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The coupled-monomers model views any molecular system as a coherent network of interacting
monomers. Developed as a self-consistent density-matrix adaptation of the Huckel MO theory, it has
been applied to various X, cluster ions, where X is an inert (closed-shell) neutral monomer. Rather than
keeping the bond integrals constant, the model considers their variation with the bond orders y using a
bonding function B(y). In this work, high-level ab initio data are used to obtain the bonding function for
He,*. As the simplest inert species, helium is used to illustrate the general X,* bonding trends, using the
most elementary example. Two alternative approaches to the bonding function are described. One is
based on the He,* potential, the other on the “multicluster” training points obtained by analysing several
special He,* structures. Each approach is tested in two regimes: by considering only the local bonds,
and by including both local and remote pairwise interactions. The remote forces in He,*, n > 3 are
destabilising and account for approximately —5% of total covalent energy. Each model variation yields
similar structural results, indicating a general trend for trimer-ion formation. In the absence of geometric
constraints, this appears to be a universal feature of the X,* covalent networks, resulting from
the enthalpy-driven competition between charge sharing and localisation. Therefore, many currently
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1. Introduction

Helium is the simplest closed-shell neutral species. It is inert in
the neutral state but becomes reactive with the addition of a
charge, as exemplified by the formation of a >2 eV covalent
bond in He,".'™ The reactivity is generally due to the electron
(or, in this case, its opposite—the hole) acting as the elemen-
tary agent of covalent forces, the “glue” of the chemical bond.

The addition of such glue transforms helium clusters into a
fundamental laboratory of chemical bonding. He," is the
simplest case of X,,* covalent networks, where X is a closed-
shell monomer.” The inter-monomer (IM) couplings in such
systems illuminate the competition between coherent charge
sharing and localisation,®™ which is central to chemistry.
When sterically possible,’ many X, %, n > 3 clusters (including
He,") form trimer-ion cores,"®'82¢ with the rest of the
monomers remaining in the neutral state, bound to the cluster
by noncovalent forces.>”*® The tendency of a charge to localise
on not one, not two, but specifically three monomers is both
common and intriguing.
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Indeed, trimer ions have been observed or predicted in
many X,~ systems, with X ranging from rare-gas atoms
(cations),”*?°72* to organic molecules (anions).>*>° The diver-
sity of these systems implies that the trimerization trend is due
the universal features of covalent bonding, not the intrinsic
properties of the monomers. The trimer ions emerge as the
optimal outcome of two competing drives: on the one hand,
extended charge sharing allows more covalent bonds to form;
on the other, thinly spreading one bonding agent diminishes
the strength of each bond.

To describe the universal features of charge-induced inter-
actions, we put forth a simplified version of the molecular-
orbital (MO) theory, the coupled-monomers model.”> The model
is not intended to compete with high-level ab initio methods.
Instead, it aims to provide simple descriptions of chemical
bonding in supramolecular systems, focusing on fundamental
insight rather than quantitative precision. The model views any
molecular system as a network of coupled monomers, regard-
less of their intrinsic structures. The model approximations
are appropriate for the X,* networks, where the sharing of
one bonding agent results in fairly weak IM bonds with large
equilibrium lengths.

These bonds are treated using a self-consistent density-
matrix adaptation® of the Hiickel MO theory.*** The original
Hiickel theory describes covalent bonding between all adjacent
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Fig. 1 Examples of He," bonding functions (solid curves in various
colours). All curves are defined by egn (6) with the training-point constraint
B(1/2v2) = —0.750 (blue circle). Dashed curves show the boundaries of
the bonding space considered, with (by, b,) = (0.6, 0.6) and (1.7, 1.7).

atoms in terms of constant bond integrals (). This assumption
is valid when all the bonds considered are equivalent, as is
approximately the case for m electrons in conjugated hydro-
carbons—the Hiickel theory’s original domain. However, it is
unphysical for many other systems.”” The coupled-monomers
model,” therefore, employs variable bond integrals. It considers
that the equilibrium bond lengths and, therefore, the bond
integrals, do vary with local Hiickel (Coulson)®*>*° bond orders
- The latter are described by a bonding function (). Examples
of such functions for He," are shown in Fig. 1. A variety of (x)
curves within the dashed boundaries were considered,” but to
be applicable, the bonding function must satisfy the universal
boundaries plus the training point shown by the circle in the
figure.

Under realistic assumptions, the coupled-monomers model
has confirmed the trimerization trend in sterically permitting
X, clusters. This outcome was demonstrated for several catio-
nic and anionic systems with diverse monomer types, from rare
gases to organics.® In each case, the trimer prediction proved
to be quite robust with respect to the exact choice of f(y).
For example, every solid curve in Fig. 1 yields a trimer-ion core
in He,".

The goal of the present work is to demonstrate that the
empirical form of the bonding function proposed previously® is
consistent with ab initio theory. We use a variety of high-level
calculations to devise the bonding function for He,", but the
specific case of X = He is used here to illustrate the general X,,*
bonding trends on the most elementary example. The results
show that under reasonable assumptions f() for He," indeed
falls within the empirical boundaries of the bonding space
in Fig. 1.

The next section gives an overview of the coupled-monomers
model, followed by the presentation of ab initio results for
several special He,," structures in Section 3. These results power
two alternative methods of deriving the bonding function in
Sections 4 and 5. The first is based on the He," potential and
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the second on several multicluster training points. The final
section summarizes the findings and outlines future directions.

2. The coupled-monomers model

The formalism used in this work has been described
previously.” In short, our model relies on some of the Hiickel
theory’s original assumptions, but includes adaptable bond
and Coulomb integrals. The variability of the former is espe-
cially key in weakly bonded X,* systems, where the Hiickel
assumption of constant bond integrals does not hold, even
approximately.

2.1. MMO basis set

For a system of n identical monomers, the inter-monomer
orbitals (IMO) ¢, are described as linear combinations of
the monomer orbitals (MMO) v,

o) = chk)lpi, i,k=1,...,n For He,", }; are the 1s orbitals of
i

one per monomer:

the He” monomers, sketched in Fig. 2(a). Linear chains are
favoured energetically for He,', so we limit modelling to such
structures.”

