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First-principle oligopeptide structural optimization
with physical prior mean-driven Gaussian
processes: a test of synergistic impacts of the
kernel functional and coordinate system†

Yibo Chang, Chong Teng and Junwei Lucas Bao *

First-principle molecular structural determination is critical in many aspects of computational

modeling, and yet, the precise determination of a local minimum for a large-sized organic molecule is

time-consuming. The recently developed nonparametric model, the physical Gaussian Processes (GPs)

with physics-informed prior mean function, has demonstrated its efficiency in exploring the potential-

energy surfaces and molecular geometry optimizations. Two essential ingredients in physical GPs, the

kernel functional and the coordinate systems, could impact the optimization efficiency, and yet the

choice of which on the model performance has not yet been studied. In this work, we constructed a

testing dataset consisting of 20 oligopeptides and performed a systematic investigation using various

combinations of coordinates (structural descriptors) and kernel functionals to optimize these

biologically interesting molecules to local minima at the density-functional tight-binding (DFTB)

quantum mechanical level. We conclude that the combination of the kernel functional form and

coordinate systems matter significantly in model performance as well as its robustness in locating

local minima. For our testing set, the synergy between the periodic kernel and the non-redundant

delocalized internal coordinates yields the best overall performance for physical GPs, significantly

superior to other choices.

I. Introduction

Molecular structural optimization is one of the cornerstones
in computational modeling of chemistry, materials, and
chemical biology. One starts with a set of initial-guess struc-
tures, in which the atomic coordinates are built based on
chemical knowledge, known bond lengths or angles, and the
atomic hybridization states, and this set of initial structures
undergoes geometry optimization to relax their electronic struc-
ture energies to reach local minima. In the case of finding a
transition-state structure, the initial structure is relaxed to a first-
order saddle point that connects the reactant with the product’s
local minimum structures. The energies and gradients at a non-
stationary structure are commonly generated by quantum chem-
istry calculations on the fly, which are used to guide the search
directions. This task of determining molecular structure is
equivalent to a multidimensional optimization problem in com-
putational science. In particular, the target function, E(x), is a

function of all atomic coordinates, x, in the molecule. The local
minimum on this potential energy surface (PES) corresponds to
a structure of chemical interest.

For small molecules, the computational cost associated
with structural optimizations is manageable. Nevertheless,
since the dimensionality quickly grows as the molecule
becomes larger, the optimization itself becomes costly, in
addition to the cost of computing energies and gradients.
Therefore, biologically interesting small molecules, which are
often too large from the perspective of molecular chemistry,
are usually treated at a lower level of theory. One either does
not optimize the structure to a local minimum and relies on
dynamic sampling or docking to qualitatively explore the
structural information, or one optimizes the structure with
classical mechanics, i.e., classical force fields, to gain quali-
tative insights on structural features. Both approaches are
indeed effective, especially when experimentally resolved
structural information for similar systems is available for
comparison. Nevertheless, due to the intrinsic limit and
uncertainty in these methods, e.g., the inability of classical
force fields to describe electron correlation-induced non-
covalent interactions with high accuracy (or the interaction
parameters for the system under study are missing), a fully
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quantum mechanical (QM) structural optimization may be
preferred. To be more specific, if affordable, a first-principle
determination (without system-dependent parameters) with a
quantitatively reliable energy calculation would be beneficial to
predicting structures at a higher resolution. Density-functional
theory (DFT),1,2 including its semi-empirical approximation, the
density-functional tight-binding (DFTB) theory,3–13 provides an
excellent balance between computational cost and accuracy, in this
context, for main-group chemistry and molecules. Although models
like AlphaFold14–17 provide sophisticated direct predictions of
dominant conformations for macromolecules such as proteins
without relying on first-principles calculations or conventional
geometry optimization, the relatively small and conformationally
flexible oligopeptides and polypeptides are underrepresented in
their training data. Consequently, first-principles structural deter-
mination, including the exploration of the entire ensemble of
conformers accessible at around room temperature, remains cri-
tical. This approach not only complements predictive models like
AlphaFold but is also crucial for achieving high-accuracy quantum
chemistry modeling. Our work addresses this need by studying a
new method to accelerate oligopeptide structure optimizations,
enhancing the accuracy and efficiency of first-principles calcula-
tions for these challenging systems.

