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Conformational dependence of chemical shifts
in the proline rich region of TAU protein†

Johannes Stöckelmaier and Chris Oostenbrink *

Nuclear magnetic resonance (NMR) is an important method for structure elucidation of proteins, as it is

an easily accessible and well understood method. To characterize intrinsically disordered proteins (IDPs)

using computational models it is often necessary to analyze and integrate calculated observables with

measurements derived from solution NMR experiments. In this case study, we investigate whether and

which chemical shifts of the proline-rich region of Tau protein (residues 210–240) offer information

about the conformational state to distinguish two different microscopic conformers. Using multiple

computational methods, the chemical shifts of these two conformationally distinct structures are calcu-

lated. The different methods are compared regarding their ability to compute chemical shifts that are

sensitive to conformational change. The analysis of the data shows significant differences between the

available methods and gives suggestions for an improved pathway for ensemble reweighting. Nevertheless,

the variation in the chemical shifts which are predicted for configurations that are commonly considered to

belong to the same conformation is such that this obscures a comparison between distinct conformations.

Conformational sensitivity is found for up to B26% of calculated chemical shifts. It is found to be unrelated

to the atom element and has a minor relationship with the change in the corresponding f dihedral angle.

1 Introduction

For decades, the well-known structure–function paradigm had
its firm place in the understanding of biochemistry.1,2 The
discovery of much more flexible, disordered, proteins led to a
rethinking of established theories in the early 2000s.3 Fully
disordered proteins are named intrinsically disordered pro-
teins (IDPs), while partly disordered proteins contain intrinsi-
cally disordered regions (IDRs).4

During the last two decades, IDPs were the subject of signi-
ficant scientific interest as they can be physiologically active
and are predicted to play a role in understanding diseases such
as Alzheimer’s and Parkinson’s disease.5–7 It is estimated that
more than one third of proteins in eukaryotic organisms
feature intrinsically disordered regions.8

At room temperature, IDPs can access many different con-
formational states within less than one microsecond. There-
fore, they need to be described by a set of structures, called the
conformational ensemble.9 To calculate the conformational
ensemble of an IDP, molecular dynamics simulation can be
performed.10,11 Due to the flexible nature of IDPs, they usually
feature flatter potential energy surface regions that may span

multiple conformations,12 which makes computer simulations
very sensitive to inaccuracies of the force field. To overcome
these limitations, conformational ensembles can be optimized
with reweighting algorithms by combining experimental and
simulated data.13

A chemical shift is a measurement of the resonance fre-
quency change of a nucleus in reference to a standard in an
NMR experiment. This corresponds to a change in the magnetic
shielding tensor of the atomic core in reference to a standard.14

In organic chemistry, it is well understood that the local
geometry of a molecule has a strong influence on the chemical
shift. In biochemistry, secondary chemical shifts are applied to
differentiate between a-helix or b-strand regions in structured
proteins.15–17 While empirical predictors are designed to
handle such cases, it is a topic of discussion to which extent
they can capture conformational dynamics.18–20 As measured
chemical shifts do not represent single conformations, but only
the ensemble average,21,22 it is observed that chemical shifts
calculated from ensembles show increased agreement with
experiments.23,24

The quality of a reweighted conformational ensemble is
crucially dependent on the quality of the input data. To allow
reweighting tools to yield the best results, the chosen experi-
mental and simulated datasets should fulfill the following
characteristics:

(1) The measured signal must be sensitive to the overall
conformation of the sample.
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(2) The expected error of measurement must be less than the
expected conformational sensitivity.

(3) The measured data must not have assignment errors.
(4) The measured properties should be easily accessible both

computationally and experimentally.
To study IDPs, it has become a common practice to use

data from residual dipolar coupling, NOE, SAXS and FRET
experiments.13 While chemical shifts are a property relatively
easy to measure and understand, it is disputed if they are an
appropriate observable for use with protein ensemble reweight-
ing. Here, we aim to determine if predicted chemical shifts for
individual configurations differentiate between distinct con-
formations. We analysed two distinct conformations of an
intrinsically disordered TAU-protein fragment, by selecting five
highly similar configurations for each of the conformations.
We compare the variation in the predicted chemical shifts
within a single conformation to the variation between confor-
mations to determine the conformational sensitivity of the
predictions. We subsequently ask the question whether con-
formationally sensitive chemical shifts can be predicted from
the molecular properties, or if a specific algorithm is more
suitable to obtain conformationally sensitive chemical shifts.
While our work is not aimed to validate the predicted chemical
shifts against experimental data, we do perform a comparison
against the experimental data to determine if systematic errors
in the predictions occur.