The {y;} MMO set serves as a minimal basis for treating the
interactions in He, caused by the addition of one hole. The hole
is described by an effective Hamiltonian A.° Like in the Hiickel
theory,®® we rely only on its matrix representation in the {y;}
basis. The diagonal elements H;,; = (y;|H| ;) are the Coulomb
integrals, which here we continue treating as constants.
The off-diagonal elements H;; = (y;|H|y;), i # j are the bond
integrals.

For electrons (e), the couplings between all basis MMOs in
Fig. 2(a) are attractive, described by negative bond integrals H7 ;
< 0, forall i # j. Indeed, to a chemist’s eye, the MMO chain in

(a) Basis MMOs

Py Yy P 1/
+ )+ )+ )+ )ooe( + )+
A” Hi./'/li,j>0

(b) Lowest-energy h-IMO =)}, c;;

sgn¢;: +®+@ooo@+

h-bonding _J p;,<0, x;5,>0
h-antibonding ) p;3>0, x;3<0

h-bonding " )

h-antibonding )

Fig. 2 (a) Sketch of the 1s MMOs of the He®, j = 1, ..., n atoms,
comprising the basis set used to describe the linear He,,* chain. All basis-
pair couplings in this basis are antibonding for holes, as reflected by
positive bond integrals. (b) Sketch of lowest-energy h-IMO. Only the signs
of the MMO contributions are shown, not their amplitudes. This orbital is
e-antibonding but h-bonding with respect to all nearest-neighbour inter-
actions. The character of the remote forces alternates along the chain.
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Fig. 2(a) forms a bonding-throughout IMO. However, this holds
only if the IMO is occupied by an electron. That is, the above
interactions are e-bonding, rather than simply bonding. Using
the same MMOs to describe a hole (h) results in an opposite, h-
antibonding effect, with H?J > 0,1 # J.

Following Hiickel,**° we treat the MMO basis as orthonor-
mal. The IMOs ¢, = > cgk)l//i and their energies Ey, k=1, ...,n

i

are then obtained by diagonalising the Hamiltonian matrix.
The solution yields n eigenvalues Ey, k=1, ..., n and eigenvec-
tors |¢), which contain the ¥ coefficients. Focusing on the
lowest-energy IMO, ¢ = ¢, we drop index k = 1 for brevity.

2.2. Charge-sharing stabilisation

IM bonding is described by the monomerization energy AEy,,
i.e. the energy change in the X,* — X* + (n — 1)X process.
For a bound system, AE,; > 0, with bonding and antibond-
ing interactions making positive and negative contributions,
respectively.

In the general MO theory, total bond orders and stabilisa-
tion energies are defined by the combined contributions of all
occupied orbitals. Here, we consider only systems bonded by a
single bonding agent: one electron (in X,,~) or one hole (in X,,").
In He,', in particular, there are (2n — 1) electrons distributed
among n molecular orbitals (IMOs). Such a system can be viewed
as a combination of two contributions: a closed-shell 2n-electron
configuration and a single hole populating the IMO in Fig. 2(b).

The first of the above contributions amounts to zero in
terms of covalent bond orders and energy, as in the He,, van der
Waals cluster. Therefore, instead of considering the (2n — 1)
electrons in the n IMOs of He,,", we can view it, equivalently, as
a single-hole system with only one populated IMO. Both the
stabilisation energy and all bond orders are then defined by
this IMO only. With the additional assumption of constant
Coulomb integrals (set arbitrarily to zero), AEy, is then given by
the negative of the one IMO energy, ie., the lowest energy
eigenvalue of the Hamiltonian matrix. Alternatively, it can be
expressed as:’

AEy == 2p;;hij (1)

i<j

where h;; are the equilibrium values of the bond integrals,
i.e., H;; for the relaxed cluster structure, and p;; = ¢;¢; are the
elements of the density matrix p = |¢)(¢|.>” The off-diagonal
pij, I # J are the Hiickel (Coulson) bond orders.*® The diagonal
elements p;; which do not figure in eqn (1), represent hole
density on respective He” monomers, i.e., the partial charges:
qi = Pi,i-

Under the basis set definition in Fig. 2(a), all h-bond
integrals are positive, either at equilibrium (%;; > 0) or at an
arbitrary geometry (H;; > 0). The resulting lowest-energy h-IMO
is sketched in Fig. 2(b) (amplitudes not shown, only signs).
Since the signs of ¢; alternate along the chain, this IMO is
e-antibonding but h-bonding throughout.

The h-bonding interactions resulting from the opposite-
sign adjacent IMO coefficients correspond to negative local
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(nearest-neighbour) bond orders, p;;.; < 0. All other (remote)
pairwise interactions alternate, as illustrated in Fig. 2(b),
between h-antibonding (p;,+s > 0) and h-bonding (p;;+s < 0)
for even and odd, respectively, degrees of separation s:

] (2)

Since the remote (s > 1) interactions are much weaker than the
local (s = 1) bonds, the latter (with 4;;., > 0 and p;;1; < 0)
define the positive sign of AEy,, per eqn (1). That is, the chain is
bound overall in its ground state.

Eqn (1) offers an intuitive perspective on the relationship
between covalent bond energy and bond integrals. While AEy,
is a sum over all IM bonds, each bond’s energy is given by the
magnitude of its bond integral, weighted by twice the bond
order. In the valence bond theory, a single bond consists of two
electrons or holes. The above weight then corresponds to the
number of contributing bonding agents and each 2p; jh;; term
can be understood as the bond integral scaled by the fractional
number of electrons (holes) residing on the particular bond.

2.3. Dimer units

Most results in this work are reported in terms of dimer units
(d.u.), which allow for a straightforward generalisation of the
results to any X, system.” In this work, specifically, the dimer
unit of energy is defined as the bond dissociation energy of
He,": 1 d.u. = 2.446 eV. Similarly, the dimer unit of length is
defined as the equilibrium bond length of He,": 1 d.u. = 1.083 A.