Even with computationally efficient quantum chemistry
methods for calculating energies and forces, the optimization
itself remains a computational bottleneck for higher-
dimensional systems, such as polypeptides, macrocyclic pep-
tides, and oligopeptides, which are important in biological
chemistry and therapeutics. Structural predictions continue
to attract the efforts of practitioners, including the application
of advanced reinforcement machine learning techniques for
small molecular geometry optimizations.18 We have recently
developed an on-the-fly learning model, the physical prior
mean-driven Gaussian Processes (GPs),19 to mitigate the high
computational cost associated with geometry optimizations. A
GP with a constant prior mean does not include prior physical
approximation to the PES; nevertheless, such a model is still
useful in local minimum search20–23 and PES exploration,24–28

albeit its efficiency and robustness could be further enhanced
due to the criticalness of physicochemical information in
structure search.29 GPs are a class of nonparametric models
rooted in Bayesian probability, exploring functional space with
a prior mean that characterizes the assumed probabilistic
distribution a priori.30 In our model, the prior mean is chosen
based on a lower-order approximation to the true PES, e.g., a
simple classical force field,19 a semi-empirical molecular orbi-
tal theory, an adaptive set of computationally efficient
models,31,32 or a previously learned PES.33 Without the need
to pre-constructing an extensive dataset for training the PES to
be explored, one directly starts the geometry optimization task
on the GPs’ surrogate PES (SPES), and the surrogate posterior
mean learns from the QM information (energies and gradients)
on the fly and drives the optimizer to reach a local minimum,
completing the GP-assisted ab initio molecular structure deter-
mination. This critical feature makes the model highly data-
efficient and permits real-time learning and predictions.

Although nonparametric, the model performance of physi-
cal GPs is determined by three components primarily: the
kernel functional, coordinate systems, and the physical prior
mean function. We have previously studied the benefit of
introducing physical prior mean function, which not only
makes the model robust and efficient but, more importantly,
the learned surrogate closely resembles the ground truth (true
full QM PES) even for the underexplored region, permitting
its future recycling in other tasks as well as meta-learning.
The kernel functional k(xi,xj) is fundamental in GPs because
it defines how the points (xi and xj) in the input space
are covariant with one another, impacting the optimizer’s
robustness and generalization ability,34 and influencing the
smoothness of the SPESs. When combined with molecular
structural descriptors, namely, coordinate representation of
the structure (xi, which is itself a function of atomic Cartesian
coordinates), the kernel functional encodes physical knowl-
edge a priori as well, controlling the model flexibility, com-
plexity, and how sensitive it responds to the correlation
between two structures on the same QM PES. We expect such
an impact would become much more evident for molecules
with more than 100 atoms, the optimization costs of which
are no longer negligible. Given the unique importance of the
definition of k(xi,xj), which includes the choice of the func-
tional form of k and the structural descriptor x, in this work,
we present a systematic study to explore how the efficiency of
our physical GP optimizer is impacted by it for large-sized
molecules, in particular, first-principle oligopeptide structural
optimization.

We constructed a testing dataset consisting of 20 oligopep-
tides and implemented four commonly used kernels (including
the squared exponential kernel, the twice differentiable Matern
kernel, the rational quadratic kernel, and the periodic kernel)
combined with three types of internal coordinates frequently
used in computational chemistry (including the redundant
internal coordinates, non-redundant internal coordinates,
and the Coulombic coordinates). Note that it is well-known
that atomic Cartesian coordinates themselves are not good
coordinate choices for molecular geometry optimizations, even
for small molecules, due to numerical inefficiency, breakdown
of PES invariance to overall translation and rotation, and
potentially unphysical changes in bond lengths and angles.
Consequently, we did not test the optimization performance in
Cartesian coordinates in this work.

II. Theory background overview
Gaussian processes (GPs) with physical prior mean

In physical GPs, the surrogate (SPES) is constructed as a
weighted average of the kernel, the derivatives of the kernel,
and a non-constant physically inspired prior mean function,
m(x), as,

ESPES xð Þ ¼
XN
i¼1

k x; xið Þai þ
@k x; xið Þ
@xTi

bi

� �
þ m xð Þ (1)
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where x is a molecular structure vector represented in a
particular choice of the coordinate system, k(x,xi) is a kernel
functional that characterizes the structural similarity between
the current structure x and a previous structure xi included in
the training using a Euclidean l2-norm, ||x – xi||. The molecular
structure descriptor x is a function of the atomic Cartesian
coordinates. Note that the size of the GP training set, N, is
adaptive on the fly, not determined a priori. The linear combi-
nation coefficients {ai} and {bi} are trained during the structural
optimization. The above GP interpolation can be recast into the
following linear systems,

XN
j¼1

k xi; xj
� � @k xi; xj

� �
@xTj

@k xi; xj
� �
@xi

@2k xi; xj
� �

@xi@xTj

0
BBBBB@

1
CCCCCAþ dij

se2 0

0 sf2I

 !
2
666664

3
777775

aj

bj

 !
¼

Ei

�F i

 !
�

m xið Þ

rxim xið Þ

 !

(2)

where Ei and �Fi are the energy and negative force (i.e., �Fi =
=xESPES(x)) of the structure xi. I is the identity matrix, dij is the
Kronecker delta. The noise parameters for energy (se

2 in eV)
and force (sf

2 in eV Å�1) are implemented in GP training to
improve the numerical stability and avoid overfitting the
numerical noises, namely, the insignificant numerals below
the self-consistent field (SCF) convergence threshold and the
corresponding accuracy in the calculated force. The nth-order
kernel derivatives can be evaluated analytically using techni-
ques in matrix and tensor differentiation35,36 or by the auto-
matic differentiation (AD) method.37

Kernel functional

The kernel functional defines the reproducing kernel Hilbert
space according to Mercer’s theorem, and consequently, the
functional space that GPs search and the posterior sample path
(i.e., when we condition the GP on the QM energies and forces,
a single function drawn from the GP’s distribution), influen-
cing the posterior mean prediction (i.e., the SPES). In this work,
we implemented the following four kernel functionals to
explore their efficiency and effectiveness in GP optimization
of large-sized molecules.