2 Materials and methods
2.1 Molecular dynamics simulation

A 31-amino-acid long fragment of TAU-protein (aa220–aa240)
as described in Lasorsa et al.25,26 was chosen as a test case.
The fragment was simulated with acetylated and N-methylated
N- and C termini, respectively, at 310 K for 500 ns using
the AMBER99SB-ILDN force field27 with PME calculation of

nonbonded interactions using the OpenMM molecular dynamics
engine.28 We have used the capped ends to reflect the fact that
this is just a fragment from a larger protein. The fragment was
solvated using 1.5 nm padding in explicit OPC water.29 The
LangevinMiddle integrator using a 2 fs time-step was used
together with SHAKE constraints on the bond lengths. A Mon-
teCarlo barostat was used to keep the pressure at 1 atm, creating
an NpT-ensemble.

Analysis of the radius of gyration of the backbone showed
reversible collapse and extension during the entire time span
(Fig. 1). From the trajectory, both the frame with the maximal
radius of gyration (RGYR) as well as the frame with minimal
RGYR were selected, representing the most stretched and the
most globular conformation. We selected two of the most
differing conformations from the entire simulation to increase
the probability of observing large differences in structurally
sensitive properties. For each of the two structures, the four
most similar conformations were also selected, summing up to
two groups of five conformations (Fig. 1). In reference to the
corresponding central structure, the maximum RMSD of
the globular ensemble is B1.4 Å, while it is B2.0 Å for the
stretched ensemble.

2.2 Geometry optimization

As it is known that chemical shifts are very sensitive to changes
in the local chemical environment, the selected frames obtained
from molecular dynamics were geometry optimized using
MOPAC v22.1.0 utilizing the MOZYME protocol and the PM7
semiempirical method.30 For each frame, the 31 amino acid
long polypeptide plus the two residues of the N- and C-termini
as well as the first solvation shell of water were selected. The
geometry of all peptide atoms plus termini was optimized,
while the position of the water molecules in the solvation shell
was frozen to prevent the macroscopic conformation of the
peptide from changing.

Fig. 1 (a) A set of five structures representing the most stretched conformation (blue) and a set of five representing the most globular conformation
(red). (b) The radius of gyration of the polypeptide shows reversible fluctuations between B9.7 Å and B27.5 Å.
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2.3 Chemical shift prediction

Many different methods to predict chemical shifts have been
developed in the past decades. Some of those have been
selected to be investigated in this work and are listed in
Table 1. These methods can be separated into two groups –
empirical models using statistical approaches and DFT-based
calculations using first principles methods. The class of DFT-
based methods applying the gauge-independent atomic orbital
(GIAO) theory can be further split using pure quantum (QM)
and combined quantum/molecular-mechanics (QM/MM)
approaches. Further subdivision can be made into subgroups
depending on the solvation method.

After the geometry optimization, all 2 � 5 conformations of
the peptide were saved as PDB files and then converted into the
corresponding input format of each method using a MDAna-
lysis software37,38 based custom toolchain.

For use with the DFT-based QM algorithm, the polypeptide
had to be preprocessed as the system would otherwise be too
large. The polypeptide was split into 33 smaller fragments.
Each resulting fragment contains a central amino-acid as well
as all other amino-acids and end-groups which feature at least
one atom within 4 Å of the central amino-acid. At the cutoff,
where the backbone of the protein was cut, the new fragments
were missing atoms to replace the broken bonds. To fix the
fragments, they were saturated with ACE/NME end-groups.

Implicit solvent simulations applied the continuum solva-
tion model COSMO (York–Karplus formulation39) as implemen-
ted in NWChem. The dielectric constant of the medium was set
to 78.4 to represent water. Explicit solvent simulations were set-
up to feature one solvation shell around the central amino-acid;
itself embedded in implicit solvation. Fig. 2 shows a visualiza-
tion of the setup for one of the DFT-based QM calculations. The
micro-solvation contained all water molecules within 4 Å of the
central fragment and was taken from the MD-simulation with
preserved geometry and orientation of the water molecules.

In the case of the DFT-based QM/MM approach, the frag-
mentation was handled by the NWChem software. Similar to
the pure QM approach, all amino-acids close to the central
amino-acid were included into the QM region of the QM/MM
calculation. The QM-region includes the point charges of the
MM-region according to the modified AMBER95 force field as
implemented in NWChem. Broken bonds between the QM and

the MM region were automatically repaired using hydrogen link
atoms. In both vacuum and implicit solvent calculations, the
interaction zone between the QM-region and the MM-region as
well as the MM-cutoff was set to half the box-size. Fig. 3 shows a
visualization of the setup for one of the QM/MM calculations.

To evaluate the influence of functional/basis-set combina-
tions, three basis-sets (6-31G*,40–42 cc-pdvz,43 and pcSseg-144)
and four functionals (B3LYP,45 Becke97-2,46 Becke97-D47 and
wb97x-d348) were tested. Empirical GD3 dispersion49 has been
applied where available. The resulting 12 combinations were
used with implicit solvent both by the pure QM and with the
QM/MM approach. Taking the observations from these calcula-
tions into account, a smaller sub-set of three combinations was
chosen to test the influence of vacuum and explicit solvent on
the results.

