly boosts the bifunctional activity. Bhardwaj et al.
further used this type of DFT-ML strategy to provide guidance
for their experimental synthesis.302 In the DFT calculations
integrated with ML, they focused on defect-engineered,
nitrogen-doped graphene, identifying 5–8–5 defect sites and
nitrogen dopants as key to enhancing catalytic activity. As for
the synthesized sample under DFT-ML guidance, it demonstrated
a notable ORR performance with a E1/2 of 0.82 V (Fig. 31b and c),
matching the benchmark set by commercial Pt/C catalysts.
Lodaya et al. innovatively investigated graphite-conjugated cata-
lysts that combined both advantages of heterogeneous and
homogeneous catalysts, specifically focusing on their effective-
ness without metal utilization.303 They identified carbon atoms
ortho or para to nitrogen and at the edge of aromatic systems as
key active sites for ORR, revealing the significant role of spin
density and charge difference in predicting catalytic activity.

As a consensus in the field,298,299 further doping of TM
atoms would increase the electrocatalytic activity, validated by
both experiments and theoretical simulations. Therefore, the
TM–N–C configurations have attracted attention and resulted in
several similar studies aimed at expediting the discovery and
optimization of such SACs304,306,307 (2023; 2023; 2020). These
investigations have systematically explored the influence of
transition metals and environmental atoms on SACs’ perfor-
mance by applying DFT calculations alongside ML to predict
catalytic activities with high precision. For instance,304 one
study considered other non-metal environmental atoms besides
N: P, S, O, etc. (Fig. 31d). The authors identified 30 high-
performance catalysts from a vast sample space of 1344 struc-
tures by combining geometric and electronic features, achieving
an impressive predictive accuracy (RMSE of 0.12 V). In another
work,306 the incorporation of unique descriptors such as the
valence electron correction and the degree of construction
differences has significantly improved model predictions, high-
lighting the importance of local structural configurations sur-
rounding the active centers. As for deeper insights into the
structure-performance relationships, key findings across these
studies underscore the pivotal role of the central metal’s elec-
tronic structure, particularly the number of d-electrons, radius,

Fig. 30 (a) Surface configurations parameterized by nearest neighbors. Left: *OH on-top binding highlighted by zones—binding site (orange), single-
coordinated surface (light green), and subsurface (light gray) neighbors. Right: *O fcc hollow binding with zones—binding site (orange, 35 parameters),
single-coordinated (light green/light gray), and double-coordinated (dark green/dark gray) neighbors (reproduced from ref. 290 with permission). (b)
From top to bottom, on the top is a schematic of the complex solid solutions surface populations: Red for oxygen, white for hydrogen, with varied colors
for complex solid solutions. The second layer shows histograms depicting *OH (green), *O (blue), and combined (grey) binding energy distributions
across a 10 000-atom surface, showing optimum energies on volcano curves. The third layer shows example polarization curves for Ag4Ir16Pd30Pt14Ru36

measured against potential, with red lines at 0.82 V versus RHE. The bottom are activity maps from models I, II, and III, showing current at 0.82 V versus
RHE for selected compositions highlighted by a black box (reproduced from ref. 291 with permission). (c) Workflow of the BO algorithm: Terminated at N
= 150 samples to assess the deviation in samples needed for optimal composition discovery. Acquisition function evaluated with n = 1000 random
compositions (reproduced from ref. 292 with permission). (d) Visualization of compositional coverage for ternary and quaternary libraries across 342
measurement areas on a 100-mm diameter substrate, spaced at 4.5 mm intervals. Bottom: Demonstration of co-deposition from five sources and
compositional gradients in a co-sputtered quinary materials library, with the same measurement grid (reproduced from ref. 293 with permission).
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and electronegativity, in determining SACs’ ORR activity. Among
the various TM–N–C configurations studied, Fe–N–C and
Co–N–C emerged as the most promising candidates, owing to
their optimal balance of catalytic activity and stability, as

revealed through importance analysis. Such results are highly
consistent with domain consensus validated by experiments.

Wang et al. further explored more possible types of N–C
substrates (15 types) for hosting TM single atoms,308 leveraging