2.4. Bond lengths and bond integrals

Hiickel’s assumption of constant bond integrals is valid only
when all bonds considered can be treated as exactly or approxi-
mately equivalent. This holds for r electrons added to a frame-
work of ¢ bonds in conjugated hydrocarbons—the Hiickel
theory’s original domain, but is unphysical for most systems.>”
This approximation certainly cannot be used for weakly bonded
clusters, such as He,," or similar. When the entirety of the bonding
is due to one delocalised electron or hole, the bond lengths and,
therefore, bond integrals vary significantly from bond to bond.
Instead, the local equilibrium bond lengths r;;,.; can be
assumed to depend explicitly on the corresponding bond orders:’

Tiiz1 = M(Yiiz1) (3)

r(y) is a function of the absolute bond order between adjacent
monomers. Here, ‘“absolute” means independent of the basis
set definition. Absolute order y is always positive for bonds and
negative for antibonds and can, therefore, differ in sign from
the Hiickel (Coulson) definition.***® For bonding interactions,
Liitl = |p,"l-il| = ]cjc,-| >0 and r(y) » oo for y — 0. For anti-
bonding, y;i+1 = —|piix1| < 0and r()) is infinite for any y < 0.
The basis set in Fig. 2(a) implies that the Hiickel and absolute
h-bond orders are opposite in sign throughout this article:

Lij = —Piy (4)

as indicated for the lowest-energy h-IMO in Fig. 2(b).
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Implicit in eqn (3) is the assumption that the equilibrium
geometry is defined by local interactions only. Since the bond
integrals depend explicitly on the distance between the mono-
mers, it also follows that the local equilibrium bond integrals
hi;x+; must vary with the corresponding bond orders.
We postulate that |7 ;44| = |B(x:i+<1)|, where S(z) is no longer
a Hiuckel constant but a negatively-valued (for y > 0) function.
We call it the bonding function.® Given that all bond integrals
in the this work must be positive under the basis-set definition
in Fig. 2(a), we have:

ﬁ(/z z:tl) (5)

llil -

The universal (independent of the monomer identity)
features of r(y) and p(y) were discussed previously.® Both
functions are expected to be well-behaved and monotonic on
the y € [0, 0.5] interval. The left boundary corresponds to the
nonbonding (noncovalent) limit and the right represents the
largest bond order attributable to one electron or hole.

Since the stronger the bond, the shorter it is, () must be a
decreasing function of y. As shorter bonds correspond to
stronger IM couplings, fi(y) is expected to increase in magni-
tude with increasing y. Since the bonding function is defined to
be negatively-valued or zero, it varies from f(0) = 0 (the non-
bonding limit) to $(0.5) = —1 d.u. (the dimer limit).> However,
the above nonbonding (noncovalent) limit assumes an infinite
IM separation, and this assumption will be modified in
Section 3.2.

These requirements are satisfied by the empirical function

Bl = 1 — (1 - 20"T"™ (6)

defined for y € [0, 0.5], where by, b, > 0 are parameters.’
For example, (b4, b5) = (1, 1) corresponds to the linear function
p = —2y connecting the nonbonding and dimer limits, while the
dashed boundaries shown in Fig. 1 are defined by (b4, b,) =
(0.6, 0.6) and (1.7, 1.7), as labelled. It was previously speculated®
that all or most relevant bonding scenarios fall within the
region of the bonding space defined by eqn (6) with by, b, €
[0.6, 1.7], i.e., in between the two dashed curves in Fig. 1.
Indeed, the 12 solid curves shown in Fig. 1 in various colours
are all defined by eqn (6) with b, ranging from 0.6 to 1.7 and the
corresponding b, values determined so that each f(y) function
passes through the blue training point f(1/(2v2)) = —0.750.°
This constraint “trains” the model to reproduce the He;" energy.

2.5. Search for self-consistent solutions

As evident from eqn (1), the energy eigenvalues and hence the
IMO coefficients ¢;, i = 1, ..., n, depend on the density matrix
elements p;;. Since p;; = ¢ ¢;, those elements themselves repre-
sent the model solution, leading to a conundrum that the very
statement of the problem to be solved depends on the solution.
This issue is resolved via an iterative search for a self-
consistent solution.” Given the bonding function B(y), the
search is initiated with an arbitrary set of the initial {c}
coefficients. Each iteration then includes the following steps:
(1) From {c;}, compute p;; = ¢j¢; and z;; = —p;-
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(2) Set all Coulomb integrals to the same constant (e.g., zero)
and evaluate the local bond integrals from the bonding func-
tion and local bond orders using eqn (5). The remote integrals
hij, i = j| > 1, are either set to zero (local bonding approxi-
mation) or evaluated using the method in Section 4.

(3) Find the eigenvalues and eigenvectors of matrix h from
the previous step.

(4) Check for convergence and proceed to the next iteration
(step 1) or exit the loop.

The convergence check is based on two criteria. The energy
change must be <10~ ° dimer units (2.5 peV), compared to the
previous iteration, and the norm of the eigenvector change
must be <1077, Most reported calculations involved <200
iterations.

3. Ab initio predictions for special
structures

We now turn to He," cluster ions for ab initio insight into the
r(x) and p(x) functions. Both can be evaluated explicitly by
analysing the interaction potentials for various bond orders.

3.1. Covalent interactions

In this part, we consider several He,," structures shown in Fig. 3
along with their respective IMOs. Not all of them correspond to
stable clusters: (a) and (b) do, but (c)-(e) do not. These
structures were chosen because they each include only equiva-
lent (by symmetry) local bonds. That is, the local bond orders
are constant within each structure but vary among them.

All IMOs in Fig. 3 are completely antibonding if occupied by
an electron (e-antibonding) but become bonding if populated
by a hole (h-bonding). In terms of the coupled-monomers

(a) 1.083 A 1.620 A
QO ~@
1.238 A @ @

1.853 A

o@ @@

000 .

(©) Q @Mm
Q9" % ©©

Fig. 3 Geometries and lowest-energy h-IMOs of special He,* structures
that include only all-equivalent bonds. The structures were optimised
subject to the symmetry constraints. (a) and (b) correspond to stable
clusters, but (c)-(e) do not. All IMOs shown are h-bonding.
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model, the He," structure in (a) has an absolute bond order of
7 = 0.5. Each of the trimer bonds in (b) is described by y =
1/(2v2) ~ 0.354, as obtained from the ¢; = (1/2,-1/v/2,1/2)
IMO coefficients dictated by the model and by the original
Hiickel theory, regardless of the assumed bonding function or
bond length. Similarly, all bonds in square He," (c) correspond
to y = 1/4, in hexagonal Hes" (d) to 1/6, and in hendecagonal
Hey,' (e) to 1/10.