To obtain a full set of chemical shifts for the entire poly-
peptide, the chemical shifts of all 33 central residues were
combined. While the empirical methods yield chemical shifts
directly, the DFT-based methods yield isotropic nuclear mag-
netic shieldings. To obtain the chemical shifts, the magnetic
shieldings were referenced against standards as recommended
in the study by Pavlı́ková Pecechtlová et al.50 The chemical

Table 1 Overview of the tested methods to predict chemical shifts from static protein structures. The column ’Solvation’ describes how solvation effects
are included into the calculation of the chemical shifts. Calculations that do not take solvation effects into account (solvation ’None’) are called vacuum
calculations in this article

Method Type Solvation Annotations/settings Ref.

DFT-based (NWChem) QM None 2 functional/basis-set combinations. 31 and 32
DFT-based (NWChem) QM Implicit 12 functional/basis-set combinations. 31 and 32
DFT-based (NWChem) QM Explicit 3 functional/basis-set combinations. 31 and 32
DFT-based (NWChem) QM/MM None 2 functional/basis-set combinations. 31 and 32
DFT-based (NWChem) QM/MM Implicit 12 functional/basis-set combinations. 31 and 32
SHIFTX2 Empirical Empirical 33
SPARTA+ Empirical Empirical -first 2 -last 32 34
UCBShift-X Empirical Empirical –shiftx_only –pH 6.5 35
PPM Empirical Empirical -model ann 36

Fig. 2 The QM approach splits the entire polypeptide into smaller frag-
ments. One amino-acid is selected for property calculation which then
constitutes the center of the created fragment (shown in color). The
environment is modeled by all amino-acids with at least one atom closer
than 4 Å to the central residue and, in the case of a calculation with explicit
solvent, the first solvation shell of water molecules. The visualization shows
the setup for calculation of the 22nd amino acid of the polypeptide in its
globular form with explicit solvation.
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shifts of 1H and 13C were referenced against tetramethylsilane
(TMS) (eqn (1)) while the 15N chemical shifts were referenced
against methylamine (eqn (2)) using a secondary standard
referencing scheme, where dcalc

X is the chemical shift of atom
X and scalc

X is the isotropic nuclear magnetic shielding of
atom X. The values of sexp

NH3ðliqÞ (244.6 ppm,51) and sexp
CH3NH2ðgasÞ

(249.5 ppm,52) were taken from the literature. All DFT-based
methods were referenced against standards using implicit
solvent (TMS) and vacuum simulations (CH3NH2).

dcalc
X = scalc

TMS � scalc
X (1)

dcalcX ¼ scalcCH3NH2ðgasÞ � scalcX þ ðsexpNH3ðliqÞ � sexpCH3NH2ðgasÞÞ (2)

Empirical predictors, which have been trained to predict
chemical shifts directly from a three-dimensional structure,
are also available. As these models were trained on structured
proteins it remains to be tested if they are able to calculate
chemical shifts that show conformational sensitivity toward
IDPs.

The four empirical predictors work in a straight forward way
and take PDBs of the entire polypeptide as input. The water
molecules and ions of the system were removed before calcula-
tion of the chemical shifts, which are calculated directly with-
out need for a reference calculation. As these predictors are
only trained for specific tasks, they are not able to reproduce
the chemical shifts of all atoms. Most chemical shifts are
calculated with SHIFTX2, which includes the backbone and
most of the sidechains (401 atoms in total). The PPM software
calculates the chemical shifts of the backbone, Cb atoms and
most of the sidechain hydrogen atoms (317 atoms in total).
Both SPARTA+ and UCBShiftX yield chemical shifts only for the
backbone and Cb atoms (170 atoms).

2.4 Analysis

To analyze the sensitivity of chemical shifts with regards to
conformational change, the five stretched and the five globular
conformations of the polypeptide were considered to be equiva-
lent in both cases. Thus, the simulation is regarded as five
independent measurements of both the stretched and globular
conformation.

For each evaluated atom, five chemical-shift values for both
the stretched and globular conformation were calculated,
respectively. Using the two times five samples of the observable,
two Gaussian shaped probability distributions were obtained
(Fig. 4a). It was assumed that the standard deviations of the two
distributions were similar, thus allowing the calculation of a
pooled standard deviation. Each of the two distributions has one
expectation value and the difference between them, in multiples
of the pooled standard deviation, is regarded as the sensitivity of
the chemical shift to changes in the overall conformation. The
chemical shift is regarded as conformationally sensitive if the
overlap of the two probability distributions is less than 10%,
which is equal to a difference in expectation value of 3.29s. This
process was repeated with all tested atoms (Fig. 4b).

The conformational sensitivities were categorized – regard-
ing their atom of origin – into seven groups: The backbone
atoms Ca, Ccarbonyl, Hamide and Namide as well as atoms from
side-chains Cb, Cother, Hother and Nother. For each of the groups,
the conformational sensitivity (difference in chemical shift
expectation value counted in pooled s) is displayed as a box plot
in Fig. 4c. The cutoff of 3.29s is presented as a dashed horizontal
red line. Chemical shifts which originated from the capped end
groups as well as from oxygen atoms were excluded from further
analysis as it is uncommon for them to be measured experimen-
tally and are thus rarely used for ensemble reweighting.