(A) The squared exponential (SE) kernel (also known as the
radial basis function (RBF) kernel):

kSE xi; xj
� �

¼ exp �
xi � xj
�� ��� �2

2l2

" #
(3)

in which l is a scalar length scale hyperparameter, which is set
to a generic value (refer to the Computational Details section)
without ad hoc tuning. kSE is infinitely differentiable, permit-
ting GP to search in a space consisting of very smooth

functions. Its first-order derivative is,

@kSE xi; xj
� �
@xi

¼ �
kSE xi; xj
� �
l2

� xi � xj
� �

(4)

In addition, the first-order derivative is anti-symmetric, mean-
ing that @kSE/qxi = –@kSE/@xj. Its second-order derivative is,

@2kSE xi; xj
� �

@xi@x
T
j

¼ �
kSE xi; xj
� �
l2

xi � xj
� �

� xi � xj
� �

l2
� I

� �
(5)

in which # is the outer product of two vectors, and I is the
identity matrix.

(B) The rational quadratic (RQ) kernel:

kRQ xi; xj
� �

¼ 1þ
xi � xj
�� ��� �2

2al2

" #�a
(6)

in which l is the length scale hyperparameter, and a 4 0 is the
shape hyperparameter that controls the relative weighting of large-
scale and small-scale variations. We set a = 1 in this paper as a
generic value because although the optimizer efficiency could be
further tuned by changing this hyperparameter, it is impractical
and inconvenient to do so in practical molecular geometry opti-
mizations and predictions. Its first-order derivative is,

@kRQ xi; xj
� �
@xi

¼ �
kRQ xi; xj

� �	 
1þ1=a
l2

� xi � xj
� �

(7)

The RQ kernel is a generalization of the SE kernel, in particular,

lim
a!1

kRQ ¼ kSE. In addition, it can be viewed as an average of the SE

kernels over a distribution of the inverse squared length scales, l0 =

l�2, i.e., kRQ ¼
Ð1
0 kSE xi; xj ; l

� �
p l0; að Þdl0, where p(l0;a) is a gamma

distribution of l0.38 Compared to the SE kernel, which is more
suitable for a uniform smoothness of data, the RQ kernel is flexible
in describing the changes in smoothness in the input space,
accommodating non-stationary regions on the PES, and capable
of capturing its local and global patterns.

The second-order derivative of the RQ kernel is,

@2kRQ xi; xj
� �

@xi@xTj
¼ �1þ a

al4
kRQ xi; xj

� �	 
1þ2=a
xi � xj
� �

� xi � xj
� �

þ
kRQ xi; xj

� �	 
1þ1=a
I

l2
(8)

(C) The twice differentiable Matern (M) kernel:

kM xi;xj
� �

¼ 1þ
ffiffiffi
5
p

xi�xj
�� ��

l
þ
5 xi�xj
�� ��� �2

3l2

 !
exp �

ffiffiffi
5
p

xi�xj
�� ��

l

 !

(9)

Compared to the SE kernel, the twice differentiable Matern
kernel provides moderate and finite degrees of smoothness.
The SE kernel, on the other hand, is CN-differentiable and
analytic at xi = xj, which may impose a too strong requirement
for the underlying PES to be modeled. The twice differentiable
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Matern kernel’s first-order derivative is,

@kM xi;xj
� �
@xi

¼� 5

3l3
lþ

ffiffiffi
5
p

xi�xj
�� ��� 


xi�xj
� �h i

exp �
ffiffiffi
5
p

xi�xj
�� ��

l

 !

(10)

And, its second-order derivative is,

@2kM xi; xj
� �

@xi@x
T
j

¼ � 5

3l3
5

l
xi � xj
� �

� xi � xj
� �

� l þ
ffiffiffi
5
p

xi � xj
�� ��� 


I

� �

� exp �
ffiffiffi
5
p

xi � xj
�� ��

l

 !

