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Structural descriptors and information extraction
from X-ray emission spectra: aqueous sulfuric
acid†

E. A. Eronen, *a A. Vladyka, a Ch. J. Sahle b and J. Niskanen *a

Machine learning can reveal new insights into X-ray spectroscopy of liquids when the local atomistic

environment is presented to the model in a suitable way. Many unique structural descriptor families have

been developed for this purpose. We benchmark the performance of six different descriptor families

using a computational data set of 24 200 sulfur Kb X-ray emission spectra of aqueous sulfuric acid

simulated at six different concentrations. We train a feed-forward neural network to predict the spectra

from the corresponding descriptor vectors and find that the local many-body tensor representation,

smooth overlap of atomic positions and atom-centered symmetry functions excel in this comparison.

We found a similar hierarchy when applying the emulator-based component analysis to identify and

separate the spectrally relevant structural characteristics from the irrelevant ones. In this case, the

spectra were dominantly dependent on the concentration of the system, whereas adding the second

most significant degree of freedom in the decomposition allowed for distinction of the protonation state

of the acid molecule.

I. Introduction

The liquid phase allows for the movement of solvent and solute
molecules while simultaneously having strong interactions among
them. This leads to a distribution of possible local structures, and
respective local electronic Hamiltonians. Computations have shown
that these local environments yield significantly different X-ray
spectra, while their ensemble mean is needed for a match with
the corresponding experiment.1–8 Thus the changes in the experi-
mental spectrum can be connected to corresponding changes in the
local structural distribution. However, the complexity of this pro-
blem calls for sophisticated methods able to distinguish between
relevant and irrelevant information. Recent developments in com-
putational resources and machine learning (ML) have opened new
paths for these investigations.9–17

Because raw atomic coordinates R are unsuitable for contem-
porary ML, numerous families of descriptors D(R) have been
developed to encode the structural information into a useful
input.18–31 While each of these representations might perform
well for some tasks, they are not necessarily equally fit for every

situation. Beside the ML performance, interpretability of the
descriptor is a key consideration for studies of actual structural
information content of, e.g. X-ray spectra.17 The study of the
spectrum-to-structure inverse problem is indeed highly depen-
dent on the descriptor, which needs to include physically relevant
features that are meaningful not only to ML models but also to
human researchers.

Spectrum prediction by ML, i.e. finding a suitable function for
spectrum S(D(R)), is a more viable task than structure prediction
(finding function R(S)),13 possibly because the former is not an
injective function. Moreover, some structural characteristics of
the system are spectrally irrelevant. While the behavior of a
spectrum can be captured by a well-performing feed-forward
neural network (NN), the knowledge remains hidden in the
respective weight matrices and bias vectors. To this end, the
NN is useful only for predicting the outcome for new input, i.e.
for emulation. Emulator-based component analysis (ECA)14 is an
approach to extract knowledge contained by a ML model and a
given data set. With the help of a fast emulator such as an NN,
the method iteratively finds the structural dimensionality
reduction for maximal explained spectral variance. The resulting
basis vectors provide an exhaustive input feature selection, which
not only points out spectrally relevant ones but also their
collaborative effect.17 Moreover, approximate structural recon-
struction from spectra can be done by first reconstructing the few
spectrally dominant latent coordinates, and then taking an
expansion with the respective basis vectors.16 Our previous work
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on N K-edge X-ray absorption spectroscopy of aqueous triglycine17

showed that ECA greatly outperforms principal component analy-
sis (PCA)32 of structural data in terms of covered spectral variance.
Furthermore, a recent study using encoder–decoder neural net-
works supports the validity of ECA.33 While the advantage of this
method is its lack of need for any prior hypothesis, it gives rise to
another requirement for a descriptor: decomposability into a few
dominant contributions.17

We explore structural information content of simulated
sulfur Kb X-ray emission spectra (XES) of aqueous sulfuric acid.
To create the data set we sample atomistic local structures from
ab initio molecular dynamics (AIMD) simulations at six different
concentrations and calculate spectra for these structures. We first
assess a total of six structural descriptor families in terms of
spectrum prediction performance by an NN. For a fair compar-
ison between the descriptor families, we allocate equal computa-
tional resources to the joint hyperparameter–NN architecture
search for each of them. Next, we identify the spectrally dominant
structural degrees of freedom using ECA, and study the perfor-
mance of the best descriptor of each family in the task. A sulfuric
acid molecule can exist in one of three protonation states, which
we find to be distinguishable from the XES after rank-two
decomposition, in which the first rank covers intermolecular
interaction given by the concentration. Our results highlight
the need for identification of relevant structural degrees of free-
dom for reliable interpretation of X-ray spectra. Moreover, they
raise a call for methods of obtaining simple structural informa-
tion from contemporary structural descriptors, that may have a
notably abstract mathematical form.