In addition to the chemical sensitivity, the agreement with
experimental data was evaluated to assess if any systematic
biases are observed. If chemical shifts predicted for any confor-
mation are systematically under- or over-estimated with respect to
the experiment, a reweighing of the ensemble becomes difficult.
The experimental chemical shifts were obtained from the study by
Lasorsa et al.25 in which they were measured at 600 MHz, 5 1C and
pH 7.3. Backbone assignment was performed using triple-
resonance solution state NMR experiments. Sidechains were
assigned using additional 3D NOESY and TOCSY experiments.
The mean relative error (eqn (3)) was chosen as a metric of
compliance with the experiment.

Emethod ¼
1

N

XN

i

1:0�
Osim

i;mean

O
exp
i

�����

����� (3)

where, Emethod is the mean relative error of the tested method,
Oexp

i is the experimental measurement of the observable i, and
Osim

i,mean is the simulated mean of observable i.
To rule out a significant share of non-random coil secondary

structure in the tested polypeptide, DSSP analysis53 using
MDAnalysis as well as the secondary chemical shifts were
analyzed. The secondary chemical shift is defined as the
difference between the random coil chemical shift and the

Fig. 3 The QM/MM approach splits the molecule into two regions. The
QM-region is composed of the central residue (shown in color) and all
residues with at least one atom closer than 4 Å to the central residue
(shown in brown). The rest of the protein is modeled as the MM-
region, shown as gray spheres. Shielding properties are calculated for
the atoms of the central residue. The visualization shows the setup for
calculation of the 22nd amino acid of the polypeptide in its globular
form in vacuum.
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measured chemical shift of the same atom (Dd = dobs � drc).
54

To follow the more modern convention used in key publica-
tions,16,17,55 the sign of the equation has been inverted compared
to in the study by Dalgarno et al. Due to the contrasting behavior
of Ca and Cb secondary chemical shifts with respect to stable
secondary structures,17 they can be subtracted56 to create the
secondary structure identifier DDdab = DdCa

� DdCb
. A positive

DDdab indicates an a-structure, while a negative DDdab indicates a
b-structure.17,26 To calculate the random coil chemical shifts the
POTENCI software57 was used. The settings were chosen as pH =
7.3, T = 293 K and ionic strength = 0.13 mol L�1 to represent the
experimental conditions as closely as possible.

3 Results
3.1 Conformational sensitivity

The overall conformational sensitivity of all approaches is sum-
marized in Fig. 5. The sensitivity in terms of mean chemical

shift difference between the stretched and globular conforma-
tions (in measures of Ds) is shown in Fig. 5a while Fig. 5b
shows the percentage of chemical shifts that is regarded as
conformationally sensitive. While both metrics confirm that
the overall sensitivity of chemical shifts with respect to con-
formation is rather limited, the empirical predictors UCB-
ShiftX, SPARTA+ and PPM were found to be the most
sensitive. The SHIFTX2 predictor performed equally to the
DFT-based methods calculated in vacuum. DFT-based calcula-
tions, both QM and QM/MM, with implicit solvation differen-
tiated very little depending on the choice of functional and
basis-set. The introduction of micro-solvation as an explicit
solvent model removes most of the remaining conformational
sensitivity.

To reweight a conformational ensemble into agreement with
experimental data, it is required that the observable of interest
is sensitive to the overall molecular conformation. While
reweighting algorithms may be able to disregard some insen-
sitive data that does not give information about the

Fig. 4 The central methodology of this work can be described using the three plots presented above. All calculations shown in these figures were
calculated using the UCBShiftX method. (a) The chemical shift of the Ca atom of residue 217 was calculated for each of the 10 conformations. The result is
displayed as blue and red dots, depending on whether the conformation was stretched or globular. Dots of the same color are part of the same
probability distribution (PDF), shown as a dotted curve. The pooled standard distribution of the two PDFs is noted on the lower x-axis. The value zero is
set to be in the middle of the two peaks. The distance between the two expectation values, in multiples of pooled s, is used as a metric of the
conformational sensitivity and quality criteria of the prediction methods. An overlap of 10% is equal to a distance of 3.29s. The chemical shift yielded from
Ca, residue 217, has a conformational sensitivity of 3.0s and thus is just not conformationally sensitive. (b) Average chemical shifts of both the stretched
(blue) and globular (red) population of all 31 Ca atoms can be seen. The vertical lines display a confidence interval of �2s. (c) The conformational
sensitivities of all Ca atoms are displayed as a box plot. The majority of Ca atoms show a conformational sensitivity of below 3.29s. Some shifts are more
sensitive, with the highest sensitivity at just over 8s.
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conformation, we emphasize that a major share of chemical
shifts in these calculations seems insensitive. It may, hence, be
necessary to find a sub-set of chemical shifts that contains most
of the information in regard to the conformational state. We
investigated whether the four empirical methods and the DFT-
based predictions with a selected functional/basis-set combi-
nation can find agreement regarding the conformational sen-
sitivity of chemical shifts. Fig. 6 shows whether the methods
regard individual chemical shifts as conformationally sensitive
or not. A green mark represents a sensitive chemical shift, while

a red one is expected not to be sensitive. Out of the total 497
chemical shifts, there are 42 cases with at least four of nine
predictions agreeing on the chemical shift to be conforma-
tional sensitive. Another two sensitive cases are chemical shifts
of oxygen atoms, which are not considered for further analysis.