(11)

(D) The periodic (P) kernel:

kP xi; xj
� �

¼ exp �
2 sin2 p xi � xj

�� ���p� �
l2

" #
(12)

where the periodicity hyperparameter is chosen to be a generic
value, p = 2p, in this work. We consider this kernel interesting
because there are multiple torsional degrees of freedom in
oligopeptide or large chain-shape molecules in general, and
each torsional motion corresponds to a dihedral angle variation
(from 0 to 2p) in the projected torsional PES, which usually
resembles periodic characters due to the existence of multiple
(nearly) identical local minima and torsional transition-state
structures. Although torsional motions are coupled in a mole-
cule, the concept of a local periodicity averaged over all internal
rotations is still applicable and effective in treating torsional
anharmonicity.39–43 The first-order derivative of the periodic
kernel is,

@kP xi; xj
� �
@xi

¼ �2p
l2p

sin 2p xi � xj
�� ���p� �

� kP xi; xj
� �

� eij
¼ g dij
� �

� eij (13)

where the unit vector eij = (xi � xj)/||xi � xj||, and the scalar
Euclidean distance dij = ||xi – xj||.

Its second-order derivative is,

@2kP xi; xj
� �

@xi@x
T
j

¼
g dij
� �
dij
�
@g dij
� �
@dij

� �
eij � eij �

g dij
� �
dij
� I (14)

Coordinate systems

Cartesian coordinates are known to be inefficient in geometry
optimization31,44,45 and are not suitable for large-sized local
minimum search. Importantly, the Cartesian coordinates are
not invariant with respect to the center-of-mass translation and
overall rotation of the molecule. Curvilinear coordinates, on the
other hand, represent the molecular structure with a non-linear
combination of Cartesians, including a combination of bond
length, valence angles, torsions, and out-of-plane improper
torsions. These internal coordinates have been widely used in
spectroscopy as well as first-principle geometry optimization.

In our early work,31 we implemented various curvilinear coor-
dinates along with their gradient transformations in GPs, and
in this work, we focus on the following three:

(1) The redundant internal coordinates,46–48 r, which con-
tain more coordinates than the internal degrees of freedom
(i.e., 3Natm � 6 for a non-linear molecule) and are generated by
the transformation through Wilson’s B matrix,49 dr = Bdx,
where dx is the displacements in atomic Cartesian coordinates.

(2) The non-redundant delocalized internal coordinates,50 s,
which contain precisely 3Natm � 6 coordinates for a non-linear
molecule. They are constructed by combining the redundant
internal coordinates via a linear transformation, s = UTr, where
U is the transformation, consisting of the set of non-redundant
eigenvectors of G = BTB with positive eigenvalues.

(3) The Coulombic coordinates,51,52 C, which contain Natm

(Natm – 1)/2 unique interatomic distances. In particular, for a
pair of atoms, i and j, Cij = 0.5Z2.4

i when i = j, and Cij = ZiZj/||Ri –
Rj|| when i a j, where Zi is the nuclear charge of the atom i, and
||Ri – Rj|| is the interatomic separation.

Overview of the physical prior GP optimization

In first-principle molecular geometry optimization, the overall
cost is determined by the expense of evaluating QM forces and
energy at each iteration, as well as the total number of itera-
tions required to reach the local minimum (defined by the
convergence threshold using the QM gradients). The cost of QM
force and energy evaluation at an intermediate structure is
intrinsically dictated by the electronic structure method and
the size of the molecule (i.e., the number of basis functions)
and is therefore approximately invariant across iterations.
Consequently, to evaluate the efficiency of the optimizer, our
focus is on the number of iterations needed to achieve con-
vergence, as the computational cost is proportional to this
number.

The workflow of the physical prior-mean GP optimization
algorithm is depicted in Scheme 1. We first start with an initial
guess structure x0, and at the initial cycle, we call the QM solver
(an electronic-structure method) to compute the energy and
gradient at this point. If the gradient is lower than the con-
vergence threshold, then the structure is converged. This is not
the case in initial rounds, and one proceeds to include the
current structure and its energy as well as the force in the on-
the-fly GP training. In internal coordinate representation, we
need to perform the coordinate transformation to transform
the Cartesian-coordinate gradients (gx) and Cartesian coordi-
nates of the structure (x) to the corresponding representation in
the chosen internal coordinates (gq and q). The details of this
transformation in GP are reported in our prior work.31 Next, we
perform the GP training based on the training set at the current
optimization iteration, which includes all intermediate struc-
tures generated so far (i.e., Q = {q(xi)}). This training is based on
the energy-and-force GP regression. We then search for a local
minimum on the trained GP surrogate SPES, ESPES(q), which
will be converted back to the Cartesian-coordinate structural
representation. This updated structure will be subject to a QM
calculation to evaluate its energy and gradient, and if this
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structure is not a true local minimum at the QM level, the
iteration continues. Each time we generate a new intermediate
structure, the GP training set (denoted as the set {Q,E,GQ}) is
augmented to include its structure, QM energy, and QM gradi-
ent, and the GP SPES is updated based on the data accumulated.