Beginning with the dimer ion, its potential is represented by
the blue curve in Fig. 4. The specific curve shown is a Morse-
potential fit to the full-CI results for He," by Gadea and
Paidarova® (filled blue squares). The black open circles over-
laying this curve are from our CCSD/aug-cc-pVTZ calculations
using Q-Chem 5.1.%” They are nearly indistinguishable from
full-CI: the full-CI potential has a minimum of —2.448 eV at
1.085 A, while our calculations yield Vi, = —2.446 eV at r =
1.083 A. Given the agreement, we will rely on our CCSD results,

R/A
2.0

Energy/eV

-0.6 1

Energy /dimer units

: T T T
1.0 1.5 2.0 25 3.0

R / dimer units

Fig. 4 Ab initio results for (a) He,™ (absolute bond order y = 1/2); (b) linear
Hes* (x = 1/2v2); (c) square He4* (y = 1/4); (d) hexagonal Heg* (; = 1/6);
(e) hendecagonal Heg™ (1 = 1/10); and (f) He, (neutral van der Waals dimer,
y = 0). The filled symbols for (a) and (f) represent the results referenced in
the text. Solid blue and orange curves are the respective Morse and
Lennard-Jones potential fits to these data. The series of black open circles
are results of symmetry-constrained potential energy scans. Red open
circles are the potential minima of the respective structures.
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to be consistent with the other calculations in this work. The
(7y Vimin) = (1.083 A —2.446 eV) minimum for He," is equivalent
to (r, Vmin) = (1, —1) in dimer units.” It is represented by red
circle ‘a’ in Fig. 4 describing a y = 0.5 bond.

Turning to smaller bond orders, Fig. 4 displays additional
per-bond potential minima b-e for the larger He,," structures in
the respective parts of Fig. 3. In detail, black-circles ‘b’ in Fig. 4
represent the per-bond energy of He;" from a CCSD/aug-cc-
pVTZ potential energy scan under the D,;, symmetry constraint.
The values plotted were obtained by dividing the trimer energy
relative to the He" + 2He limit by the number of local bonds (2),
to yield the energy attributable to each bond.

The (7, Vimin) = (1.238 A, —1.304 eV) minimum for He;"
corresponds to (1.143, —0.533) in dimer units. It is indicated
by red circle ‘b’ in Fig. 4. These results are in agreement with
the earlier works on He;".">*?138 The above r = 1.238 A
compares to 1.238 A determined by Gadea and Paidarova
and 1.241 A predicted by Knowles and Murrell.* The V;, value
of —1.304 eV corresponds to a 2.608 eV monomerization
energy, which compares to 2.598 eV calculated by Rosi and
Bauschlicher” and 2.659 eV predicted by Knowles and Murrell.*

Datasets (c)-(e) in Fig. 4 represent the results of similar per-
bond calculations for the respective structures in Fig. 3, all
carried out under the appropriate symmetry constraints.
To avoid clutter, Fig. 4 omits the detailed He," (c) and He,q"
(e) scans but the (7, Vi) minima are indicated by red circles in
each case.

The r and Vi, values, along with the monomerization
energies of these structures are summarised in Table 1. The
decreasing AEy, for n > 3 reflect the diminishing stabilities of
the constrained cyclic geometries with artificially delocalised
charges. In the unconstrained ground states of He,", the charge
localises on no more than three monomers, and all uncon-
strained n > 3 structures have AEy(n) ~ AEm(3).”

3.2. The noncovalent limit

The orange curve in Fig. 4 is the van der Waals (vdW) potential
of He,, corresponding to a covalent bond order of zero. The
specific curve shown is a Lennard-Jones potential fit to the data
of Clementi and Corongiu,***® shown by filled orange squares
(some datapoints fall outside the graph’s energy bounds). The
minimum at 7 = 2.9 A = 2.7 d.u. (approximately twice the vdW

Table 1 Results of the CCSD/aug-cc-pVTZ optimizations of the He,,*, n = 2, 3, 4, 6, 10 cluster structures shown in Fig. 5. The AEy, bond energy, 8, and
equilibrium bond length r values are all in dimer units (1 d.u. of energy = 2.446 eV, 1 d.u. of length = 1.083 A)

Case” Cluster” el r AEy(n) Energy per bond, —Vpn B(local)? B(all)’
a He," 0.500 1 1 1 -1 -1

b He;" 0.354 1.143 1.066 0.533 —0.754 —-0.791
[¢ He,' 0.250 1.350 0.871 0.218 —0.436 —0.554
d Heg" 0.167 1.496 0.666 0.111 —0.333 —0.375
e He,o 0.100 1.712 0.408 0.0408 —0.204 —0.229

“ As labelled in Fig. 2-4. ? Structures shown in Fig. 4. © As defined in the coupled monomers model. The exact y values in cases a-e are 1/2,
1/ (2\/5), 1/4, 1/6, and 1/10, respectively.  These f8 values (uncorrected for remote interactions) are calculated as f§ = Vimin/(2y). ¢ f values corrected

for remote interactions, as described in the text.
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radius)*" is too shallow to be discerned but represented by red
circle (f) in the figure.

In all y > 0 cases (Section 3.1), we ignored noncovalent
forces. If we continue to do so as y — 0, the relaxed covalent
bond length will approach infinity. This trend will cause the
bond integral, i.e., the coupling between the basis functions, to
vanish as well: f(3) - 0asy —» 0Oandr —» .’

However, noncovalent interactions cannot be ignored in the
% — 0 limit: no matter how weak, they become the only
remaining IM force. The very existence of van der Waals clusters
implies that r remains finite even as y vanishes. Minimum (f) in
Fig. 4 sets a maximum of r, max(r) = 2.9 A (2.7 d.u.), achieved in
the y — 0 limit. An immediate consequence of this boundary is
that the bond integral for charge-induced covalent interactions
cannot vanish even for y — 0. It remains limited by the He,"
potential value at the above max(r).

3.3. The bond-length function

The optimised local bond lengths for the special He," struc-
tures a—e in Fig. 3 are plotted versus the corresponding bond
orders in Fig. 5 (red circles). The discrete () data from Table 1
are supplemented with the noncovalent limit 7(0) = 2.7 d.u.
(point ‘f’) discussed in Section 3.2.