3.1.1 Relationship of atom category and conformational
sensitivity. Fig. 7 shows the conformational sensitivity of the
seven atom-categories. Visual assessment of the plots generated
from DFT-based calculations with implicit solvent and from
vacuum simulations, as well as half of the empirical predictors,

Fig. 5 Measurements of the mean conformational sensitivity (a) as well as the share of chemical shifts above the threshold (b) show that three empirical
methods (PPM, SPARTA+ and UCBShiftX) are more sensitive to conformational change compared to DFT-based methods. It has to be noted, that there is
no experimental reference and the true value is unknown. It is expected, that a higher value represents a more sensitive model.

Fig. 6 The matrix shows whether a chemical shift is predicted to be conformationally sensitive by each of the nine compared methods. A green mark
(J) represents a conformational sensitive chemical shift while a red mark identifies a non-sensitive shift. If a chemical shift has not been calculated, it is
marked as white. Chemical shifts with at least four out of the nine methods agreeing on conformational sensitivity are shown. A complete overview of all
497 shifts can be found in the ESI,† Chapter 1.2.
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seem to show minor increased median sensitivity on the amide-
nitrogen and the accompanying proton compared to the other
atom categories. Another common theme of the DFT-based
calculation is increased maximum sensitivities of some side-
chain atoms. The choice of functional and basis leads to only
few noteworthy differences in conformational sensitivity
(comparisons are given in the ESI,† Chapter 1.4).

The empirical models PPM, SPARTA+ and SHIFTX2 agree on
the slightly increased sensitivity of the amide-hydrogen (Fig. 7
(right) and Fig. S4.3 and S4.4, ESI†). In contrast, UCBShiftX
evaluates Ca and the amide-nitrogen atoms to contain the most
conformational information (Fig. S4.2, ESI†). Most empirical

chemical shift predictors show less data as they are not
designed to calculate the chemical shifts of all side chain
atoms. Therefore, the effect of the overall conformation on
the chemical shifts of sidechains cannot be observed.

3.1.2 Relationship of chemical shift and backbone torsion.
It can be hypothesized that the change in the chemical shift is
related to changes in the c and f angles of the protein back-
bone. To check this hypothesis, the conformational sensi-
tivities of the residues were plotted against the change in
backbone torsion Dc and Df in Fig. 8.

As the conformational sensitivity is a per-atom metric, it has
to be transformed into a per-residue metric according to

Fig. 7 Each column shows the conformational sensitivity of an atom category. On the x-axis, seven atom categories can be viewed, to check whether
some atoms are more prone to sensitive chemical shifts than others. The y-axis shows the conformational sensitivity as described in Fig. 4a. The orange
line of each box represents the median value while the lower and upper edges represent the end of the first and third quartiles, respectively. Data points
outside of that range are displayed as dots with the largest being annotated for each atom category. The left panel shows a representative result from a
DFT-based calculation while the right panel shows results obtained with the empirical method PPM.

Fig. 8 The left and middle columns show Ramachandran plots for both the stretched and globular conformation, respectively. The right column shows
the change in c and f angles when switching from the globular to the stretched conformation. The chemical sensitivity is represented in the color of the
dots. Conformational sensitivities in this figure were obtained using the DFT-based QM/MM method in vacuum with the wb97x-d3/cc-pvdz theory. The
Ramachandran background was plotted using data from ref. 58 and 59.
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eqn (4). To calculate the average sensitivity of the residue, the
sensitivities of all backbone atoms and Cb were averaged.

Sres ¼
1

N

XN

i

Si (4)

where Sres is the conformational sensitivity of the residue res,
Si is the conformational sensitivity of atom i, and N is the
number of single sensitivities averaged into Sres.

If, instead of mean sensitivities, the influence of Dc and Df
on specific atoms is of interest, the residue sensitivity can be set
equal to the sensitivity of that specific atom (Sres = Si). Plots for
Ccarb, Ca, Cb, Hamide and Namide atoms as well as the remaining
methods can be found in the ESI,† Chapter 1.5.

In the case of the DFT-based QM/MM method with wb97x-
d3/cc-pvdz theory, residue 237 shows the highest sensitivity and
has also a significant change in c angle. Two more residues
show sensitivity and have a significant change in f angle.
On the other hand, there are plenty of residues that show
changes in the angles but no sensitivity.

3.1.3 Random forest analysis. In the previous sections the
visual analysis of the influence of dihedral angles and atom
category on the conformational sensitivity was assessed to be
very minor with unclear statistical significance. To evaluate
methodically if there is any feature that is related with a
chemical shift being conformational sensitive or not, a permu-
tation feature selection has been performed. Table 2 shows
both geometrical and biochemical features that can be
expected to influence the chemical sensitivity. As label, the
conformational sensitivity was chosen.

