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Crumbling crystals: on the dissolution mechanism
of NaCl in water†

Niamh O’Neill, abc Christoph Schran, *bc Stephen J. Cox ac and
Angelos Michaelides *ac

Dissolution of ionic salts in water is ubiquitous, particularly for NaCl. However, an atomistic scale

understanding of the process remains elusive. Simulations lend themselves conveniently to studying

dissolution since they provide the spatio-temporal resolution that can be difficult to obtain experimentally.

Nevertheless, the complexity of various inter- and intra-molecular interactions require careful treatment

and long time scale simulations, both of which are typically hindered by computational expense. Here, we

use advances in machine learning potential methodology to resolve at an ab initio level of theory the

dissolution mechanism of NaCl in water. The picture that emerges is that of a steady ion-wise unwrapping

of the crystal preceding its rapid disintegration, reminiscent of crumbling. The onset of crumbling can be

explained by a strong increase in the ratio of the surface area to volume of the crystal. Overall, dissolution

comprises a series of highly dynamical microscopic sub-processes, resulting in an inherently stochastic

mechanism. These atomistic level insights contribute to the general understanding of dissolution

mechanisms in other crystals, and the methodology is primed for more complex systems of recent

interest such as water/salt interfaces under flow and salt crystals under confinement.

1 Introduction

Understanding the dissolution of crystals is vital for a myriad of
pressing modern day challenges, from technological issues
such as battery science1 and water desalination2 to drug
bioavailability3 and geochemical weathering.4 The macroscopic
process of dissolution is well described and understood from
thermodynamics, where enthalpies of dissolution for example
can be readily obtained from experimental techniques such as
calorimetry.5 However despite well understood general theories
describing the conceptually reverse process of nucleation,6 at a
microscopic level our understanding of dissolution remains
largely unresolved.

Dissolution is indeed an old problem,7 however with recent
experimental developments, it is an exciting time for the field.
Building on early atomic force microscopy studies of the water/
NaCl interface by Xu et al.,8 sophisticated imaging techniques
such as scanning tunneling microscopy9 and Bragg coherent
diffraction imaging10 have given insight into low temperature

surface ion dissolution events and the role of defects in the
dissolution process. In addition, recent impressive high-resolution
liquid cell transmission electron microscopy work has observed
defect-mediated ripening of Cd–CdCl2 core–shell nanoparticles.11

The solid–liquid interface under flow has also been probed with a
combination of surface-specific sum frequency generation spectro-
scopy and microfluidics experiments, revealing drastic changes
to the equilibrium of dissolved ions.12 Recent single-molecule
atomic-resolution real-time electron microscopy experiments have
captured in real time a NaCl nucleus emerging during nucleation13

while in situ graphene liquid cell transmission electron microscopy
has revealed the atomic mechanism of NaCl nucleation under
confinement.14 However in general, obtaining atomic scale dyna-
mical information from experiment remains a highly challenging
endeavour.

In contrast, computer simulations conveniently grant access
to the Ångstrom and femtosecond scale resolution required.
A pertinent question for such studies relates to what is a
good underlying model to describe the potential energy surface
of ions in water? Ab initio methods, which aim to directly
describe the electronic structure of a system have been used
to resolve properties of solvated ions like their hydration
structure,15–21 elucidating for example the differing effects of
cations and anions on the local and global hydrogen
bond network of water.15 Going beyond the solution phase,
initial stages of dissolution have also been probed via
ab initio molecular dynamics (AIMD) simulations,22–25 where
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for example the polarisability of ions is shown to be a key
consideration.25

On the other hand, because of the long timescales and large
system sizes required to resolve the dissolution process of even
modestly sized nanocrystals, the vast majority of simulation
studies up to now exploring dissolution itself have been per-
formed using empirical force fields (see e.g. ref. 23, 26–34).
Important insights have been obtained from these simulations
that have significantly advanced the field, such as the fact that
dissolution rates are highly controlled by the crystal structure, and
that the existence of site specific barriers to dissolution implies a
non-constant dissolution rate throughout the process.35–39 Never-
theless, computational studies have been limited to individual
trajectories of dissolution events. However, a stochastic dissolu-
tion process is expected, as shown for example in larger scale
studies in the geosciences.40 Therefore it is important to establish
if the sequence of dissolving atoms can be rationalised at an
atomistic level from an ensemble of dissolution trajectories. In
addition, nucleation pathways are strongly dependent on solution
concentration,41–43 raising the question whether dissolution fol-
lows the same predictable mechanism or if it is highly sensitive to
the conditions.