III. Computational details
First-principle methods

All molecular structures are optimized to local minima quan-
tum mechanically with the second-generation extended
density-functional tight binding theory for geometries, vibra-
tional frequencies, and non-covalent interactions (GFN2-xTB).7

This is a quantitatively highly reliable and computationally
efficient electronic structure theory suitable for large systems.
The prediction error in bond lengths is less than 6 pm, and in
non-covalent interactions, less than 3 kcal mol�1 (for main-
group uncharged systems).7 The target PESs in our physical GPs
are thus the GFN2-xTB PESs. We utilize the implementation of
GFN2-xTB in the xTB-python package (version 22.1).53 In our
physical GPs, the non-constant prior mean function used in
this work is the semi-empirical Austin Model 1 (AM1) theory,54

which is developed for quantitative descriptions of structures
and energies around the local minima by introducing the
modified neglect of differential overlap (MNDO) strategy in
Hartree–Fock formalism with improved model parametriza-
tion. We implemented our GP optimizer to be interfaced with

the Gaussian 16 C.01 program55 for the evaluation of the AM1
electronic structure prior mean function.

Gaussian processes setting

The length scale hyperparameters in the kernel functionals are
set to generic values. In particular, for the redundant internal
and non-redundant delocalized internal coordinates, l = 1.8
bohr (B1 Å), in which an angle coordinate is converted to a unit
of length by using the corresponding arc length in a circle of 1
bohr radius. For the Coulombic coordinates, l = 10 Å�1, a
generic value considering that the interatomic distance is on
the order of 1 Å and the nuclear charge product is on the order
of 10. The noise parameters se

2 = 4.0 � 10�6 eV and sf
2 = 2.5 �

10�5 eV Å�1. The structure search on the surrogate (SPES) is
performed by energy minimization using the limited-memory
Broyden–Fletcher–Goldfarb–Shanno with bounds (L-BFGS-B)
optimizer, in which the bond-length internal coordinates are
confined to be no less than 0.6 Å. The GP optimization is
converged if the maximum Cartesian-coordinate force on an
atom, evaluated by GFN2-xTB, is lower than fQM

max = 0.05 eV Å�1, a
reasonable threshold for large-sized molecules (with more than
100 atoms). The surrogate structure minimization convergence
threshold on the SPES is set to 0.05fQM

max, in which fQM
max corre-

sponds to the latest geometry in the GP optimization.

Oligopeptide structure testing dataset

We have constructed a set of de novo oligopeptides to test the
performance of using physical prior mean-driven GPs as a
molecular structure optimizer in first-principle calculations.
We have tabulated these 20 structures in the testing set in
Table 1, detailing their components. Their initial geometries,
the starting point for all the GP optimizer tests, are shown in

Scheme 1 Overview of the workflow of the physical prior-mean GP
optimization algorithm.

Table 1 The twenty constructed oligopeptides for GP optimizer perfor-
mance test in this work

ID
Chemical
formula

Secondary
structure encoded Amino acid sequencea

1 C21O11N10H34 Alpha helix GGGAGGGGGG
2 C27O13N11S2H45 Beta sheet GAGCSGCGAGG
3 C36O17N15H59 Alpha helix GPGEGGSAGR0GGS0

4 C27O12N9S2H45 Alpha helix; cyclic C0SSAAAAAC0

5 C29O16N13H47 Alpha helix GSAGGGSGDGGG
6 C26O13N14H42 Beta sheet GGGGGGGGGGGGG0

7 C31O16N13SH47 Beta sheet G0GCGNGGPGGGG
8 C31O16N13H47 Alpha helix PGGDGGGGGGNG
9 C38O20N18H60 Beta sheet GQGGGGGGSGGGGGGGG
10 C32O12N9S2H43 Cyclic G0GPC0NGGYC00

11 C30O16N13H47 Alpha helix GGGGAGDGQGGG
12 C32O14N11H45 Linear F0GEGGAGGGG0

13 C33O15N12S2H48 Alpha helix; cyclic C00GGPGGPGGGC0G
14 C27O15N13H43 Alpha helix GGGGGGGGGGGSG
15 C33O15N15H53 Beta sheet GGGGGPGGGGGTGG0

16 C29O16N13H45 Beta sheet GGANGDGGGGGG
17 C34O16N15S4H51 Alpha helix; cyclic C0GC0GGGGGGGC0GGGC0

18 C36O18N17H55 Beta sheet G0GPGGGGGGGGGGGGG00

19 C35O19N17H55 Alpha helix GGGGGGGGGGGGGGSGG
20 C38O16N18H62 Beta sheet; cyclic K0GGGGGGG0K0GGGGGGG0

a The amino acids are represented by their respective single-letter code.
The code with a prime, e.g., R0, indicates an artificial modification, as
explained in the text.
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Fig. 1 in ribbon diagrams, with all the atomic Cartesian
coordinates (in Å) along with the full atomistic visualization
provided in the ESI.† This set of test structures includes
common amino acids and represents key secondary structures,
such as the alpha helix, beta sheet, and cyclic structures (e.g.,
the ones that are stabilized by disulfide bonds). We first
selected a set of readily available protein structures and trun-
cated them into oligopeptides to facilitate full QM-level struc-
tural optimization. The structures were then modified to ensure
they function as true testing systems without any pre-training.
Moreover, these oligopeptides do not occur naturally (to date),
in which some of the amino acid side chains are mutated,
making them well-suited for theoretical structural predictions
and testing.