Fig. 31 (a) Left: Zigzag graphene nanoribbons with sulfur dopants at various sites (S), and active sites (Z), with absent hydrogen marked by blue circles.
Z20 and Z30 sites specific to dual-atom doping. Right: Armchair graphene nanoribbons featuring substitutional (S) and active sites (A), with A200 and A300

exclusive to single-atom doping (reproduced from ref. 300 with permission). (b) Linear sweep voltammetry polarization curves of samples annealed at
950, 1050, and 1150 1C and Pt/C catalyst at 1600 rpm in 0.1 M KOH saturated with O2. (c) Corresponding Tafel plots. (b and c are reproduced from ref.
302 with permission,) (d) Top: Structure of M–N4C10 with 28 central metals and six environmental atoms illustrated. Bottom: Eight configurations of SACs
defining the sample space, with blue-violet for M, green for N, gray for C, and pink for doped atoms (reproduced from ref. 304 with permission). (e)
Geometric structure of left: bare and right: OH-modified TM1TM2–N6 structures. Gray, red, blue, and white balls represent C, O, N, and H atoms,
respectively, while pink and brown balls represent TM atoms (reproduced from ref. 305 with permission).
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ML to decouple the effects of adsorbate geometry and substrate-
specific properties on the adsorption energy of O2, which is
crucial for optimizing electrocatalytic activity. Their innovative
approach identified a novel, data-driven descriptor related to
the geometrical configuration of the adsorbed O2, which
emerged as the most significant factor influencing adsorption
energy, thereby providing a quantitative basis for the design of
TM–N–C SACs with tailored catalytic properties for ORR. Finally,
two different groups have coincidentally noticed dual-TM–N–C
sites with geometric structures (Fig. 31e) like TM1TM2–N6. Deng
et al. and Zhu et al. both targeted the design and efficiency
optimization of this system. Deng et al. discovered that Co2–N–C
and other eight configurations exhibit superior ORR activity,309

surpassing Pt benchmarks, with Co–Ni–N–C showing a notable
limiting potential of 0.88 V. Zhu et al., however, identified Cu–
Fe and Ni–Cu as candidates.305 Nevertheless, both studies high-
lighted the pivotal role of geometric parameters as critical
factors, a finding revealed through ML, which underscored
the simple geometric distances between TM atoms and coordi-
nated N atoms as key to enhancing ORR performance. The
impact of electronic descriptors such as electron affinity and
electronegativity are also consistent between the two studies.

6.2.2. Experimental-based studies. While most of the
research works introduced thus far are based on theoretical
simulations like DFT, especially for non-precious metal systems
such as TM compounds and carbon-based materials, a notable
shift can be observed in the domain of ORR catalyst design
towards leveraging ML methodologies grounded on experi-
mental data. Though with limited database size, these studies
typically use experimental parameters such as doping elements,
synthesis conditions, and physicochemical properties as input
features to predict ORR performance metrics like E1/2.

First for metal-free systems, Dan et al. focused on N-doped
graphene,310 with their main emphasis on investigating the
electron transfer numbers. This value is crucial for determining
the two-electron or four-electron ORR pathway, as previously
introduced. By applying ML to correlate synthesis parameters
and material characteristics with ORR performance, they dis-
covered that synthesis time and N doping levels are critical for
optimizing the electrocatalytic efficiency of N-doped graphene
materials. Jiang et al. investigated polymer hollow spheres
(Fig. 32a) using ML to guide the choice for reactants like
dopamine, trioctylamin, ammonia, and so forth.71 Their
method revealed that reaction time and the amount of TOA
and water were critical for the morphology of the spheres. The
quantitative ML approach could successfully predict product
morphologies to be solid or hollow, which could benefit the fine
control of nano-synthesis. Xia et al. further proposed to build
their ML models based on 123 different metal-free carbon
materials collected from 50 works,311 focusing on N content
and surface area as critical descriptors for predicting the onset
potential of ORR. Their application of materials informatics
led to the identification of nitrogen-doped graphene nano-
mesh as an optimal substrate for anchoring iron phthalo-
cyanine, culminating in the fabrication of the sample under
ML guidance. This catalyst showcased an unprecedented

electrocatalytic activity for ORR in alkaline environments, with
the most positive ORR peak at 0.87 V and an onset potential of
0.99 V in alkaline condition, surpassing even commercial pro-
duct 20 wt% Pt/C.