In recent work, we have shown the importance of bridging
the gap between ab initio approaches and classical force fields.
For example, we have shown that the potential of mean force –
a fundamental indicator of ion pairing – of a Na/Cl ion pair is
highly sensitive to the underlying force field, with a significant
spread in empirical force field predictions compared to ab initio
methods such as density functional theory (DFT) and beyond.44

Fong et al. recently highlighted the inability of classical force
field models to correctly describe the ion pairing behaviour of
confined NaCl,45 while Panagiotopolous et al. have discussed

the importance of an ab initio approach towards modeling
dynamical properties of electrolytes.46

Therefore, to address the above questions regarding dissolu-
tion, there is a need for a computationally efficient exploration of
multiple dissolution trajectories using a methodology that accu-
rately describes the delicate changes in water–water and water–
ion interactions that occur during dissolution. Fortunately,
with the establishment of machine learning interatomic poten-
tials (MLPs),47–50 as a routine tool in the field of computational
materials science, accurate and efficient potentials can be devel-
oped for the treatment of complex processes such as dissolution.
Such potentials yield the accuracy of ab initio methods but at a
fraction of the computational cost. Of the many flavours of MLP
methodologies and architectures, the approach reported in ref. 51
is particularly suitable as it enables the automated development
and validation of MLPs capable of accurately treating complex
aqueous systems with a suitably efficient evaluation time to access
long trajectories.

Given the opportunities presented by the recent develop-
ments in MLP technology, we have performed a detailed study of
NaCl dissolution. NaCl dissolution is a prototypical and widely
studied system,15,16,22,24,25,52–57 because of its ubiquity and sig-
nificance to phenomena including biological intracellular
reactions58 and climate chemistry,59,60 not forgetting that two-
thirds of the Earth is covered in salty water. We find that the
dissolution process is highly dynamic. Many stochastic sub-
processes combine to give an overall crumbling mechanism, in
which a steady period of ion-wise dissolution precedes the rapid
concerted disintegration of the crystal. This disintegration is
governed by the steep increase of the surface to volume ratio of
the crystal, corresponding to an unfavourable surface to bulk free
energy that ultimately leads to the rapid collapse of the crystal.

Fig. 1 Overview of the NaCl dissolution process for a typical nanocrystal dissolution event. Panel (a) shows the extent of dissolution of a NaCl
nanocrystal in water, which involves a steady loss of ions followed by a rapid crumbling event. Relevant snapshots along the trajectory are shown above
the plot. Na+ and Cl� ions are coloured in blue and cyan respectively and oxygen and hydrogen atoms are coloured in red and white, respectively. (b)
Sub-processes occurring during the dissolution. The vacancies left by the ions moving are shown by the orange circles. For clarity in panel (b) the water
molecules present in the simulation cell are not shown.
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2 The NaCl dissolution mechanism

Fig. 1 provides an overview of a prototypical system considered
and the NaCl dissolution process. Throughout this discussion,
we show representative trajectories at one temperature but the
phenomena observed hold for multiple trajectories at 330 K
and 400 K. Further details of how our MLP was developed and
extensively validated are provided in the ESI.† Full details of the
systems and simulation protocols are given in the Methods
section. However, in brief, we considered 64 and 216 ion NaCl
nanocrystals in simulation boxes containing 1250 to 625 water
molecules (giving NaCl concentrations when dissolved of 1.42,
2.84 and 5.61 mol kg�1). These concentrations were chosen to
end up with different regimes from dilute to more concentrated
solutions.

A typical dissolution trajectory is shown in Fig. 1(a), with the
extent of dissolution of the crystal monitored over time. Rele-
vant snapshots from the trajectory are shown in the upper
panel. After a steady period corresponding to ions dissolving
from typically low coordinated sites of the crystal into solution,
there is a rapid increase in the rate of dissolution. This suggests
the crystal reaches some critical point of instability after which
it rapidly disintegrates or crumbles. Following this, the Cl� and
Na+ ions are fully solvated and the system has lost all crystalline
order. These general observations for the dissolution mechan-
isms are consistent over all conditions studied and reproduci-
ble over the ensemble of trajectories at a given condition.