The blue curve in Fig. 5 represents a bi-exponential fit to the ab
initio data. It arms us with a continuous 7{y) function to use in
further modelling. The fit shown was obtained excluding point ‘¢’
(% = 1/4), which deviates slightly from the general r{}) trend.

The deviation is due to the remote interactions in square
He,', which are stronger than in any other structures in Fig. 3.
With the distance between the opposing monomers only /2
times the shortest bond length, the remote integrals amount to
almost half of their local counterparts. While the energetic
effect of the remote forces can be estimated easily (see ESIT),
the geometric effect was not pursued. Qualitatively, the strong
diagonal couplings in Fig. 3(c) are h-antibonding in character
and lengthen the local bonds. This results in the perceptible
displacement of point ‘c’ from the general r(y) trend in Fig. 5.

4. Dimer-based modelling

In this section, we assume that the bond integrals of any He,,",
n > 3 cluster can be deduced from the He," potential. This is
similar to the basic idea of the diatomics-in-molecules theory*>
proposed by Ellison in 1963.**** It was used with varying
success to model various polyatomic systems, including rare-
gas cluster ions,*18:19:23,25,45

In a way, we aim to predict the charge-induced couplings
between monomers in larger settings by observing their one-on-
one interaction in the dimer ion. Despite significant quantita-
tive errors, this approximation will allow us to reach—simply
and with considerable insight—correct qualitative conclusions.

4.1. The dimer-based bonding function

Quantitatively, we assume that all X-X coupling elements—the
local and remote bond integrals in any X, * structure, whether
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0.0 0.1 0.2 0.3

Bond order, y
Fig. 5 Red circles: optimised bond lengths of the He,* structures (a)-(e)
in Fig. 3 and the neutral van der Waals dimer (f), plotted versus the

corresponding bond orders. Solid blue curve: a bi-exponential fit to the
data, excluding (c).

at equilibrium or not—depend explicitly on IM distance only.
That is, H;; = f(R;) for i # j, where fis assumed to be the same
for any X, with a given X. Then at equilibrium (R; ;= 1, ;, H; ; =
h; ), hij = f(r; ;). Note that fis defined in a different variable
space than f§ in eqn (5).

Now apply the above to the specific case of He,". In the
coupled-monomers framework, its potential energy V at any R is
equal to the negative bond integral magnitude at that R (true
only because the Hiickel-like effective Hamiltonian and hence
the bond integrals incorporate nuclear repulsion). In our basis,
all bond integrals are positive, and therefore V(R) = —H; »(R) or,
equivalently, V(R) = —f(R), where f is the function from the
previous paragraph. Combined with #;; = f(r;;), this yields:

hij = —Vrij),

where V(R) is the He," potential (the blue curve in Fig. 4).
Even though eqn (7) uses the He," potential, it applies to all
monomer pairs in any He,'. This is unlike eqn (5), which is
defined for local bonds only. Specifically for nearest neighbours
(j=i£ 1), r;;in eqn (7) can be expressed in terms of the bond-
length function from Fig. 5, as ;.1 = 1(};4+1). This results in

i#]. (7)

hijv1 = —Vr(Yiiea)] (8)
Together with eqn (5), this gives
Bx) = VIr(x)] ©)

Eqn (9) allows an explicit calculation of the local bond
integrals. The corresponding bonding function is plotted by
the blue curve in Fig. 6. To obtain it, r for every y was deter-
mined using the r(y) function in Fig. 5. The f(y) value was then
found from the corresponding V(r) value using the He," curve
in Fig. 4.

4.2. Local bonding approximation

Sample self-consistent solutions obtained using the above
bonding function (including local couplings only) are presented
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Fig. 6 Solid blue curve: the dimer-based He,," bonding function obtained
using the (y, ) — (y, p) transform of the r(y) curve in Fig. 5 (blue) using
egn (9) and the He,™ potential V(r) in Fig. 4. Red circles (a)-(f): the
respective datapoints from Fig. 5 following the same transformation.
Shaded green area: the bonding space defined by the dashed boundaries
in Fig. 1. Solid grey curves: the original bonding functions shown in Fig. 1 in
various colours.

local only
with remote
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Fig. 7 Sample solutions for Hes* obtained using the dimer-based bond-
ing approximation. Black symbols and annotations: only local couplings
included. Red: all pairwise interactions included on an equal footing. Green
asterisks: the magnitudes of the initial guess. Dashed curve: a continuous
form of the Huckel (constant f) solution, shown for comparison.

in Fig. 7 and 8 (black symbols and annotations). The two figures
correspond to He;" and He,,", respectively.

The black circles in each figure represent the converged IMO
amplitudes |c;|, plotted vs. the monomer number i. The values
plotted next to the symbols in same-colour font are the partial
charges, determined as ¢; = |¢;|*>. The monomerization energy
AEy in dimer units (1 d.u. = 2.446 eV) is indicated in
the matching-colour (black) font in the top-right corner of
each plot.

Green asterisks in each figure represent the magnitudes of
the initial {c;} guess in each calculation. Note that the guess
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Fig. 8 Sample solutions for Hejo" obtained using the dimer-based bond-
ing approximation. See Fig. 7 caption for details. Top: The converged
geometry of the monomer chain. The bond length values are indicated but
the structure is not drawn to scale. Monomers shaded in red correspond to

the cluster core (q; > 0.01). Solid red lines represent covalent bonds with
> 0.1, dotted red lines bonds with 0.01 < y < 0.1.

for each calculation was chosen to contain no symmetry. This is
to avoid constraining the solutions to either odd- or even-
numbered cluster cores.” As in the previous work,” we empha-
size the model divergence from the Hiickel theory. To highlight
the difference, a continuous form of the Hiickel (constant f)
solution is shown for comparison in each figure as a dashed
curve that looks like the ground-state wavefunction of the
particle in a box.

The original trimer-core prediction® is clearly borne out in
the present results. In the case of He;" (Fig. 7), with only the
local interactions considered, the model charge distribution
¢; = 0.250]0.500|0.250 follows the Hiickel model exactly.
In contrast, the He,," solution (Fig. 8) obtained under the same
assumptions deviates significantly from the Hiickel model.
Even though the starting state in this example distributes the
charge over the entire 10-membered chain, the converged
solution is localised, placing 99.7% of the charge on three core
monomers (i = 4-6 in Fig. 8). It corresponds to a He; -He,
cluster structure.