Like OER, the acidic medium is more challenging for
carbon-based materials. A group of researchers led by Zelenay
et al. investigated the zeolitic imidazolate framework-8 (ZIF-8)
derived Fe–N–C, as such systems have been regarded as some of
the most promising candidates in acid medium. Their initial
study312 focused on input features such as Fe precursor identity,
content, and pyrolysis temperature. Through this approach,
they discovered that GBDT and SVR models were most effective,
leading to a 36% increase in measured mass activity. The
importance analysis revealed the pyrolysis temperature as the
most critical parameter influencing catalyst performance. Build-
ing upon this foundation, their subsequent work introduced an
adaptive learning framework (Fig. 32b),28 enhancing the meth-
odology by incorporating statistical inference and uncertainty
quantification to navigate a six-dimensional search space effi-
ciently. This advanced approach resulted in the identification of
four catalysts outperforming the original dataset, with the best
catalyst showing a 33% improvement in ORR activity, specifi-
cally, an impressive mass activity of 16.3 mA mg�1. Ding et al.
also explored the ZIF-8 system, with a unique angle, uncovering
the often-overlooked significance of pyrolysis time alongside
pyridinic nitrogen species as decisive factors through the ML
analysis of comprehensive experimental datasets.313 Their
approach, underpinned by data mining from 103 studies and
a dataset encompassing 225 entries, revealed that pyrolysis
time, typically not varied in previous studies, plays a crucial
role in catalytic performance. By integrating ML predictions
with experimental validations, they demonstrated a volcano-like
relationship under different pyrolysis temperatures between
pyrolysis time and E1/2, pinpointing an optimal pyrolysis time
that led to a superior E1/2 of 0.82 V in acidic conditions for the
best-performing catalyst. Moreover, combining characterization
results and SHAP analysis, the authors revealed that the deeper
mechanism of such a trend is the conversion of N species
throughout the pyrolysis process, which has further proven
the potential of ML in electrocatalyst research.

6.3. Other materials and MEA perspectives

In addition to commonly studied Pt-based alloy systems and
carbon-based materials, there are several new emerging electro-
catalyst systems for ORR that have been studied using ML. Using
a typical DFT-ML surrogate modeling strategy, Liu et al. investi-
gated TM and N doped AlP monolayers29 for bifunctional oxygen
electrocatalysis, pinpointing Co@VAl–2NP–AlP and Ni@VAl–
2NP–AlP as systems with outstanding catalytic activity for OER/
ORR with specific overpotentials of 0.38/0.25 V and 0.23/0.39 V,
respectively. As for post-data mining, the authors identified the
number of TM-d electrons, the radius of the TM atom, and the
charge transfer of TM atoms as critical descriptors influencing
adsorption behavior. This is quite consistent with the conclu-
sions from previously introduced research that studied TM SACs
on different substrates. In comparison, Zhai et al. leveraged
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Fig. 32 (a) Schematic diagram for guiding emulsion interfacial polymerization to prepare hollow spheres by ML (reproduced from ref. 71 with
permission). (b) Adaptive learning in material design uses existing data and ML to correlate material properties with performance outcomes. By integrating
uncertainty quantification and optimization, it guides the selection of new materials for testing to achieve specific targets and reduce model uncertainty.
The highlighted approach prioritizes testing materials with greater predictive uncertainty, enhancing algorithmic performance and refining computa-
tional models with each iteration (reproduced from ref. 28 with permission).

Chem Soc Rev Review Article

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

9 
O

ct
ob

er
 2

02
4.

 D
ow

nl
oa

de
d 

on
 1

/1
1/

20
26

 5
:1

9:
08

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4cs00844h


This journal is © The Royal Society of Chemistry 2024 Chem. Soc. Rev., 2024, 53, 11390–11461 |  11447

domain knowledge from published experimental data to con-
struct ML models.314 They aimed to inform their experi-
mental strategies for ABO3-type perovskite oxides in alkaline
electrolyte oxygen reduction electrodes. By introducing the
ionic Lewis acid strength as a novel descriptor, their ML
approach enabled the screening of 6871 perovskite compositions,
ultimately identifying four with superior activity. The guided
experiments validated the ML predictions, particularly highlight-
ing Sr0.9Cs0.1Co0.9Nb0.1O3, which exhibited an exceptionally low
area-specific resistance of 0.0101 O cm2 at 700 1C, underscoring
the critical role of the A-site and B-site ionic Lewis acid strengths
in enhancing surface exchange kinetics and ORR activity.