The early stages of dissolution up to the onset of crumbling
comprise a set of dynamic processes occurring in equilibrium

as shown in Fig. 1(b). The dissolution of any ion from the crystal is
first preceded by the ion rolling onto the surface of the crystal
(Structures I. & II.). This process involves a simultaneous
reduction in coordination of the rolling ion with its neighbours
in the lattice until it is just coordinated with one counter ion, and
a corresponding increase in coordination of the ion with water.
This behaviour is consistent with earlier AIMD studies on NaCl
and LixMn2O4(001) surfaces.25,61 Moreover, there is a difference
between the rolling behaviour of Na+ and Cl�: Na remains much
more stable on the surface, while Cl� is much quicker to dissolve
into solution. This is in agreement with recent work by Silvestri
et al.,26 in which they show that Na+ ions adsorb relatively strongly
to the terrace sites when they move from the more stable kink
sites, while Cl� has much weaker minima on terrace sites. There
are then several possibilities for the fate of this exposed ion: It can
become further solvated by water and completely dissolve from
the crystal (Structure III.) It can also roll back to its starting
position and/or further roll to an orthogonal face (where it again
has the possibility to dissolve from the crystal) (Structure IV.). The
dissolved ion can also rejoin the crystal (at not necessarily the
same location as it originally emerged). In these early stages
before the rapid collapse of the crystal, other ions can also
simultaneously roll and move about the crystal without necessa-
rily any dissolution. This results in a deformation of the crystal
shown in Structure V. The implications of these early dynamic
processes with respect to the stochastic nature of dissolution will
be discussed in detail in Section 3.

Fig. 2(a) shows a schematic of the typical ‘unwrapping’ of
the crystal. The ions are coloured according to their time taken

Fig. 2 Summary of crystal and system properties for a dissolution trajectory at 2.42 mol kg�1. (a) Time taken for individual ions to dissolve in a single but
representative NaCl nano-crystal, where the larger ions are Cl� and smaller ions are Na+. Evolution over time of (b) cluster size of 4 largest ionic clusters
and crystalline order parameter %q8 (c) the ratio of surface area to volume (red, SA:V) of largest cluster (blue). A technical description of the %q8 and surface
area to volume order parameters are given in Section S.4 of the ESI.†
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to dissolve for this specific crystal. Overall there is a preference
for ions from low coordinated sites to dissolve first. We observe
that dissolution is initiated at corner sites in the lattice, which
has been previously noted in several papers.22,25,52,56,62 The
dissolution of ions up to the point of crumbling proceeds in an
approximately step-wise manner of ions of opposite charge
(Cl�, Na+, Cl�. . .), thereby minimising charge accumulation
on the crystal lattice, confirming earlier force-field simulations
on the initial stages of dissolution.56 At each dissolution step
(depending on its location) for an ion to dissolve it must break
3 (corner), 4 (edge), 5 (face) or 6 (centre) ionic bonds. Therefore
the edge-wise unwrapping of the crystal shown in Fig. 2(a)
follows the hypothesis that at each step, the number of ionic
bonds broken is minimised. This holds true up to the point of
rapid disintegration, where all atoms irrespective of their
current coordination dissolve within a few picoseconds. We
note that the asymmetry in the times to dissolve for equivalent
lattice sites arises from the fact that only one trajectory is
shown. Moreover, the stochastic fluctuations in the early stages
of dissolution as described above mean that the nature of the
initial water configuration surrounding the crystal will play a
role in the times for specific ions to dissolve. By performing
many averages over trajectories, the times to dissolve for
equivalent lattice sites would eventually match the symmetry
of the underlying crystal.

The crumbling observed in our simulations has been pre-
viously noted in classical force field simluations,52,63 where a
decrease in lattice energy was hypothesised as the origin for the
disintegration. However the mechanism of this process was not
fully explored and we therefore set out to rationalise the origins
of this crumbling by addressing a number of questions. Speci-
fically: (i) does the crystal splinter into smaller crystallites or
completely crumble into ions? (ii) Nucleation studies of NaCl in
water, have shown that at very high concentrations there is an
amorphous ionic structure before ions from solution form a
nucleus41,42; is such an amorphous intermediate also relevant
to dissolution? (iii) At what point does the crystal disintegrate,
and is this crumbling event determined by the size of the
remaining crystalline cluster or something else?