To train the random forest regressor,61 categorical features
like atom-category and residue-name had to be converted into
representative, numerical dummies using one-hot or ordinal
encoding. While one-hot-encoding is expected to yield higher
quality results, it is difficult to reverse the encoding to obtain
the importance of whole feature categories. To evaluate whole
features, for example the importance of the amino acid type,

ordinal encoding was applied. To evaluate the importance of
single elements within a feature, to answer for example if
proline or valine amino acids are related with conformational
sensitivity, one-hot encoding was used.

The random forest was trained on the features, using a 80/20
split between training and testing data, 100 trees and squared
error as a measurement of the split quality. To prevent over-
fitting on the training data, min_samples_leaf was set to 10,
min_samples_split to 15 and max_depth to 10. To measure the
quality of the regression, artificial control features were added
in addition to the geometrical and biophysical features. The
two negative controls were always unrelated to the conforma-
tional sensitivity and were added to confirm the validity of the
method. For each regression, the R2-score was calculated. After
building the model, single features were randomly shuffled to
calculate a permutation feature importance. If a feature has
influence on the model, shuffling it will reduce the R2-score
significantly. The features that yield the biggest loss if shuffled,
are regarded as the most important. The process was repeated
50 times with different seeding of the random number gen-
erator to create a set of models. Single trainings, which yielded
a negative coefficient of determination (R2) on the testing data,
were removed from the set. The remaining feature importance
values and model scores of the set were then averaged. Overall,
only weak relationships were found with testing R2-scores up to
0.12 in the case of DFT-based calculations (Fig. S6.23, ESI†).

Feature importances obtained from DFT-based calculations
with different functional/basis-set combinations show compar-
able results. Fig. 9 shows feature importances obtained with the
wb97x-d3/cc-pvdz theory, demonstrating that the atom-category
and element is not of importance whether a chemical shift is
conformational sensitive or not. The most important feature
that has an influence is the Df angle, the per-atom alignability
of the five replicas per conformation and the change in distance
to an oxygen atom. The finding of increased importance of the
Df dihedral angle was also confirmed by feature importance
calculations using the empirical methods (Fig. S6.1–S6.3, ESI†).

Table 2 Overview of the features tested to evaluate their influence on the conformational sensitivity of chemical shifts. The atom of interest is the atom
for which the conformational sensitivity is evaluated

Feature Annotations

Atom category Categorical value according to the groups in Fig. 7.
Atom name Categorical value according to the name of the atom.
Atom element Categorical value according to the element of the atom.
Residue name Categorical value according to PDB residue name.
Residue number Number of the associated residue in the peptide sequence.
D-distance atom (*) Change in distance from the atom of interest to the next closest atom of type

(*) associated with a residue at least three amino acids away from the selected atom.
Atom (*) can either be oxygen (O), nitrogen (N) or the center of geometry of the residue (RES).

Dc and Df angle Change in backbone dihedral angle.
DSASA Change in the solvent accessible surface areas per atom between stretched and

globular conformation. Calculated with FreeSASA.60

Is sidechain? Categorical value if the atom is part of the backbone or sidechain.
Per-atom alignability The five equal samples of both the stretched and globular conformation are aligned.

The per-atom alignability measures the mean self distance of the atoms to their own copies.
Negative control (continuous) Uniform random number (float) between 0.0 and 20.0.
Negative control (categorical) Categorical random number (int) between 0 and 6.
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3.2 Agreement between simulation and experimental results

Not only is the sensitivity in regard to conformational change
relevant, but so is the absolute agreement with experimentally
obtained values. Due to the liquid nature of the NMR sample
and the measurement time of the NMR methods used, it must
be assumed that the experimental chemical shifts are averages
of all accessible conformations. Therefore, the experimental
chemical shifts have to be compared with simulated observa-
bles calculated from a reasonably complete conformational
ensemble. A set of two conformational extreme cases, as dis-
cussed here, does not constitute a complete conformational
ensemble so it is not expected that the average matches the
experiment exactly. In order to properly validate the predicted
chemical shifts against the experimental values, much more
extensive simulations would be required, and the chemical
shifts would need to be computed to all relevant conforma-
tions. Still, systematic over- or under-prediction of chemical
shifts can be assessed using an incomplete ensemble and
should be avoided.

Fig. 10 shows a comparison between experiment and simu-
lation for both a DFT-based QM/MM calculation (wb97x-d3/
cc-pdvz) in vacuum and an empirical (PPM) prediction method.
To compare the accuracy of the methods, the mean relative
error of the simulation compared to the experiment was
calculated using eqn (3) and is shown in Fig. 11.

Even though the empirical methods show the strongest
conformational sensitivity, the accuracy is also remarkably
good. While the conformational sensitivity showed little depen-
dence on the choice of functional and basis set, the influence
on accuracy is slightly greater. Using DFT-based methods, the
best accuracies were achieved using the wb97x-d3 functional
and cc-pdvz basis-set independent of the fragmentation and
solvation method.