The charge distribution within the trimer core of He;q"
(g:=0.250|0.497|0.250) is nearly identical to that in an isolated
He;" (Fig. 7). As discussed previously, a minor charge spillage
from the trimer to adjacent monomers (i = 3 and 7) is due to the
bonding function trend in the y — 0 limit.” In this case, it is
specifically due to the finite value of f(0).

The He;" monomerization energy (AEy = 1.305 d.u.), based
on the solution in Fig. 7, is >20% larger than the correct value
of 1.066 d.u. (Table 1 and ref. 2 and 4). This discrepancy will be
discussed shortly. The He;," monomerization energy is only
0.002 d.u. (5 meV) higher than that of He;'. The model
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accounts for covalent energy only and the addition of noncova-
lently bonded neutral monomers does not affect A Eys. Its minor
increase from n = 3 (Fig. 7) to n = 10 (Fig. 8) is due to the weak
couplings between monomers 3-4 and 7-8 in Fig. 8, activated
by the charge spillage from the trimer core to the adjacent
monomers.

The top parts of Fig. 7 and 8 show the converged geometries
of the He;" and Hey,' chains, respectively. The IM distances
(not to scale in the figure) are indicated in dimer units (1 d.u. =
1.083 A), with the black font corresponding to the local-bonds-
only solutions discussed here. The bond lengths within the
trimer core of He,," (Fig. 8) are essentially the same as in the
isolated trimer ion (Fig. 7). The 2.696 d.u. distances between
nonbonded neutral monomers correspond to the vdW separa-
tion (Section 3.2).

4.3. All pairwise interactions on an equal footing

Eqn (7) allows us to bypass the local bonding function f(y)

altogether. Instead, we can treat all bond integrals—local and

remote—in a uniform fashion. To do this, at each iteration, we

use the IMO coefficients c¢; to calculate the local bond orders

1ii+1- From these, using eqn (3) with r(y) from Fig. 5, the r; ;44

bond lengths are determined. Then all IM distances in the He,,"
max(ij)—1

chain are calculated as r;; = ti+1- The bond integrals
k=min(i,j)

for all i pairs are then determined via eqn (7).

Sample results of this approach for He;" and He,,", are
shown in Fig. 7 and 8, respectively, in red. Since the remote
interactions in the ground states of He," are overall destabilis-
ing [Fig. 2(b)], their inclusion lowers the He;" and Hey,"
monomerization energies, by 0.052 d.u. (0.127 eV) or about
4% in each case. The change is in the right direction, but
AE\m(3) = 1.253 d.u. is still 17.5% larger than the true value,
1.066 d.u.

The inclusion of remote interactions has a minor effect on
the cluster geometry and charge distribution. The antibonding
nature of these interactions in the trimer core results in a slight
but perceptible narrowing of the charge distribution, from g; =
0.25]0.50|0.25 to 0.24]0.52]0.24. This redistribution helps mini-
mize the antibonding coupling between the terminal mono-
mers in the trimer, with little or no effect on the local bond
orders.

4.4. Conclusions from the dimer-based approach

The approach tested in this section correctly predicts some key
properties of He," clusters. Among them is the key structural
feature: all n > 3 species possess trimer-ion cores.>*>'8

The bonding function calculated using this approach (Fig. 6)
does fall within the initially defined bonding space,’ although it
comes close to its lower boundary for y = 0.35-0.5. It is primarily
due to this significant deviation from the original trimer train-
ing point (blue in Fig. 1, greyed out in Fig. 6) that this bonding
function overestimates the cluster stability by 17.5%.

This discrepancy is due to the assumption that pairwise
couplings are unaffected by other monomers. The performance
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of the model overall depends sensitively on the bonding in the
trimer ion,”> but this approach does not use the trimer ener-
getics as an input. Instead, it assumes that the pairwise
integrals in He;" are the same as they would be at the same
distance in He,'. This is not strictly correct, as the effective
Hamiltonians of the two systems are different. This results in
the bonding function in Fig. 6 missing the original trimer
training point by a lot, causing the model to miscalculate the
core-ion energy.

To rectify this, next we modify how the bonding function is
calculated. The model performance is improved by including
not only the dimer, but also the trimer, and larger-cluster
energetics.

5. Multicluster bonding function

In this section, we use the He," structures shown in Fig. 3 plus
the van der Waals dimer to parameterise the bonding function
B(x)- The corresponding bond energies provide necessary data
to determine f values for a discrete y series ranging from y = 0.5
to 0. The results are presented in Fig. 9.

5.1. Local bond integrals

The monomerization energy of He," (y = 0.5) is AEy = 1 d.u., by
definition of the dimer unit. On the other hand, diagonalisa-
tion of the dimer 2 x 2 Hamiltonian yields AEy; = ki, ,, where
h,, is the relaxed bond integral. It then follows from eqn (5)
that $(0.5) = —1 d.u.’ This is included in Table 1 and repre-
sented by red circle ‘a’ in Fig. 6 and, again, symbol (a) in Fig. 9.

For He;" (7 = 0.354), the per-bond minimum (b) in Fig. 4
corresponds to Vi, = —1.304 eV = —0.533 d.u. (Table 1). If only
local interactions are included, then per eqn (1) and (4), it
is related to the bond integral via f = Vinin/(2%) = —0.754 d.u.

1 1 1 1 1 1

0.0 local only O
with remote ©
-0.2 - eqn (11) ==
£ 041 -
5)
£
= -0.6 -
Q
-0.8 -
-1.0 1 L

0.0 0.1

0.2 0.3 0.4

Bond order, y
Fig. 9 Black squares (a)—(f): B(y) values determined from the respective
per-bond potential minima in Fig. 4, assuming that only local bonds
contribute to the overall cluster energy. Red circles (a)—-(f): the same, but
with the remote couplings considered. Solid blue curve: the continuous
multicluster He,* bonding function obtained by fitting egn (11) to red
circles (a)—(f). Shaded green area: the bonding space defined by the
dashed boundaries in Fig. 1. Solid grey curves: the original bonding
functions shown in Fig. 1 in various colours.
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This value of f§ for y = 0.354 is represented by black square ‘b’ in
Fig. 9. It is nearly indistinguishable from the trimer training
point f = —0.750 d.u. introduced previously® for He," clusters
(the blue circle in Fig. 1, greyed out in Fig. 9). The miniscule
difference is due to the AEy(3) = 2.608 eV (1.066 d.u.) mono-
merization energy from the CCSD/aug-cc-pVIZ calcu-
lations used here, instead of the published"**** AEy(3) =
2.598 eV (1.061 d.u.) result that was used to determine the
original training point.”