II. Methods

We base the study on structure–spectrum data pairs obtained
from AIMD simulations and subsequent spectrum calculations
resulting in 24 200 data points. We encode the structural data
using six different descriptor families and study the resulting
performance of ML and subsequent ECA.

A. Simulations

We extended the AIMD runs of ref. 34 for structural sampling
from six concentrations. The details of the AIMD runs are
presented in Table 1. The simulations for the NVT ensemble
were run using the CP2K software35 and Kohn–Sham density

functional theory (DFT) with Perdew–Burke–Ernzerhof (PBE)
exchange correlation potential.36 The AIMD runs utilized per-
iodic boundary conditions, Goedecker–Teter–Hutter (GTH)
pseudopotentials37–39 and triple-x TZVP-GTH basis set deliv-
ered with the software.

We computed the XES for every sulfur site of each sampled
snapshot using the projector-augmented-wave (PAW) method40

with plane wave basis and density functional theory (DFT)
implemented in GPAW version 22.1.0.40–42 We used periodic
boundary conditions, the PBE exchange correlation potential
and a 600 eV plane wave energy cutoff (for justification, see ESI†).

The spectrum calculations applied transition potential
DFT43 in a fashion motivated in ref. 44. First, we computed
the neutral ground state of each snapshot and emission lines
for each site on a relative energy scale. We then calibrated the
individual spectra on the absolute energy scale by a D-DFT
calculation for the highest transition. This procedure builds on
calculation with one valence vacancy and on respective calcula-
tions for the full core hole at each site, repeated for each
snapshot. We convoluted the obtained energy–intensity pairs
(a stick spectrum) with a Gaussian of full width at half max-
imum of 1.5 eV and then presented the spectra on a grid with
bin width of 0.075 eV.

B. Data preprocessing

For ML and further analysis, we took the portion with notable
spectral intensity around the peak group Kbx, Kb1,3, and Kb00

(see Fig. 1 and e.g. ref. 45), and coarsened it by integration to a
new grid with bin width of 0.75 eV leading to target spectra S
represented as vectors of 16 components. We chose this grid to
be as coarse as possible while still containing the relevant
spectral features due to three reasons: (i) the fewer output
values simplify the ML problem; (ii) individual data points
are more independent without significant loss of information;
(iii) we hope to avoid over-interpretation through overly
detailed analysis of simulations.13 The last point follows the
principle of correspondence i.e. analyzing simulations only to a
degree in which they reproduce the experiment.

We evaluated the protonation state of each acid molecule as
in ref. 34. An oxygen atom was considered to belong to the
molecule if it was at most 2.0 Å from the respective sulfur atom.
A hydrogen atom, in turn, was considered a part of the acid
molecule if it was closer than 1.3 Å from any of its oxygen

Table 1 Details of the AIMD simulations for each number concentration denoted as the number of acid molecules versus the number of water
molecules: the molarity, simulation box length, production run duration, sampling interval for the snapshots, the total number of snapshots Nsnapshots, the
total number of emission sites for which the X-ray emission spectra are calculated Nspectra, and the fractional abundancies of protonation states 0
(SO4

2�), 1 (HSO4
1�) and 2 (H2SO4). A few structures had the protonation state of 3 which is omitted from the table

Num. conc. Molarity [M] Box L [Å] Duration [ps] Sampling [fs] Nsnapshots Nspectra SO4
2� [%] HSO4

1� [%] H2SO4 [%]

1v63 0.9 12.50 100 62.5 1600 1600 96.2 3.8 0.0
6v54 4.9 12.66 50 62.5 800 4800 71.4 28.5 0.1
12v36 10.1 12.55 50 125 400 4800 17.2 79.3 3.5
20v20 15.3 12.95 50 250 200 4000 2.0 74.8 23.1
21v7 17.5 12.58 50 250 200 4200 0.0 28.7 70.8
24v0 18.6 12.90 50 250 200 4800 0.0 0.0 99.6
Total 24 200
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atoms. Throughout the simulations, the acid molecules always
had four oxygen atoms with the distribution of forms: 5878
SO4

2�, 9435 HSO4
�, 8847 H2SO4, and 40 H3SO4

+ corresponding
to protonations states from 0 to 3, respectively.