Similar to the case of OER in Section 4.3, looking at ORR
electrocatalysts from an MEA perspective is critical for real-
world fuel cell applications. Due to the difference in reaction
conditions, candidates that are theoretically or experimentally
half-cell validated might not be able to have the same perfor-
mance in the MEA component. From the chemical engineering
perspective, the macro electrochemical performance does not
solely depend on the intrinsic activity of electrocatalysts. The
component, preparation methods, support type of the ORR
electrocatalysts, as well as engineering parameters like catalyst
loading, solvent type, recipe, and thickness of ion-conducting
membrane, are coupled together.16 As a result, experimental
and theoretical research on electrocatalysts alone often cannot
achieve satisfactory results in fuel cell single cells. Noticing this
point, Ding et al. have leveraged ML to streamline the optimi-
zation of Pt-based MEA for PEMFCs.315 Their comprehensive
approach used a dataset constructed from 295 articles span-
ning 17 years, resulting in 918 entries with 66 initial features,
and focused on identifying key parameters that influence MEA
performance. Their feature importance analysis on the domain
knowledge revealed the pattern that, compared to parameters
related to nano- and micro-scale synthesis and electrocatalysts
components, the engineering parameters of MEA are more
decisive toward power density as macro performance (Fig. 33a).
For the next step of ML workflow, they distilled 27 critical
features (Fig. 33b) from the initial 66 to obtain good regressors
that could predict MEA power densities with less than 15% error
(Fig. 33c). Moreover, the visualized DT and apriori associate rule
mining found that for Pt-based catalysts in MEA, the recom-
mended carbon substrate mass fraction should be kept lower
than 57.75 wt%. This is not a good strategy in more idealized
half-cell tests in pursuing higher ORR activity, but it is a practical
approach to ensuring good macro electrochemical performance
in MEAs. The authors also investigated non-precious metal
(namely carbon-based TM–N–C)-based MEAs.70 First, they found
consistent patterns showing that MEA engineering parameters
are more decisive in feature importance ranking (Fig. 33d). They
also obtained several applicable catalyst design rules recom-
mended for carbon-based ORR electrocatalysts, specifically in
MEA. For example, due to increased TM–Nx active site density,
micropores are generally preferred for increasing the intrinsic
ORR activity for TM–N–C-type carbon-based materials. However,
through visualized DT, the authors identified mesopore and
macropore in child nodes, indicating a balanced tradeoff

between increasing intrinsic activity and ensuring enhanced
mass transfer. Huo et al. further used the dataset collected by
Ding et al.’s previous work70 for the carbon-based MEA system,
and introduced more advanced ML algorithms like CNN to
increase the prediction accuracy for single-cell polarization
curves.316 Their enhanced model can serve as good experimental
surrogate models in guiding the optimization of TM–N–C carbon-
based ORR electrocatalysts with much less cost on trial-and-error
attempts.

6.4. Statistical analysis and summary

We have covered the ‘‘last piece of the puzzle’’ for electrocata-
lysts toward hydrogen energy—the ORR. Similar to Sections 3.4
and 4.5, an intuitive statistical analysis in Fig. 34 and a
summary would help readers better understand the related 41
publications.

Features. For ORR, the main material systems studied can
be categorized into metal/alloy and carbon-based structures. As
shown in Fig. 34a, these two systems exhibit unique prefer-
ences. Studies on metal/alloy systems have shown a significant
interest in including coordination numbers as an input feature.
As discussed in the HER summary section, the coordination
environment in close-packed structures of metals and alloys is
crucial for catalytic behavior. This has led to extensive research
in ORR studies to identify the best facet and to nano-engineer
selective exposure of more active facets like Pt(111). Fig. 34b
supports this conclusion, showing that coordination number is
the most decisive input feature identified by ML models across
multiple publications.

For carbon-based materials, typically TM and N-doped gra-
phene, a different trend in descriptors is observed. Beyond
bond length, which describes topological structure and intrin-
sic physical atomic properties like ionization energy and the
number of d-electrons, studies have adopted unique features
such as pyridinic nitrogen content, pyrrolic nitrogen content,
and Brunauer–Emmett–Teller (BET) surface area. These
features are not frequently used for carbon materials in the
HER and OER sections. The reason for this difference is that,
unlike HER/OER studies which are typically theoretically based
on DFT simulations, ORR studies of carbon-based electrocata-
lysts emphasize ML based on datasets derived from direct
experimental synthesis and evaluation. This emphasis results
in the use of techniques like AL and BO, which are suitable for
limited data cases, and brings insights from a meso-macro
perspective. The segmentation of nitrogen species and pore
structures is dominant in the performance of carbon-based
materials for ORR. Typical Pt-based metal/alloy electrocatalysts
do not require a high surface area for the substrate carbon. For
example, commercial Pt/C uses Vulcan XC-72 carbon black
rather than BP2000. However, due to the intrinsic difference
in active sites, to enrich the density of ORR active M–N–C sites,
carbon-based electrocatalysts focus on nano-engineering to
increase surface area and the abundance of pyridinic (metal-
lic)-type nitrogen species. These species are important both for
their intrinsic ORR activities and their ability to host TM
dopant atoms to form more effective M–N–C sites.317–319
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The demand for achieving good ORR activity is further revealed
in Fig. 34b by the emergence of synthesis parameters: reaction
(hydrothermal and pyrolysis) time and pyrolysis temperature.
This trend is consistent with the focus on facet engineering in
metal/alloy systems,320 while for carbon-based materials, the
focus is on identifying better atomically dispersed defect

doping structures or optimizing synthesis conditions to
improve experimentally observed performance.