3.3 Secondary chemical shifts

For each non-terminal residue, a secondary structure identifier
DDdab was calculated using secondary chemical shift data.
In Fig. 12, the calculated secondary structure identifier values
for the experimental dataset (gray bars) and both the globular
(red dots) and stretched (blue dots) conformations can be seen.
The experimentally obtained data show no indication that
either alpha- or beta-structured conformers make up a signifi-
cant share of the ensemble, a finding supported by the DSSP
analysis of the molecular dynamics trajectory (Fig. S3.1, ESI†).
Applying the same secondary chemical shifts analysis to both
the stretched and globular conformers with data obtained from
the UCBShiftX method, stronger derivations from the random
coil can be observed. The globular conformer shows mostly
slightly higher secondary structure identifier values but the
majority of data points for both conformers remain in the
region attributed to the random coil. It should be mentioned
that secondary chemical shift based analysis is very sensitive to
systematic offsets of chemical shift prediction and measure-
ment, as it is a comparison with tabulated random coil
chemical shifts. Thus, it may be easy to wrongly declare parts
of the peptide to be either alpha- or beta-structured. Therefore,
only simulated data from the UCBShiftX method is discussed
here, as the smallest mean relative error to the experiment was
observed with this method.

4 Discussion
4.1 Conformational sensitivity

The results of the calculations show that the conformational
sensitivity is mainly limited by the precision of the estimator.
Even small differences between the five equally treated overall

Fig. 9 Permutation importance of geometrical and biophysical features in regard to the conformational sensitivity of chemical shifts show that
the Df-angle is of importance to predict whether a chemical shift is sensitive to conformational change or not. An error bar represents � one standard
deviation.
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conformations (Fig. 1) yield different chemical shifts with the
DFT-based methods. This results in wide probability distribution

peaks and thus weak conformational sensitivities measured as
multiples of pooled standard deviation. The mean probability

Fig. 10 A comparison of the experimental chemical shifts (x-axis) and simulated chemical shifts (y-axis) allows an overview of the prediction. The
diagonal gray line represents a perfect agreement between experiment and simulation, the blue dots indicate chemical shifts of the stretched
conformation and the red dots indicate chemical shifts of the globular one. (a) The results obtained with DFT-calculations using the QM/MM method
in vacuum using the wb97x-d3/cc-pdvz theory. Aliphatic carbons and hydrogen show a good quality of prediction, whereas the chemical shifts of amid
protons is too low. (b) Chemical shifts calculated with the PPM software show very good agreement with the experiment both for the stretched as well as
for the globular case.
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density function width of all methods can be seen in the ESI,†
Chapter 1.1 which shows a significant difference between DFT-
based and empirical methods. The use of explicit solvent leads to
an even stronger decrease in conformational sensitivity. With
explicit solvent, all five replicas of the same overall conformation
feature micro-solvation with water molecules at different posi-
tions and orientations, taken from the MD-trajectory. Wide prob-
ability distributions can be observed especially with side chain
atoms and protons, thus weakening the distinction between the
expectation values of the stretched and globular group.

Regarding DFT-based prediction methods, the tested
QM/MM approach which models protein parts in greater dis-
tance as MM-region show slightly better conformational sensi-
tivity compared to the QM approach but the difference is small.
A slightly bigger improvement was made when replacing the
implicit solvent with a vacuum simulation for both the QM and
QM/MM cases. It has to be noted that the vacuum simulations
showed weaker convergence behavior, with some functional/
basis-set combinations (Becke97-2 and Becke97-D functionals
with the pcSseg-1 basis-set) unable to yield converged shield-
ings tensors for some atoms.

Empirical predictors yield results that are much closer to
the experimental average for both the stretched and globular

conformation and the influence of conformation on the abso-
lute value of the chemical shift is much smaller than with the
DFT-based calculations. Nevertheless, the results are more
capable of differentiating between the two conformations.

4.2 Influence of features

Visual interpretation of the influence of atom categories and
backbone torsion on the conformational sensitivity could only
partially be reproduced with random forest permutation fea-
ture selection. It was not possible to find a relationship between
atom-category and conformational sensitivity but the chemical
shift prediction models could find agreement that a change in
an amino acid’s f angle has influence on the conformational
sensitivity of chemical shifts. It has to be mentioned that all
four empirical models have been parameterized using the f
angle or a derived property as input feature. Nevertheless, the
influence of the Df angle was also witnessed using ab initio
methods in vacuum and with implicit solvent.

The R2-scores of the regression models were shown to
be weak, and only slightly better than those of a constant
model. Many evaluated biophysical features were shown to be
unrelated to the predicted conformational sensitivity. Still,
the results of the feature importance are consistent over the

Fig. 11 Overview of the mean relative error of the different approaches to predict chemical shifts. DFT-based methods achieved the best accuracies
using the wb97x-d3 functional and cc-pdvz basis-set.