To answer these questions, we now analyse the nature of the
crumbling mechanism, and attempt to quantify and describe
the driving force for this event. Let us first address the question
whether the remaining crystal splinters into smaller subclus-
ters which is suggested in ref. 22. Another possibility is that it
rapidly crumbles into individual ions. Monitoring the sizes of
the 4 largest crystalline (ionic) clusters and the crystalline order
of the largest cluster over time, as shown in Fig. 2(b) gives
insight into the exact mechanism of the crystal collapse. Con-
sidering the sizes of the 4 largest ionic clusters, initially there is
just one large cluster with 64 ions (i.e. the initial 4 � 4 � 4
crystal), which gradually decreases in size corresponding to the
steady period of ions dissolving. At the point of crumbling, the
number of ions in the largest cluster rapidly drops and imme-
diately converges to a steady value of just one or two ions
rapidly fluctuating over time (corresponding to short-lived ion
pairs in solution). Since at no stage is there a second cluster

with some intermediate number of ions, this implies that there
is a complete disintegration of the crystal, rather than some-
thing resembling a shattering process.

To understand if an amorphous transition precedes crum-
bling, the crystalline order of the ions in the system has been
monitored over time. %q8 (defined in the ESI†) is a variation of
the typical Steinhardt bond order parameter q8, and averages
the bond order vectors over the first shell of neighbouring ions
to provide a measure of ordering of the ions in the system.
%q8 (Fig. 2(b)) qualitatively tracks the evolution of the largest
cluster size, whereby initially there is a steady decrease (but still
within the range expected for a crystal) corresponding to the
crystal decreasing in size. At a critical value of %q8 E 0.3, there is
a sharp decrease in %q8, corresponding to a rapid total loss of
crystalline order in the system. Therefore for the (low) concen-
tration regimes we explore, our results for dissolution reflect
those in the nucleation literature, where there is a single step
order to disorder transition, with no amorphous intermediate –
although we note that in general, irrespective of concentration,
there is no requirement for nucleation and dissolution
mechanisms to be the same.

We have already suggested that the onset of crumbling
occurs when the crystal shrinks to a certain (unstable) size.
Across the simulated trajectories, there is a wide spread of
crystal sizes at which the disintegration occurs (approximately
20–40 ions). So it is not size alone that governs the instability
of the nanocrystal. To understand this behaviour we consid-
ered the surface area to volume ratio of the convex hull of the
largest cluster. Panel (c) in Fig. 2 shows this surface area to
volume ratio for the crystal over time up to the point of
collapse. This gives a measure of the extent of interaction of
the ions in the crystal with water over time. There is an initial
decrease corresponding to a ‘rounding’ of the crystal, to a
relatively constant value up to the point of crumbling. (This
rounding is even more pronounced for the larger 6 � 6 � 6
crystal, Fig. S10, ESI†) At the onset of crumbling there is then a
rapid increase in the surface area accessible to the water. This
analysis highlights the importance of the solvent in the
dissolution mechanism, where it plays a direct role in deter-
mining the crumbling. The volume term in this ratio can be
understood in terms of the cohesive stabilising energy of the
crystal phase, while the surface area term represents the
energy penalty in forming an interface. The dominance of
the surface area over the volume at the point of crumbling of
the crystal lattice in this dissolution work highlights the
delicate balance of inter-molecular interactions that ulti-
mately determine the crystal stability. We note that obtaining
a more quantitative metric for the free energy differences for
the ions in the crystal or in solution could be addressed in
future work utilising methods such as thermodynamic inte-
gration or metadynamics.26

In summary, this surface area to volume ratio is a simple
parameter that explains the onset of disintegration of the
crystal. It could also be used directly for other systems, thereby
allowing for a simple and intuitive understanding of dissolu-
tion processes in general.

Paper PCCP

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

1 
O

ct
ob

er
 2

02
4.