In this work we study six different descriptor families for
encoding the local atomistic structure R around the emission site
Sem into a vector of features D(R). We used the implementation
within the DScribe-package (version 2.0.1)19,47 for the local version
of the many-body tensor representation (LMBTR),20 smooth over-
lap of atomic positions (SOAP)22 and atom-centered symmetry
functions (ACSF).21 For the many-body distribution functionals
(MBDF)30 we used the implementation provided with the original
publication. In addition, we implemented the descriptor intro-
duced in ref. 28 calling it ‘‘Gaussian tensors’’ (GT) hereafter.
Finally, we used a sorted variant of the Coulomb matrix (CM)23

similar to the bag of bonds24 and analogous to the implementa-
tion in ref. 16. We used the emission site Sem as the only center for
building the descriptors LMBTR, SOAP, ACSF and GT.

We split the data set randomly to 80% (19 360 data points)
for the training, and the rest 20% (4840 data points) for testing.
We calculated feature-wise z-score standardization for the
obtained raw D(R) (NN input) and S (NN output) features using
the training set and then applied this scaling to all data prior to
any further procedures. The applied feature scaling is common
practice in ML in general,48 and also in MD with atomic ML
potentials in particular.49 Furthermore, it can be shown that
the standardization does not limit the emulation performance
of an NN, but is still essential for achieving unbiased L2

regularization during training (see ESI†).

C. Data analysis

Successful emulation requires model selection of the hyper-
parameters of the NN, and also those of the descriptor family.
For example, there is no single LMBTR descriptor, but the
numerous internal hyperparameters of this family are subject

to model selection for optimal performance. Moreover, differ-
ent descriptor hyperparametrizations (e.g. those within
LMBTR) require different NN hyperparameters for optimal
performance of the structure–spectrum emulator system. We
carried out a joint search for these two hyperparametrizations
in a randomized grid search for each descriptor family sepa-
rately, allocating equal computational time for each search. In
each case we used the best found descriptor–NN system for all
subsequent analyses.

We used fully connected feed-forward NNs implemented in
PyTorch (version 2.0.1)50 for ML. This NN architecture allows for
a range of possible hyperparameters that we searched over: the
weight decay term a (from 10�13 to 1), number of hidden layers
(2, 3, 4 or 5), hidden layer width (16, 32, 64, 128 or 256 neurons)
and the learning rate (0.0001 or 0.00025). As the activation
function of the neurons, we used the exponential linear unit
(ELU).51 The training of the networks was done in mini-batches
of 200 data points by maximizing the R2 score (coefficient of
determination; generalized covered variance) using the Adam
optimizer.52 We applied early stopping of the training by check-
ing every 200 epochs if the validation score no longer improved.

We calculated the average score from a five-fold cross-validation
(CV) on the training set for each selected descriptor–NN hyper-
parameter combination. Because building the descriptor con-
sumed significantly more computational resources than training
one NN model, we trained ten different NN architectures for every
single descriptor hyperparametrization. The same procedure was
repeated for each of the six descriptor families with equal total
processor (CPU) time of the random grid search by allocating a
total of 1440 CPU hours per descriptor family on Intel Xeon Gold
6230 processors at Puhti cluster computer, CSC, Finland. Different
descriptor families have different free parameters to search over,
which is detailed in the ESI.† We found slight variation of the
results to persist within the searched grid space due to random-
ness, for example, in shuffling of the mini-batches and

Fig. 1 Simulation results of aqueous sulfuric acid. (a) and (b) Two sample structures for 0.9 M and 15.3 M, respectively, prepared with the Jmol
software.46 Only molecules within 3 Å distance from the central molecule are shown for clarity. (c) and (d) Computational ensemble mean X-ray emission
spectrum for each concentration with the standard deviation s shown as grey shaded area. As an example we show the location of the features Kbx, Kb1,3

and Kb0045 for the highest concentration spectrum in panel (d). In addition, the coarsened grid points used for the target spectra of the machine-learning-
based analysis are shown on the mean spectra.
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initialization of NN weights. In the end, we chose the descriptor–
NN hyperparameters with the highest CV score and trained the
final model using the full training set. In this final training we
used 80% of re-shuffled training data (15 488 points) for actual
training and the rest 20% (3872 points) for validation to determine
the early stopping condition.