Fig. 12 The calculation of a secondary structure identifier DDdab gives indications about the occurrence of secondary structures. To differentiate
between random coil and non-random coil secondary structures, literature advises a secondary chemical shift of |Dd| 4 0.7 which is more or less
continuous for more than four residues.55 As DDdab is the difference between two secondary chemical shifts, which are expected to be additive in
behavior, a threshold of 1.0 has been set arbitrarily and marked as a horizontal line. Gray bars represent data obtained from the experiment, blue from
predictions for the stretched conformer and red from the globular conformer.
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methods. It has to be noted, that the random forest had to be
trained on a very small data-set while the feature space was
wide. The weak regression scores also explain the difficulties
with visual interpretation of the results and confirms the
necessity to perform a similar study with a bigger set of
proteins to conclude whether the findings can be generalized.

4.3 Agreement between experiment and simulation

When comparing simulated and experimental chemical shifts
to assess the quality of prediction, it has to be taken into
account that experimental chemical shifts are an averaged
property of a molecular ensemble. Thus, simulated chemical
shifts must be calculated using a reasonably complete confor-
mational ensemble. As this is not the case when using only two
conformational extreme cases, it is not unexpected that the
predicted chemical shifts of single conformations can show
deviations from the experimental means.

In the ideal case, chemical shifts calculated from single
conformations can be found to be clustered around the experi-
mental mean. In practice, most DFT-based calculations show
either a systematic under- or over-prediction of values (exam-
ple: Fig. S8.14, S8.22 and S8.34, ESI†). The error can not only be
explained by faulty single-point referencing, as chemical shifts
of aliphatic carbons are often predicted to be slightly too high
while carbonyl carbon chemical shifts may be too low using the
same referencing. As publications from Rablen et al. and the
Tantillo group show,62,63 it may be necessary to reference
chemical shifts calculated using the DFT-based method not
just by one single reference point (intercept) but also to
calculate a scaling factor. The choice of a fitting basis-set is
key to minimizing these systematic offsets, so that predicted
values are evenly clustered around the experimental means
(Fig. 10a).

With DFT-based approaches using vacuum simulations or
implicit solvent, the absolute chemical shift values of the
Hamide atoms were constantly underpredicted, even when other
shifts were systematically overpredicted. The addition of dis-
crete water molecules as a micro solvent helped to improve
these absolute values and the error due to underestimation
could be considerably reduced.

Compared to the DFT-based methods, empirical predictors
do an excellent job reproducing experimental chemical shifts.
There are no obvious systematical errors and both chemical
shifts of the stretched and globular conformation match the
experimental average very well.

5 Conclusions

This study explored different methods to calculate chemical
shifts of proteins and their sensitivity in regard to protein
conformation. Judging by the results of the evaluated test
system, the majority of the chemical shifts are expected not
to be sensitive to changes in overall conformation. We find that
many chemical shifts that are predicted for very similar con-
figurations, which would generally be considered as being in

the same conformation, actually differ in a similar amount as
chemical shifts predicted for two really distinct conformations.
It should be noted that the TAU-protein fragment evaluated in
this case study is unlikely to feature a significant secondary
structure, neither in the experimental data nor observed in the
simulation or in the selected conformers. While it is very
possible that the choice of this fragment makes conformational
differentiation using chemical shifts more difficult, it has to be
expected that such regions showing no major secondary struc-
ture propensities occur often in the context of ensemble
reweighting.

There is likely no relationship between atom type, atom
name and element with regard to the conformational sensitivity
of the chemical shift. Up to B26% of the calculated chemical
shifts (UCBShiftX software) show conformational sensitivity in
the case of the tested peptide but it remains difficult to predict
why exactly those are sensitive while others are not. Compared
to established chemical shift-based structure elucidation meth-
ods targeting conformations with stable secondary structures,
particular attention must be paid to only select data that offers
information about the conformation with reasonable probabil-
ity when working with IDPs.

When comparing empirical methods with DFT-based ones,
the most obvious difference is the efficiency and compute-time
needed to fulfill the task. Empirical methods remain orders of
magnitude faster than DFT-based calculations. While most of
the empirical chemical shift predictors were designed for and
trained by globular proteins, they are still capable of including
most conformational sensitivity in the predicted chemical
shifts in this case study.

Taking efficiency, time spent and unmatched accuracy into
account, empirical predictors will remain the method of choice
for most researchers to calculate chemical shifts even if they
can only be applied to a subset of atoms.
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31 E. Aprà, E. J. Bylaska, W. A. de Jong, N. Govind, K. Kowalski,

T. P. Straatsma, M. Valiev, H. J. J. van Dam, Y. Alexeev,
J. Anchell, V. Anisimov, F. W. Aquino, R. Atta-Fynn,
J. Autschbach, N. P. Bauman, J. C. Becca, D. E. Bernholdt,
K. Bhaskaran- Nair, S. Bogatko, P. Borowski, J. Boschen,
J. Brabec, A. Bruner, E. Cauët, Y. Chen, G. N. Chuev,
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