 D
ow

nl
oa

de
d 

on
 7

/2
9/

20
25

 1
1:

02
:3

0 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4cp03115f


This journal is © the Owner Societies 2024 Phys. Chem. Chem. Phys., 2024, 26, 26933–26942 |  26937

3 Stochastic nature of the NaCl
dissolution process

Thus far, we have described the overall crumbling mechanism
of NaCl dissolution in detail, which is completely general
for multiple conditions of concentration and temperature.
However a pertinent question relevant for many fields is whether
the dissolution mechanism is deterministic. That is, given some
initial conditions, can we predict at what crystal size/structure
and after how long will the crystal dissolve? Previous ab initio
studies22,25 and larger scale FF-based studies on dissolution have
limited their focus to individual trajectories, thus restricting the
conclusions that can be drawn regarding the mechanism in this
respect. However in this work, access to multiple ab initio quality
trajectories via machine learning based simulations has enabled
this issue to be addressed through a thorough statistical analysis
over multiple trajectories.

Fig. 3 shows the time evolution of the crystal size distribu-
tion for 10 trajectories of a 6 � 6 � 6 nanocrystal. The size
distribution is initially very narrow at the beginning of the
dissolution. However as dissolution proceeds along the 10 trajec-
tories, the distribution widens significantly. After approximately 15
ns, there is a spread of over 100 ions in the crystal sizes along
different trajectories. While all trajectories follow the overall
crumbling mechanism described in Section 2, this broadening
of the distributions illustrates the diverse microscopic paths taken
by the crystals en route to dissolution. We previously discussed in
Section 2 the highly dynamic equilibrium of microscopic subpro-
cesses such as ions rolling on the crystal surface and lattice
rearrangement occurring during the steady period of ion dissolu-
tion from the crystal. These are rooted in inherent stochastic
system fluctuations such as lattice and molecular vibrations (on
the order of fs) and water dipole and hydrogen bond reorientations

(on the order of ps). Therefore the wide variation in the crystal
structures at a given time (despite all simulations starting from the
same pristine crystal structure) can be directly attributed to the
stochastic nature of these microscopic sub-processes. Given the
relatively small sizes of the systems studied here, one would expect
a much larger spread of times in macroscopic systems. In addition
to the range of crystal sizes for different trajectories at a given time,
for a given crystal size, there are also numerous possible struc-
tures, as shown in the inset of Fig. 3, with 3 representative
examples of a crystal with 87 atoms.

These diverse structures again arise from a combination of
the stochastic microscopic subprocesses. The diversity in micro-
scopic mechanism can also be observed for the other concen-
tration conditions studied here. The largest 6 � 6 � 6 crystal
(5.61 mol kg�1) takes much longer to dissolve and has a much
broader range of dissolution times than the 4 � 4 � 4 crystals
(1.42 mol kg�1 and 2.84 mol kg�1), as shown in Fig. S10 (ESI†).
This broad spread of times can be attributed to an increase in
probability of ions rejoining the 6 � 6 � 6 crystal, since it is
surrounded by the lowest volume of water, but also there is a
cumulative effect of each possible stochastic sub-process for
every dissolution step. While a distribution of dissolution times
is to be expected, a 2 or 3-fold spread in times is particularly
noteworthy. In summary, the dissolution of NaCl therefore
proceeds via an overall crumbling mechanism, within which,
there is rich structural variety of the dissolving crystal owing to
the inherently stochastic microscopic system fluctuations.

4 Conclusion

Despite dissolution being one of the most ubiquitous processes
on Earth, major gaps in understanding at the atomistic level

Fig. 3 Overview of the stochastic nature of the NaCl dissolution process. The main panel shows the crystal size over time for 10 simulations at 330 K
initialised with random velocities for a 6 � 6 � 6 nanocrystal. The range of fastest and slowest dissolving crystals is shaded in grey. The histograms show
the distribution of crystal sizes across all trajectories for a given time window plotted along the mean crystal size (dark blue). Snapshots of crystals at 7 ns
and with 87 ions are shown in the blue and red boxes respectively.
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persist. In this work we provide a first-principles description of
the mechanism of NaCl dissolution, through the application of
an automated framework to develop accurate MLPs. We have
generated multiple trajectories (4300 ns in total) with ab initio
equivalent accuracy, under a range of conditions of NaCl
dissolving. We have established a general crumbling mecha-
nism of NaCl dissolution, where following a steady period of
ion-by-ion loss, the crystal reaches a critical point of instability
and collapses in a concerted fashion. The sequence of dissol-
ving ions in the steady period of dissolution is such that the
number of ionic bonds broken and net charge on the crystalline
lattice is minimised. The overall stability of a crystalline cluster
in water can be straightforwardly reasoned by a delicate balance
of interactions between the ions and water, measured via the
surface area to volume ratio of the crystal. This simple and
physically intuitive concept could be tested on other ionic
crystals in water as well as non-ionic systems such as molecular
crystals. The crumbling mechanistic insights we have provided
are primed for experimental measurement, including confine-
ment controlled monitoring of the dissolution and Bragg
coherant diffraction imaging, as have already been successfully
applied to crystalline systems.12,13