Dataset and ML algorithms. In Fig. 34c, we observe that
researchers generally prepare larger datasets for metal/alloy
systems compared to those focused on carbon materials. This
may be due to the larger candidate space derived from different

Fig. 33 (a) Feature importance heuristic by XGBoost algorithm pre-feature selection, categorizing features into the microscopic properties of Pt-based
nanocatalysts (black), preparation process parameters (blue), and single-cell device operating conditions plus MEA preparation (red). (b) Top: Feature
importance after the selection. Bottom: Test set classification performance comparison before and after feature selection, illustrating the algorithm’s
efficiency in identifying and using key features for predictive accuracy. (c) Predictions output by the best performing ANN regressor on the test set (a–c
are reproduced from ref. 315 with permission). (d) Feature importance heuristic from the XGBoost algorithm, with red features linked to PEMFC operating
conditions and black features linked to non-precious metal electrocatalysts’ intrinsic properties (reproduced from ref. 70 with permission).
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design strategies. As illustrated in Fig. 34d and e, RF is both the
most commonly chosen and best-performing ML algorithm.
GBDT, another popular ensemble algorithm, is also preferred.
When examining the differences between the two material
systems, linear regression is frequently used for metal/alloy
systems. While it is the least complex method, it is also the
most interpretable. Nevertheless, a complex algorithm with
powerful fitting ability like MLP unexpectedly obtained a simi-
lar ranking position. This reflects the current status of research

on metal/alloy ORR electrocatalysts, where researchers need to
explore the vast unknown design space while providing intui-
tive descriptors through linear combinations of input features
to deeply understand the mechanism. In contrast, studies on
carbon materials prioritize RF and GBDT, not only because
their datasets are generally smaller but also because these
studies aim to identify the most important features through
SHAP feature sorting without proceeding to the next step of
linear formula induction.

Fig. 34 Statistics for the ORR section, including (a) utilized input features; (b) most important features recognized by ML model interpretation.
(c) distribution of the dataset sizes used. (d) utilized ML algorithms; (e) best ML algorithms.
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7. Conclusion and outlook
7.1. Overall statistics

In this comprehensive review, we systematically explored the
application of ML in designing electrocatalysts for crucial
hydrogen energy conversion reactions: HER, OER, HOR, and
ORR. Our analysis spans various electrocatalyst systems, under-
scoring ML’s pivotal role in identifying optimal solutions
within vast candidate spaces and deciphering complex multi-
parametric challenges. We have summarized the preferred
input features, ML methods, and the most decisive features
identified by ML models for each material system. In Sections
3.4, 4.5, and 6.4, we present an overall statistical analysis as
summarized in Fig. 35, combining data from all four types of
electrochemical reactions. The four main material categories
are metals/alloys, TM oxides, carbon structures (including
doped graphene and carbon nitride), and TM compounds (such
as sulfides, phosphides, borides, MoS2, and 2D materials like
MXene). Generally, studies on metal/alloy systems show unique
differences from the other three categories. From a feature
perspective (Fig. 35a and b), coordination number is highly
valued in metals/alloys, while d-band properties and bond
length are dominant in the other three categories. From a
dataset size perspective (Fig. 35c), the typical size ranges from
smallest to largest as follows: TM compounds o carbon
structures o TM oxides o metals/alloys, with the latter being
more than an order of magnitude larger than the others. This
difference in dataset size has influenced the choice of ML
algorithms (Fig. 35d and e). Research on metals/alloys tends
to prefer either deep learning or simpler methods like linear
regression or GP. In contrast, ensemble algorithms such as RF
and GBDT are more popular and best performing in the other
three categories, surpassing ANN’s ranking. Our statistical
analysis reveals the intrinsic differences between material
categories when used as hydrogen electrocatalysts. This pro-
vides a valuable domain-level reference for researchers in their
feature engineering, dataset preparation, and ML algorithm
selection based on the material system of interest.

From paradigm perspective, ML, particularly through super-
vised learning for surrogate model training, has advanced both
computational simulations and experimental explorations,
enabling the rapid discovery and optimization of novel electro-
catalysts. Moreover, data mining and interpretative analysis of
‘‘black-box’’ models have offered deep insights into the physi-
cal and chemical attributes of these electrocatalysts, aiding in
the identification of key descriptors and design parameters.
The integration of ML marks a significant paradigm shift
toward data-centric approaches in electrocatalyst design,
significantly enhancing the pace of electrocatalyst discovery
and the understanding of electrocatalytic processes. This shift
has not only led to the prediction of catalytic performance and
the discovery of novel electrocatalysts with unparalleled speed,
but also highlighted the potential of ML in addressing the
economic and sustainability challenges in hydrogen energy
production. As we move forward, ML’s ability to bridge the
gap between computational predictions and experimental

validations is poised to revolutionize electrocatalyst develop-
ment for hydrogen energy conversion, promising more sustain-
able and energy-efficient solutions.