With the assistance of Gaussian16’s built-in global MMX
(GMMX) conformational search algorithm using the MMFF94
force field, one could pre-screen the peptide bond dihedral
angles by searching within a subspace of the conformers (e.g.,
limiting to 100 structures) stochastically and generate a reason-
ably low-energy initial structure. Nevertheless, for the purpose
of this work, i.e., testing the efficiency of the GP optimizers with
various kernels and coordinates, we need not use the lowest-
energy structures. In fact, it would be interesting to test if our
method also works for higher energy structures (without any
secondary structure). We created one such example (ID 12), for
which its initial structure is linear.

In Table 1, the amino acid unit denoted with a prime, e.g.,
R0, indicates an ad hoc modification performed on the natural
structure. For ID 3, the side chain in R (arginine) is truncated to
–CH2NH2, and in S (serine), its C-terminus has a –CONH2 group
instead of –COOH. For ID 4, both C’s (cysteines) have their side
chains forming a disulfide bridge (with a loss of H atoms), and
the first C has its N-terminus defined as a –NHCOOH group,
while the last C terminates the chain with an H atom instead
of –COOH. For ID6, the G (glycine) has a –CONH2 group as the

C-terminus instead of –COOH. For ID7, the N-terminus in G
starts with a –NHCOOH group instead of –NH2. For ID10, the
first G starts with a –CONH2 group as its N-terminus, and the
first C has its side chain forming a disulfide bridge, while the
second C (i.e., C00) loses the H atom on –SH in the side chain, and
this chain ends with an H atom. For ID12, the first F (phenyla-
lanine) starts with a –NHCOOH group at the N-terminus, and the
G ends with a –CONH2 group at the C-terminus. For ID13, the
first C (i.e., C00) starts with the –NHCOOH group at the N-
terminus, and the –SH becomes a disulfide bridge, which is also
the case for the second C. For ID15, the chain ends with a
–CONH2 group in G at the C-terminus. For ID17, all C’s form the
disulfide bridges. For ID18, the first G starts with a –NHCOOH
group at the N-terminus, while the second G (i.e., G00) ends with a
–CONH2 group at the C-terminus. For ID20, the side chain on K
(lysine) connects with the C-terminus on G.

Structural comparison

We need to compare the structures predicted by GP optimizers,
which differ in the kernel and coordinate representation, to
ensure the same or similar structures were acquired. It is known
that the optimized local minima may have slight discrepancies
with different coordinate systems unless an extremely tight
convergence threshold is applied. We define the reference
structures as the QM-level local minima optimized with the
non-redundant delocalized internal coordinates, s, by the physi-
cal prior-mean GPs using the RQ kernel for IDs 2–5 and 7–20, the
P kernel for ID 1, and the SE kernel for ID 6.

The root mean squared deviations (RMSDs in Å) in atomic
Cartesian coordinates are calculated as a metric to assess the
structural geometric differences. In particular, we used the
Kabsch algorithm56 in our comparison, in which the structures
are re-centered and re-orientated to minimize the RMSD via the
quaternions. In addition, we included the ‘‘--reorder’’ flag to
perform the atom order adjustment to make sure that the order

Fig. 1 The geometries of the 20 constructed oligopeptides in the testing set visualized using the ribbon model, in which the explicit atomistic
arrangements are hidden. Notice that the heteroatoms are not represented in the ribbon model, so the cyclic oligopeptide structures 4, 10, 13, 17, and 20
are a bit obscured in atomic connectivity in this figure. The explicit all-atom ball-and-stick model of these structures is provided in the (ESI†).
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of atoms (i.e., atomic indices) in the two structures under
comparison is consistent.

Furthermore, we have calculated the QM energy differences
of the optimized local minima compared to the corresponding
reference structures. We found that among all structures opti-
mized by GPs when r and s coordinates were used, the energy
differences were within 0.03 eV on average, and the RMSDs
were within 0.2 Å on average. In the case of C coordinates, a few
systems converged to higher energy conformers compared to
the reference structures.

To show the limitation in the AlphaFold 3 prediction for
oligopeptide structures, we also use RMSDs to compare our
first-principle GP-optimized reference structures with the
AlphaFold structures. Note that because our testing structures
include modified amino acids and AlphaFold only takes in the
natural amino acid sequence as input, we have to calculate the
RMSDs for the common set of atoms shared by both predic-
tions. In addition, if the atomic connectivity is different in two
structures (physical GPs vs. AlphaFold), we exclude the case in
our comparison.