We have shown that the overall nature of the dissolution
mechanism is highly stochastic, comprising a dynamic equili-
brium of sub-processes such as ions rolling, dissolving, rejoin-
ing and deformations of the lattice in the crystal. These arise
from the stochastic hydrogen bond formation/breaking and
thermal vibrations in the crystal and influence the relative
stability of the crystal, and therefore the overall time taken
for dissolution.

Studies of dissolution of crystalline and non-crystalline
materials in the earth sciences have observed a broad variation
in the rate constant of dissolution of up to 2–3 orders of
magnitude.40,64 which they attributed to the inhomogeneity of
the initial crystal surface. Given our observations of a stochastic
dissolution mechanism in the nanoscopic regime, exploring this
feature of the mechanism via multiscale simulation methods
such as kinetic Monte Carlo would be a very interesting next
step. Moreover, leveraging the ever-increasing computational
efficiency in MLP implementations, especially with the rise of
GPU-based high-performance computing, sets the stage for
improved statistics regarding processes on the nanometric scale.

Our observations regarding the dynamic nature of the
crystal are also very amenable to further experimental studies.
They suggest a large variation in dissolution mechanism under
flow compared to confinement. In the former case the ions are
rapidly removed from the surface - similar to the lower ion
concentration conditions we have shown here, while confine-
ment essentially traps the ions, creating a high concentration of
ions in the vicinity of the surface. We propose that revisiting the
microfluidics12 and electron microscopy13 experiments
described in the Introduction, with a focus on different concen-
tration conditions would be highly insightful.

The accurate treatment of the electronic structure of the
system required to capture relevant interactions, yet at a
computational cost that facilitates the simulation of many

dissolution trajectories is crucial for the observations made here.
The high transferability of the methodology and validation
process is amenable to the study of other ionic salt systems.
Indeed, having now understood NaCl dissolution – in terms of a
minimization of charge and of bonds broken, a balance of ion-
solvent interactions determining crystal stability, and the
dynamic nature of the dissolution process – our work sets the
stage for a generalised theory of dissolution of ionic crystals.

For example, the recent emergence of so-called ‘universal’
machine learning potentials,65 now allows for the efficient devel-
opment of models for a range of crystal compositions. Computing
the solubility of the ML model is also an important next step,
given the large differences from experiment in solubilities pre-
dicted by different force field models.66 Typical approaches invol-
ving large-scale coexistance simulations27,67,68 would still be
largely beyond the capabilities of the ML models, however ther-
modynamic integration approaches to obtain crystal and solution
free energies would be a possible route.66 Finally, this methodol-
ogy and the insights we have now obtained are primed for
application to more challenging and complex systems of recent
interest, including highly concentrated electrolyte solutions69,70

and electrolyte solutions under confinement.71

5 Methods
5.1 Machine learning potential

Machine learning potentials provide a direct functional rela-
tionship between atomic positions and forces/potential energy.
This bypasses the otherwise computationally expensive require-
ment to solve Schrödinger-like equations and systems of much
larger length and timescales than feasible with AIMD based
approaches are now accessible. Building upon the seminal
work of Behler and Parrinello in neural network based ML
potentials,72 the recent development of an active learning
approach using a committee of NNPs has enabled the systema-
tic development and validation of NNP representations of the
potential energy surface for complex aqueous systems51,73

Full details on the model are given in the ESI,† however
briefly, the model comprised a committee of 8 Behler-Parinello
NNPs comprising identical architecture of 2 hidden layers with
25 neurons in each hidden layer. Our model was iteratively
trained on forces and energies from ab initio molecular
dynamics simulations, on computationally accessible systems
containing relevant interactions such as bulk water, solvated
ion pair etc (for full details see ESI†) in the generalised gradient
approximation using the rev-PBE functional with Grimme’s D3
dispersion correction,74 while using a Coulomb baseline to
incorporate the correct long-range electrostatics, evaluated with
particle mesh Ewald summation. This baseline uses TIP3P
model parameters75 for water and point charges of +/�1 for
Na and Cl. This setup has been shown to be accurate for
aqueous systems, and further details on functional selection
and long-range electrostatics are described in the ESI.†