7.2. Future outlooks

However, as we reflect on our current achievements, it becomes
evident that several challenges remain, and the landscape of
electrocatalysis research is rapidly evolving with new opportu-
nities on the horizon. This pivotal moment in research invites
us not only to celebrate our progress but also to project our gaze
towards future directions where the potential of ML in catalyz-
ing further innovations remains vast and largely untapped.
Building upon the foundation laid by our current achievements
in applying ML to electrocatalysis, we now turn our attention to
the unresolved challenges and emerging opportunities that
define the future trajectory of this field. Based on the insights
gathered from the review, the following outlook articulate key
challenges and potential future directions in ML-aided electro-
catalysis design. From the reliance on DFT simulations to
the nascent stages of experimental automation, the journey
towards fully realizing ML’s potential in electrocatalysis is
fraught with complex, multiparametric issues that span across
multiple scales of reaction mechanisms and electrocatalyst
systems:

7.2.1. Integration of multiscale and multi-fidelity simula-
tions with ML. A significant body of research focuses on employ-
ing theoretical simulation like DFT calculation paired with ML as
surrogate models for computational experimental design. While
this approach aligns with chemical intuition by incorporating
geometric and electronic structure descriptions of catalytic sites
as inputs, it remains confined to a relatively small research scale.
The calculation results are not of high fidelity compared with real
experimental explorations. Electrocatalysis, being inherently a
multiscale coupled reaction, demands broader exploration
beyond surface reactions to include dynamic interactions across
different scales of the catalytic process.

To overcome this, leveraging ML’s capability as surrogate
models for cross-scale and multi-fidelity simulations, for exam-
ple from DFT to MD, might be a possible choice. Though it
requires more dataset preparation cost, this approach enables
comprehensive modeling of electrocatalytic processes, from
atomic interactions to macro-scale fluid dynamics, significantly
enhancing the accuracy and predictive power of simulations.
This is already a hot topic in life sciences and can be applied to
electrocatalysis.321 By integrating these scales, theoretical
simulation-based ML can rapidly identify optimal configura-
tions and conditions with higher fidelity to be validated by
experiments.

7.2.2. Autonomous discovery of electrocatalysts. Experi-
mental data, noted for its high fidelity but costly nature, plays
a crucial role in advancing electrocatalyst research. As dis-
cussed, common approaches involve extracting insights from
domain knowledge, notably previous publications, or initiating
manual high-throughput synthesis, both of which are typically
expensive. However, in recent years, automation in these pro-
cesses have emerged.
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Fig. 35 Statistics for all HER/OER/HOR/ORR publications, including (a) utilized input features; (b) most important features recognized by ML model
interpretation. (c) Distribution of the dataset sizes used. (d) Utilized ML algorithms; (e) best ML algorithms.
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To enable automated experimental investigation, robotic
automated laboratories have been established, such as the
autonomous mobile robot reported by Cooper et al.,322 which
optimizes photocatalytic electrocatalysts using a Bayesian
decision-making method. Brabec et al. reported a high-
throughput autonomous decision and experimental platform
for the rapid synthesis of ABO3-type perovskites for ML data
analysis.323 Since then, similar reports of robotic autonomous
electrocatalyst synthesis and evaluation platforms have gradu-
ally increased over the past two years324,325 (2022; 2023).

On the other hand, the advent of generative AI, for instance,
large language models (LLMs) like ChatGPT have made the NLP
work of scientific publications, which typically requires expertise
in materials science and chemistry, much faster. For example,
Yaghi et al. recently reported the use of ChatGPT to rapidly extract
information from MOF-related publications,326 directly obtaining
a large amount of tabular data from synthesis-related paragraphs
to aid ML modeling and guide experiments. Recently, Dagdelen
et al. leveraged LLMs like GPT-3 and Llama-2 to perform joint
named entity recognition and relation extraction tasks in materi-
als science.327 By fine-tuning these models on annotated text
passages, the study demonstrates how LLMs can extract complex,
structured information about materials, such as dopants, host
materials, and metal–organic frameworks, from scientific texts.
The approach simplifies the creation of large, structured data-
bases of specialized scientific knowledge, facilitating the
advancement of materials discovery and design.