Black squares c-e in Fig. 9 show the results of similar per-
bond calculations for the square He," (c), hexagonal He," (d),
and hendecagonal He,," () structures in Fig. 3. The per-bond
Vmin values for each structure (Table 1) were used to calculate
the corresponding f(y) values as f = Vinin/(2y)-

5.2. Corrections for remote interactions

The ab initio monomerization energies in Table 1 include all IM
interactions: pairwise and many-body, local and remote.
In contrast, the determinations of the local bond integrals
in Section 5.1 were performed as if only the first-degree (s =
|i — j| = 1) couplings contributed to AEy;. We will continue
disregarding many-body interactions but will now include the
effect of remote (s > 1) pairwise couplings on AEy,. Since the
remote interactions in He," are overall destabilising, the ana-
lysis in Section 5.1 must have underestimated the local bonds.

A crucial distinction between the s = 1 and s > 1 interactions
is that for s > 1, the corresponding specific bond orders p; ; or
1:,; have only a minor effect on the r;; distance, and therefore,
h; ;. For example, the ry ; distance in He," [Fig. 3(b)] is twice the
local bond length, r; 5 = 211 5. That is, r; 5 is determined mainly
by y1,2, while y; 3 has only a small effect. For this reason, the
remote couplings cannot be defined in a manner similar to
eqn (5), which is used for their local counterparts. Hence, we
will continue describing the remote bond integrals using the
dimer-based approach expressed in eqn (7), treating these
(weak) couplings as a perturbative correction for the local
bonds. The latter will be described by eqn (5) with a multi-
cluster bonding function.

We illustrate this approach on the simplest case of He;"
[Fig. 3(a)]. The ab initio (CCSD) value of its monomerization
energy is of AEy = 1.066 d.u. (Table 1). On the other hand, per

eqn (1),

AEM = -2 X 2/)1‘2]11,2 - 2,01,3h1,31 (10)

which takes into account that p;, = p,; and Ay, = hy 3, by
symmetry. The IMO coefficients ¢; = (1/2,—1/v/2,1/2) (Section
3.1) yield p,=cieo=-1/(2v2) and p;;=cjc; =1/4.
The signs of p;; reflect the fact that the IMO in Fig. 3(b) is
h-bonding with respect to the local interactions (p4 5, p23 < 0),
but h-antibonding for the remote 1-3 pair (p; 3 > 0).

The local integrals in eqn (10) are presumed to be defined
by eqn (5). Namely, h, = hy3 = —(x1), with y,=
|ciea| = 1/(2v2) ~ 0.354, while the weaker remote interactions
are described using the dimer-based eqn (7). Using r from Table 1
for the local bond length r;, yields r;; = 2r;, = 2.286 d.u.
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Eqn (7) and the V(R) curve for He," in Fig. 3 (blue) then give
hy 3 = —Wr13) = 0.104 d.u. Substituting all these quantities into
eqn (10), results in $(0.354) = —0.791 d.u.

This empirical f value for the trimer ion was obtained
assuming that its CCSD monomerization energy is determined
by a combination of the local and remote pairwise interactions.
As expected, it is slightly larger in magnitude than the initial
—0.754 d.u. result (Table 1), which was obtained by ignoring the
slightly destabilizing remote forces. The corrected value of
p = —0.791 d.u. for y = 0.354 is included in Table 1 and
indicated by red circle ‘b’ in Fig. 9.

The above estimate shows that the 1-3 remote interaction in
He,;" amounts to about —10% of each of the 1-2 and 2-3 bonds
(p1,31,3/p1,2R1,, = —0.1). That is, it is 10 times weaker and
opposite in character (antibonding) compared to the local
bonds. Since there are two such bonds and only one remote
pair, the overall destabilising effect of the remote forces in He;"
is ~5% of AE\. The relative small magnitude affirms the
validity of our perturbative approach to these interactions.

Similar calculations for square He,", hexagonal Heg", and
hendecagonal He;," are detailed in ESL.} The corrected values
of the bond integrals, represented by the f values for = 1/4, 1/6,
and 1/10, are included in Table 1 and Fig. 9 (red circles c-e).
Implicit in this analysis is the assumption underlying eqn (3):
that remote interactions do not affect cluster geometry, neces-
sitating no changes to the r(y) datapoints in Fig. 5. The
noncovalent limit of the bonding function (point ‘f’ in Fig. 9)
is assumed to be the same as in Section 4: $(0) = —0.042 d.u.

5.3. Continuous multicluster bonding function

We now have six discrete f(y) datapoints represented by red
circles a-f in Fig. 9. To obtain a continuous bonding function to
be used in model calculations, we performed a least-squares fit
to these data using the analytical expression:

B(x) = Bo — (1 + Bo[1 — (1 — 2)™]""" (11)

This function differs from the original® expression in eqn (6) by
the inclusion of f, to account for the finite value of f at y = 0
(point ‘f’" in Fig. 9). This constant (not a variable parameter)
equals the covalent bond integral evaluated at a vdW distance,
i.e., Bo = p(0) = —0.042 d.u. per Section 4.

The blue curve in Fig. 9 is defined by this f, value, with the
optimal fit parameters b, = 0.744 and b, = 1.461. The resulting
explicit f(y) function was used in the following calculations.

5.4. Model results

In this section, we use the bonding function in eqn (11) with
the optimal parameters determined in Section 5.3 to test our
model for the He," clusters. Similar to Section 4, we consider
two approximations: (1) without and (2) with remote interac-
tions. Since the discrete fi(y) datapoints in Fig. 9 were specifi-
cally adjusted with the second approximation in mind, more
superior performance is expected in the second case. Compar-
ing the two sets of results will allow us to draw conclusions
about the quantitative effects of the remote forces on cluster
structures and stabilities.
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Fig. 10 Sample solutions for Hes™ obtained using the multicluster bond-
ing function. Black symbols and annotations: only local couplings
included. Red: all pairwise interactions included as described in the text.
See Fig. 7 caption for further details.