IV. Results and discussions

We have tabulated the number of iterations for converging the
20 oligopeptides with the GP optimizers in Table 2, along with
each optimizer’s averaged number of iterations for reaching the
local minima and the standard deviations. We have applied a
combination of the kernel functionals (including the SE, RQ,
M, and P kernels) and the structural descriptor (i.e., the r, s, and

C coordinates). The structural descriptor impacts the efficiency
of the optimization significantly. In particular, the internal
coordinates, including the r and s, have a much better perfor-
mance than the C coordinates. Although the C coordinates are
indeed invariant with respect to the overall translation and
rotation of the molecule, the inverse interatomic distance, 1/Rij,
for a pair of well-separated nuclei is not sensitive to the
structure change. In addition, the redundancy included in C
is too high as compared to the other two coordinate systems. In
particular, the number of unique coordinates scales as BNatm

2,
which is unfavorable in such a high dimensional optimization
task. Consequently, its performance in optimizing large-sized
molecules, which have multiple large interatomic separations,
is not optimal.

The synergistic effect of the kernel and coordinates is clear
in our tests. In Fig. 2, we plot the average number of iterations,
excluding the cases that failed to converge, in four kernel
categories, each of which is subjected to three choices of the
coordinate systems. The non-redundant delocalized internal
coordinates, in general, show better performance than the
other two coordinates for any kernel. For the Matern kernel,
although r shows slightly better efficiency than s (199.8 vs. 218.5
iterations), since s only includes 3Natm – 6 coordinates, it
greatly reduces the memory requirement for GP optimizations.

One of the approaches to introduce a physically motivated
learning model is through the design of the kernel in GPs. Our
observation is consistent with the physical insights brought by
the kernel. Specifically, the RQ and M kernels improve the
modeling of the smoothness of realistic PESs as compared to
the SE kernel, which is infinite-order differentiable. This is

Table 2 Number of iterations for structural convergence in GP optimizations (i.e., the number of QM solver calls) with a combinatorial choice of kernel
functionals (SE, RQ, M, and P) and coordinate systems (x = r, s, and C) for the 20 oligopeptides in the testing seta

ID

kSE(xi,xj) kRQ(xi,xj) kM(xi,xj) kP(xi,xj)

r s C r s C r s C r s C

1 372 374 307 74 Failed 81 230 231 477 61 55 94
2 195 211 1308 43 42 580 130 130 1442 39 28 351
3 516 515 947 93 56 316 289 290 1623 72 67 305
4 210 206 1193 44 43 375 130 129 1435 43 43 512
5 250 261 807 49 53 127 151 150 743 65 67 172
6 55 59 471 Failed Failed 103 26 27 455 Failed Failed 101
7 159 168 441 25 34 62 93 95 368 33 33 151
8 608 738 824 116 111 130 351 344 838 120 101 172
9 123 123 487 28 24 67 79 78 478 26 25 118
10 96 92 874 26 20 136 24 24 887 19 18 160
11 281 279 667 50 48 98 154 152 590 58 53 136
12 65 59 264 13 13 130 14 14 156 12 9 39
13 111 109 1319 23 23 191 Failed 329 1320 24 23 222
14 625 566 807 105 99 126 308 315 701 60 75 349
15 436 Failed 895 91 55 139 281 211 783 88 95 287
16 157 157 739 32 30 114 91 91 661 34 30 88
17 1301 1235 Failed 189 180 Failed Failed 695 Failed Failed Failed 731
18 391 Failed 582 60 72 94 256 252 586 76 65 236
19 761 753 925 129 126 197 535 544 780 93 86 143
20 439 390 739 97 71 123 455 269 985 Failed Failed 222
Average 357.6 349.7 768.2 67.7 61.1 167.8 199.8 218.5 805.7 54.3 51.4 229.5
Std. 302.0 310.7 303.1 45.7 43.4 127.5 149.2 173.5 398.4 29.5 28.1 163.3

a The entry labeled ‘‘Failed’’ indicates that an unphysical structure is generated during the optimization process (e.g., radical generation, broken
bonds, etc.). For each column, the average number of iterations excludes any failed cases. The convergence threshold for all optimizers was set to
the maximum atomic force (at QM level) being less than 0.05 eV Å�1.
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consistent with our performance test, in which the SE kernel is
less efficient compared to the RQ and M kernels in general,
except that kSE(Ci,Cj) is slightly more efficient than kM(Ci,Cj).
When comparing the RQ with the M kernel, we found that the
M kernel is less efficient, particularly when combined with the
C coordinates. Nevertheless, when combined with s, kM(si,sj) is
very robust because it successfully converged all 20 structures
without convergence issues.

Overall, using kP(si,sj) yields the best performance for our
testing set, which, on average, only requires 51.4 iterations to
reach convergence, which is a factor of B16 more efficient than
kM(Ci,Cj). This observation shows the synergy between the
periodic kernel and s. The periodic kernel includes critical
physical insights in optimizing oligopeptides or any molecule
with a large number of internal rotations (torsional degree of
freedom). When combined with internal coordinates, which
include the dihedral angles for torsions, the local periodicity of
the torsional motion, essential for geometry optimization in
our task, generates a periodic function (the torsional projected
PES). If one encounters a convergence failure with the kP(si,sj)-
driven GP optimizer, an advisable solution without resorting to
pre-optimize the structure with a classical force field is to
switch to the RQ kernel in s coordinates, which provides similar
performance.