There is also more complex system that combine all the
above-mentioned ML models based on different knowledge
sources together. Ceder et al. proposed A-lab for the discovery
of oxides in lithium-ion batteries.328 Their innovation lies in
the push for high-throughput automated robotic experiments
using a multi-decision framework. In their work, which
employs multiple ML expert systems for different processes,
researchers have enabled decision-making based on DFT simu-
lations and extensive scientific text mining to participate
simultaneously in the active learning cycle of robotic synthesis.
This equates to allowing the autonomous discovery process of
electrocatalysts to benefit from multiple data sources and
expert system decisions from domain knowledge (published
literature), theoretical simulations (DFT), and local experi-
mental data (e.g., both manual and automated laboratories).
The power of generative AI also extends to the development of
more advanced and efficient generative models for theoretical
molecular and material design. For instance, Daigavane et al.
recently introduced Symphony,329 an E (3)-equivariant autore-
gressive model that uses higher-degree spherical harmonic
projections to generate accurate 3D molecular geometries,
outperforming existing models in capturing complex molecular
symmetries. Similarly, Zeni et al. presented MatterGen,330 a
diffusion-based generative model that not only produces stable,
diverse inorganic materials across the periodic table but can
also be fine-tuned to meet specific property constraints, such as
symmetry or magnetic density. These advancements in genera-
tive AI highlight its potential to significantly surpass traditional
surrogate ML models, enabling faster and more autonomous

discovery of electrocatalysts by integrating diverse data sources
and experts.

As discussed in this review, researchers in hydrogen electro-
catalysts have experimented with manually crafted high-
throughput electrolysis cells,269 co-sputtering deposition,293 and
automated platforms28 for weighing, dispensing, and shaking.
However, these approaches are not yet mainstream due to the
lengthy synthesis routes and high costs associated with electro-
catalyst evaluation. While high-throughput synthesis instruments
are not widely adopted in electrocatalysis due to their high costs,
more accessible alternatives can be explored. For instance, inkjet
printers, popular in the sensor field and easily programmable,
can be adapted for high-throughput catalyst preparation.331,332

Studies have demonstrated that integrating ML with these sys-
tems can facilitate the design of flexible electronics, and similar
methodologies can be applied to hydrogen electrocatalysts. By
using cost-effective, readily available devices like inkjet printers,
researchers can potentially achieve rapid, data-driven discovery
and optimization in electrocatalyst development.

7.2.3. Bridging fidelity gaps and facilitating knowledge
transfer. A recurring challenge in electrocatalysis research is
the isolated focus on specific material systems and scales. As
we have emphasized repeatedly in this review, current ML
research on electrocatalysts has not adequately accomplished
the task of seamless bridging, whether between theoretical DFT
simulations and experiments or among multiple material sys-
tems. Moving forward, we should adopt more flexible
approaches, blending data from multiple fidelity levels within
the same system and transferring knowledge across different
systems. Here we propose possible directions:

The first viable approach is to employ DFT data for early
rapid screening and subsequently use targeted experimental data
to identify potential candidates, allowing researchers to achieve
focused optimization of electrocatalysts. This phased method,
using data of varying fidelity, mirrors the engineering design
process’s funnel approach: starting broadly and then narrowing
down to specific details. Researchers can learn from the ideas in
multi-fidelity ML, and regard DFT as cheap low-fidelity data and
experimental observation as expensive high-fidelity data. Taking
into account the cost factor (using a certain indicator to quantify
the computational cost and experimental cost) for query budget,
the mature multi-fidelity active learning workflow is used to
complete efficient optimization development.333

Another approach is through techniques like transfer learn-
ing. We can disseminate insights and knowledge across these
datasets and corresponding systems, thereby reducing the costs
associated with training data. For example, within the same
system, data of different fidelity levels, typically from DFT
simulations and actual experimental data, can be leveraged to
capitalize on their respective strengths within the same electro-
catalyst discovery process. Drawing inspiration from the fields
of NLP and computer vision, a potential strategy could involve
using high-throughput DFT data to train initial ML models,
followed by fine-tuning these models with a selected set of
costly experimental data. This approach not only ensures
efficient resource utilization, but also guarantees that models
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accurately reflect real-world experimental conditions. Further-
more, for similar electrocatalyst systems, we should also
explore the possibility of transferring knowledge between them.
For instance, recent work by Ding et al., based on automated
text mining, has shown that models based on alkaline and
acidic HER/OER publication data can achieve favorable results
by fine-tuning them on a small set of neutral HER/OER pub-
lication data.334

7.2.4. Enhancing interpretability and reliability of ML
models. For real-world applications and product development,
the explainability and reliability of ML models are critical aspects
that cannot be ignored. Black-box models, while powerful, often
lack transparency, making it difficult to understand and trust
their predictions. This opacity can lead to issues in reliability,
where models might perform well on test data but fail in real-
world scenarios due to unaccounted factors or overfitting. Based
on our statistical results, we see efforts using methods like SISSO
or other linear regression techniques to identify formula-like or
straightforward descriptors for explanation, particularly in metal/
alloy systems. However, the majority of research tends to rely on
techniques such as SHAP to identify the most important features
without further detailed explanations.