The model was iteratively improved over multiple genera-
tions such that the relevant configuration space was accurately
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covered in the overall training set with an energy and force
root mean square error (RMSE) of 1.3 meV per atom and
38.0 meV Å�1, respectively. The total training set comprised
2127 configurations (energies) and 1 386 832 forces, yielding a
robust model which was extensively validated in a series of tests
incorporating static and dynamical properties of selected test
systems. Full details are given in the ESI,† but the approach
taken was to compare energies, forces, structural information
such as radial distribution functions and vibrational densities of
states to data obtained from AIMD. This is a standard approach
of validating MLPs and ensures that the potential energy surface
(PES) of the MLP faithfully represents the underlying ab initio
PES for the relevant configuration space. Finally, having
access to on-the-fly committee uncertainties along a trajectory
builds confidence that the results reported are in the interpola-
tion reigime of the model. Moreover, the same uncertainty
can be used if the model is applied to other situations to
identify failures in the model and where additional training is
required.

5.2 MD simulations

The systems used in all dissolution simulations described
comprised a 4 � 4 � 4 (6 � 6 � 6) NaCl nanocrystal with 32
(108) Na/Cl atoms using a computed lattice constant of 5.72 Å.76

The 4 � 4 � 4 nanocrystal was surrounded by 625 (1250) water
molecules in a cubic simulation cell of side length 27.8 Å
(34.1 Å), giving dissolved NaCl concentrations in water of
2.84 mol kg�1 and 1.43 mol kg�1 respectively. The 6 � 6 � 6
crystal was surrounded by 1068 waters in a cubic simulation
cell of side length 34.1 Å giving a dissolved NaCl concentration
in water of 5.61 mol kg�1.

We note that the cluster at the point of crumbling here is not
equivalent to a critical nucleus in CNT. For the concentration
regimes explored here, the critical nucleus would be expected to
be much larger.41 To test the robustness of our proposed
crumbling mechanism, we performed simulations on the two
lowest concentration systems (2.84 mol kg�1 and 1.43 mol kg�1)
using the classical Joung Cheatham force field for ion–ion
interactions with the SPC/E water model.66 This has a computed
solubility of 3.7 mol kg�1, and therefore we can be sure that our
systems are below saturation when fully dissolved for this model.
Full details and results are given in the ESI,† however we observe
qualitatively the same crumbling mechanism, with similar clus-
ter sizes at the point of crumbling. Therefore despite not having
the solubility of the ML model, we can be confident that this
mechanism is not simply a reverse of CNT. Moreover we do not
observe any correlation between the disintegration threshold for
the crystal and the overall NaCl concentration, where the main
factor influencing the disintegration is instead the surface area
to volume ratio.

MLP simulations were all carried out using the CP2K/Quick-
step code in the NVT ensemble and at a constant temperature
of 330 K (chosen to be consistent with previous literature77)
maintained using the CSVR thermostat.78 At each concen-
tration, 10 trajectories were simulated using the same initial
configuration and initialised with random velocities drawn

from the Boltzmann distribution at the target temperature of
330 K. Simulations were run for over 15 ns (5.61 mol kg�1), 2 ns
(2.84 mol kg�1) and 1 ns (1.42 mol kg�1) until the crystal was
fully dissolved. The same simulation procedure was carried out
for 10 trajectories of the 2.42 mol kg�1 concentration at 400 K
for further validation of the generalisability of our conclusions.
These results are included in the ESI.† Overall over 300 ns of ab
initio quality machine learning based simulations were per-
formed, far beyond the capabilities of AIMD simulations. For a
representative trajectory (20 ns, B3500 atoms), this corre-
sponds to roughly 7600 node hours (AMD EPYC 7742, 2.25
GHz, 128 cores per node, 256 GB memory per node).

Further details for computing parameters including cluster
size, %q8 and surface area to volume ratio of the crystal are given
in the ESI.†

Code availability

All simulations were performed with publicly available simula-
tion software (n2p2, CP2K), while the active learning package is
available at GitHub (https://github.com/MarsalekGroup/aml).

Data availability

All data required to reproduce the findings of this study is available
at GitHub (https://github.com/niamhon/nacl-dissolution/.)
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