Sample self-consistent coupled-monomers solutions are
presented in Fig. 10 and 11 for He;" and He,,', respectively.
The content of these figures is colour-coded and formatted
similarly to Fig. 7 and 8. In each figure, the solutions shown in
black result from the local interactions only, while those in red
include all pairwise couplings. The local interactions in all
cases shown in Fig. 10 and 11 are treated using the multicluster
bonding function given by eqn (11) and plotted in Fig. 9 (blue
curve). The remote couplings for the red datasets are obtained
using the dimer-based approach defined by eqn (9).
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Fig. 11 Sample solutions for He;p™ obtained using the multicluster bond-
ing function. Black symbols and annotations: only local couplings
included. Red: all pairwise interactions included as described in the text.
See Fig. 7 and 8 captions for further details.
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All solutions shown in Fig. 10 and 11 are structurally very
similar to those in Fig. 7 and 8, despite the different bonding
functions used. As predicted previously,” the charge in all He,*,
n > 3 clusters localises on a core trimer ion in most chemi-
cally relevant situations. Indeed, the covalently bonded He;"
structures in Fig. 10 are nearly indistinguishable from those in
Fig. 7, including the very similar charge distributions. The
Hey,' solution in Fig. 11, similar to Fig. 8, corresponds to a
He;"-He;, cluster structure, with 99.9% of the charge localised
on the trimer core.

The one significant difference between the model outcomes
in Sections 4 and 5 is in the respective cluster stabilities. While
the dimer-based solution for He;" including all interactions
(Fig. 7) is described by a monomerizations energy that exceeds
the ab initio value (1.066 d.u.) by 17.5%, the multicluster
solution in Fig. 10 matches it almost exactly, provided the
remote interactions are taken into account. In Fig. 11, the
addition of several more He monomers to form Hey," (with a
He;"He, structure) results in a miniscule increase in AEy,. The
observed increase is smaller in this case, compared to the
dimer-based case Fig. 8, mirroring the smaller charge spillage
off the trimer core.

6. Concluding remarks

The coupled-monomers model views any molecular system as a
network of interacting monomers. We have applied this view to
homogeneous X, % clusters, but it can be extended to hetero-
geneous systems with more than one monomer type. The
model approximations are most appropriate for weak deloca-
lised bonds resulting from the sharing of a single unit of
charge. The model treats these bonds using a self-consistent
density-matrix formalism. It considers that equilibrium bond
lengths and, therefore, the bond integrals vary with local bond
orders y. This variation is described by a bonding function f(y),
which can be determined empirically based on experimental
and/or ab initio data.

In this work, we relied on high-level ab initio calculations to
devise the bonding function for He,," cluster ions. Helium is the
simplest closed-shell monomer, allowing us to illustrate gen-
eral bonding behaviours in the most elementary case. Two
alternative approaches to determining the bonding function
were described. The first is based on the dimer-ion potential,
the other on several multicluster training points obtained by
analysing a series of special, not necessarily stable equilibria
with all-equivalent bonds. The bonding functions determined
by either method fall within the bonding space defined in the
previous work,’ giving extra credence to the initial predictions.
Each approach was tested in two regimes: by considering only
the local bonds, and by including all—local and remote—
pairwise interactions.

All four model variations yielded similar structural results,
consistent with the known properties of He,".">**"3% Under
most realistic assumptions, the charge in any He,", n > 3
system tends to localise on three monomers, resulting in the

Phys. Chem. Chem. Phys., 2024, 26, 27034-27045 | 27043


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4cp03478c

Open Access Article. Published on 14 October 2024. Downloaded on 10/26/2025 10:19:24 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

PCCP

formation of trimer-ion cores within larger clusters. This pre-
diction is robust with respect to an exact choice of the bonding
function.

Both the dimer-based and multicluster approaches indicate
that remote interactions in He," are overall destabilising and
account for approximately —5% of total covalent energy. There
is, however, an important distinction between the two when it
comes to cluster energetics. The dimer-based method overesti-
mates the He,,", n > 3 cluster stabilities by 17.5%, even when all
pairwise interactions are considered. The multicluster method,
on the other hand, predicts the cluster monomerization ener-
gies almost exactly. This is because the dimer-based method is
based on the He," energetics only, while one of the multicluster
training points corresponds to He;'. In our previous work, we
showed that the trimer training point is key to predicting any
correct X, energetics using the coupled-monomers model.”

There remains one property that our model in its present
form does not reproduce, which is the exact charge distribution
within the He;" trimer. High-level ab initio calculations by us
and other authors'®>® show that the charge distribution in He;"
is broader than the g; = 0.25/0.50|0.25 Hiickel limit. The CCSD
results for the trimer ion in Fig. 3(b) correspond to Mulliken
charges of g; = 0.267]|0.466/0.267. In contrast, the coupled-
monomers model in its present form, using the multicluster
bonding function with all pairwise interactions accounted for,
predicts a narrower distribution of g; = 0.238]0.523]0.238 (Fig. 10).

Thus, our model predicts that the destabilising remote
forces in He," work to narrow rather than broaden the charge
distribution, which is contrary to the above CCSD prediction.
In the future, we will show that the answer lies with the
Coulomb integrals. So far they were presumed constant, but
should also vary with respect to the density elements, just like
their off-diagonal counterparts (the bond integrals) do.

Finally, we reiterate the overall conclusion that in the
absence of geometric constraints the charge in various X,*
systems tends to be shared by three monomers. In this work we
focused on monoatomic monomers (X = He), but the coupled-
monomers approach can be and has been similarly used to
treat X, clusters of polyatomic species, with similar
conclusions.” We stress that the universal trimerization trend
in such weakly-bonded covalent networks has been revealed in
a purely coherent regime. It results from the enthalpy-driven
competition between charge sharing and localisation and is a
feature of IM covalent couplings per se, largely independent of
the intrinsic properties of the monomers. Therefore, many
other trimer-ion species are likely to be found, particularly in
cold environments such as exoplanetary atmospheres and
outer space.

Data availability

Some of the data supporting this article have been included as
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from the authors upon request.
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