To address these challenges, there is a need to shift from
solely relying on black-box ML models to adopting more
transparent, white-box or grey-box models. These models not
only provide greater interpretability but also enhance the
reliability and acceptance of ML predictions in practical appli-
cations, reducing risks associated with model deployment and
facilitating deeper insights into electrocatalytic processes. Such
models are integrated with fundamental physical and chemical
principles, or other types of domain knowledge, alongside data
science. Moreover, enhancing interpretability is not only a matter
of reducing risks but also vital in creating chances for mining
deeper insights into the mechanisms underlying processes. Here
we present some practical strategies for white box models:
Incorporating domain knowledge involves embedding physical
and chemical laws directly into the ML models, which constrains
predictions to be physically plausible by using known reaction
mechanisms or material properties as part of the model input.
Model simplification can also enhance interpretability by utiliz-
ing simpler models such as linear regression, decision trees, or
SISSO, especially when these models effectively capture the
essential relationships within the data. Additionally, hybrid
models that combine ML models with mechanistic models can
leverage the strengths of both approaches; for example, using ML
to predict parameters in a mechanistic model can provide inter-
pretable and reliable results.

7.2.5. The need to improve uncertainty quantification. A
key observation from this review is the insufficient use of UQ in
studies applying surrogate ML models to electrocatalyst devel-
opment. While some active learning and Bayesian optimization
studies have begun to incorporate UQ, most research neglects
this critical aspect, leading to overconfident predictions and
potentially overlooking promising areas of exploration. The
lack of UQ can result in wasted resources on experiments
driven by overly optimistic models and missed opportunities

to investigate uncertain but potentially fruitful regions. To
advance the field, it is crucial that the electrocatalyst commu-
nity integrates UQ more systematically into their workflows.
Techniques such as model ensembling, deep kernel learning,
and Monte Carlo dropout, alongside inherently uncertain
methods like Gaussian Processes, should be standard practice.
By embedding UQ into ML workflows, researchers can better
guide experimental efforts, optimize resources, and enhance
the reliability of model predictions. This shift will not only
improve the robustness of individual studies but also accelerate
the discovery of innovative and effective catalysts with greater
confidence in their real-world applicability.

7.2.6. Addressing economic and sustainability challenges
and promoting collaborative efforts. Economic and sustain-
ability challenges are critical considerations in the advancement
of hydrogen energy production using ML approaches. While ML
has the potential to optimize material usage and reduce waste, it
also comes with its own set of economic and sustainability
challenges. The computational cost of running large-scale ML
models can be significant, requiring substantial energy and
resources. Moreover, high-throughput synthesis, although effi-
cient in generating large datasets, can lead to material waste if
not managed properly. To mitigate these issues, researchers
need to focus on developing more energy-efficient ML algo-
rithms and adopting sustainable practices in experimental
setups. For instance, leveraging cloud computing resources with
a focus on energy efficiency, or using more localized, energy-
saving hardware can help reduce the carbon footprint of ML
computations. Additionally, implementing recycling and reus-
ing strategies for materials in high-throughput experiments can
minimize waste. Recent advancements in federated learning,
which allows model training across decentralized devices, can
also reduce the need for extensive data transfer and centralized
computing, further lowering the environmental impact.

A significant oversight in current studies is the lack of
consideration for MEA requirements for electrocatalysts at the
engineering level. The gap between the idealized conditions
often represented in DFT simulations and the complex, real-
world operational environments of electrolyzers and fuel cells is
substantial. Future research must prioritize high-throughput
experimental approaches that focus on device-level synthesis
and testing. Such high-throughput experiments are instrumen-
tal in facilitating the practical deployment of ML-optimized
electrocatalysts, making the leap from theoretical models to
tangible, operational systems.

To address these challenges effectively, collaboration
between academia and industry (including national labs) is
essential. Industry partners provide real-world needs and sup-
port, along with practical problems that need solutions, which
can guide academic research toward more applicable solutions.
Specific collaborative initiatives could include joint research
projects, shared datasets, and industry-sponsored research
programs. Successful collaborations in related fields, such as
the development of ML models for drug discovery, provide a
blueprint for similar efforts in electrocatalysis. For instance,
AlphaFold is a successful collaborative outcome by Google
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DeepMind and European Molecular Biology Laboratory. Recom-
mendations for future collaborative efforts should focus on the
transition from high-throughput materials screening to real-
time applications, ensuring that ML-optimized electrocatalysts
are not only developed efficiently but also deployed effectively in
practical settings. The benefits of these collaborations are
manifold. Accelerated innovation, resource sharing, and the
practical deployment of research outcomes are just a few. By
working together, academia and industry can leverage their
respective strengths to overcome the economic and sustainabil-
ity challenges in hydrogen energy production. This collaborative
approach will enable the rapid advancement of ML applications
in electrocatalysis, driving the development of more efficient
and sustainable hydrogen energy conversion technologies.
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