Furthermore, under the periodic kernel, the redundant
coordinate (r) requires 54.3 iterations on average, and thus, it
performs similarly to the s coordinate system. Nevertheless,
from the computational memory requirement perspective, the
number of coordinates involved in the optimization for the
non-redundant coordinate s is much fewer than the redundant
coordinate choice (43Natm). Therefore, the s coordinate serves
as a better choice than the r coordinates.

The final investigation we performed was to compare the
first-principle structures optimized by the GP optimizer (in
particular, the reference structure defined in the ‘‘Structural
comparison’’ section) with the AlphaFold 3 predictions. These
two approaches are fundamentally different in working princi-
ple, in which our physical GP method requires first-principle
information and optimizes for local minima on the surrogate

surfaces, while AlphaFold does not require detailed atomistic
level energy calculations and aims for structural prediction for
proteins. We have calculated the RMSDs in Å for all oligopep-
tides that have the same atomic connectivity predicted by these
two models. Note that, in some cases (IDs 10 and 20), Alpha-
Fold predicted completely different atomic connectivity com-
pared to the first-principle optimized ones. The AlphaFold
model uses the predicted template modeling (pTM) score to
assess the prediction quality internally, indicating the overlap
between the generated structure and the hypothetical true
structure. All the predicted oligopeptides have a pTM score
that falls within 0.02–0.03, drastically lower than the pTM = 0.5
threshold, indicating an internal diagnosis of highly unreliable
predictions. The oligopeptide structures generated by Alpha-
Fold tend to be linear and show no secondary structures
(Fig. 3); thus, they are energetically unfavorable conformers
compared to our GP-optimized ones at the QM level. The low
pTM scores are consistent with our structural comparison in
terms of the RMSDs, shown in Fig. 4, highlighting the

Fig. 2 The average number of iterations for converging the testing
oligopeptides with the GP optimizers using the combinations of the kernel
functionals (the squared exponential (SE), the rational quadratic (RQ), the
twice-differentiable Matern (M), and the periodic (P) functionals) and the
coordinate representations (the redundant internal (r, in violet), the non-
redundant delocalized internal (s, in cerulean), and the Coulombic (C, in
cyan) coordinates).

Fig. 3 The predicted oligopeptide structures generated by AlphaFold 3 in
the ribbon model representation.

Fig. 4 The root mean squared deviations (RMSD in Å) comparison
between the reference structures (QM-level GP optimized) and the
AlphaFold 3 predicted structures (not first-principle-based) for the testing
oligopeptides. Note that IDs 10 and 20 are excluded from this figure due to
inconsistent atomic connectivity.
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qualitatively different predictions from AlphaFold compared to
the QM-level optimized structures. Even for the intentionally
created linear structure, ID 12, for which our GP optimizer has
no trouble optimizing to a local minimum quantum mechani-
cally, the AlphaFold prediction still deviates from the reference
by 1.5 Å. (Note that the C–H bond is B1.1 Å and the C–C bond
is B1.5 Å.) The QM method, GFN2-xTB, is capable of predicting
highly accurate geometries, with an error of B6 pm in bond
lengths, and consequently, its local minima serve as
benchmark-level structures in this work. This discrepancy is
understandable since AlphaFold is trained on macromolecular
complexes (proteins) without on-the-fly first-principle guidance
in structural search. Furthermore, the smaller yet more flexible
polypeptides are underrepresented in its training.

V. Conclusion

First-principle-level molecular structure optimization is an
essential starting point for structure-based modeling and
design. Large molecules with high degrees of freedom pose a
challenge in the efficient search for local minima. We examined
the usefulness of using a surrogate model-driven structure
optimization for oligopeptides at the quantum mechanical
level. In particular, we investigated the impact of the kernel
functional choice and structural descriptor (including the
redundant internal coordinates, the non-redundant delocalized
internal coordinates, and the Coulombic coordinates) in phy-
sical prior mean-based GP optimizations. We concluded that
for large torsionally flexible molecules, the periodic kernel,
which approximates the physically periodic torsional potential
energies, coupled with the delocalized internal coordinates,
provides a highly efficient option for performing ab initio
molecular geometry optimization with on-the-fly GP training
and prediction.

Data availability

The data supporting this article have been included as part of
the ESI.†

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

J. L. B. acknowledges the financial support provided by the
Schiller Institute Grant for Exploratory Collaborative Scholar-
ship (SIGECS) as well as, in part, the American Chemical Society
Petroleum Research Fund (PRF no. 65744-DNI6). In addition,
we thank the Boston College Linux Cluster Center for cluster
computing resources.

References

1 P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas,
Phys. Rev., 1964, 136, B864–B871.

2 W. Kohn and L. J. Sham, Self-Consistent Equations Includ-
ing Exchange and Correlation Effects, Phys. Rev., 1965, 140,
A1133–A1138.

3 D. Porezag, Th Frauenheim, Th Köhler, G. Seifert and
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