We carried out ECA decomposition14 of the structural
descriptor space using the PyTorch implementation of the
algorithm.53 In the ECA procedure, basis vectors V = {vj}

k
j=1 are

searched for to achieve a rank-k approximation for D(R):

DðkÞðRÞ ¼
Xk

j¼1
vj jDðRÞ
� �
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

¼:tj

vj : (1)

The search of the basis vectors is done by maximizing the R2 score
between the ML prediction for D(k)(R) and the known data. After
the basis V has been established, a structure is approximated by
the effective parameters t, drastically fewer in their number than
the input features. The ECA method performs projection (1) on the
structural subspace so that the NN emulation for projected data
points covers as much spectral information as possible. Note-
worthily, the subspace itself (basis vectors vj) is optimized for the
purpose, in analogy to the PCA. The procedure aims at finding
structural characteristics most relevant for the spectrum outcome,
and filters out degrees of freedom irrelevant in this sense. As a
product, significant reduction in dimensionality of the structure–
spectrum relationship is obtained; the structural information
contained by 330–2700 descriptor values is reduced to less than
ten t scores most relevant for predicting the spectra. We optimized
one basis vector at a time and applied orthonormality constraints.
In the ECA procedure z-score standardization of the input features
is assumed.

We found that the randomly selected initial guess of the ECA
component vectors sometimes affected the resulting fit. There-
fore, we ran the ECA procedure with 25 different random initial
guesses for each component and always chose the vector
resulting in the highest R2 score, before moving on to optimiz-
ing the next component. This is likely a symptom of the high-
dimensional feature vectors, which encode a wealth of atomis-
tic information within each (correlated) element of the vector.
This complexity is inherited from the physical problem itself.

We used the training set for both NN training and ECA
decomposition. The generalizability of the outcome was
assessed with the test set in both cases. To allow for apples-
to-apples comparison, we used the R2 score for all NN training,
testing, and ECA.

III. Results

Sulfuric acid exists in different protonation states as exempli-
fied by sample structures in Fig. 1a and b showing local
structures from simulations of 0.9 M and 15.3 M solutions.
The simulated ensemble average spectra of different concen-
trations are shown in Fig. 1c and d. There is a clear concen-
tration dependency around the Kbx–Kb1,3–Kb00 line group,
where the central peak shows a decreasing trend, and the Kbx

and Kb00 an increasing one, along the concentration. Addition-
ally, our simulated spectra show shifts in energy. The general
shape of the spectra match well with the experiment published
in ref. 5 and, therefore, the data set can be considered suitable
for the ML and subsequent analysis of this work. The chosen
region and coarsened bins of the target spectra (depicted with
points in Fig. 1c and d) are sufficient to capture the shape of the
spectrum.

Even after extensive model selection, the descriptors yield
varying prediction performance of the target spectra as pre-
sented in Table 2. Practically equal accuracy is obtained with
the best-performing descriptors LMBTR, SOAP and ACSF. The
MBDF descriptor provides intermediate performance among
the studied ones, whereas GT and CM yield more than 0.1 units
lower R2 than the most accurate descriptors. The tendency of an
ML model to overfit is commonly measured by the difference
between the train and the test scores. Our results hint an
increasing trend in this difference along decreasing accuracy.
Fig. 2a illustrates the distribution of the R2 scores for z-score
inverse transformed (absolute intensity) spectral features using
the LMBTR emulator with an overall test set R2 of 0.950.
Additionally, typical prediction quality along this distribution
is presented in Fig. 2b–d. A similar figure for the z-score-
standardized spectral space with R2 of 0.928 is available in
the ESI.†

We measure the ECA decomposition performance with the
R2 score, shown as a function of the rank of the decomposition
in Fig. 3. The scores for the train set and for the test set both
rise monotonically and approach a plateau near the respective
emulator performance. In general, the R2 scores of high rank
(Z5) ECA are roughly ordered along the overall ML accuracy of
the respective emulators. The design principle of ECA aims at
maximal covered spectral variance at any given rank, mani-
fested by the diminishing improvement as a function of k
observed in Fig. 3. Consequently, the high-k scores tk are not
reconstructable from the spectra, as these degrees of freedom
are irrelevant in their emulation. With components of negligi-
ble effect on the outcome, full structural reconstruction from
spectra is impossible, as a structural descriptor is completely
defined by expansion (1) done to the full rank. The intended
rapid reduction of dimensionality motivates the study of low
rank (e.g. k r 3) decompositions for which LMBTR performs
the best. We have noticed jumps in the R2 curves as a function

Table 2 Comparison of descriptors with best performing hyperparameters
after the joint model selection for the representation and neural network
architecture: the number of structural features and neural network emulator
train R2 score, test R2 score, and their difference with z-score standardized
target spectra

Descriptor Nfeatures Rtrain
2 Rtest

2 Difference

LMBTR 420 0.944 0.928 0.015
SOAP 2700 0.961 0.928 0.033
ACSF 543 0.952 0.923 0.029
MBDF 330 0.915 0.878 0.036
GT 1275 0.857 0.814 0.043
CM 595 0.889 0.806 0.083

Paper PCCP

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

5 
A

ug
us

t 2
02

4.
 D

ow
nl

oa
de

d 
on

 7
/3

0/
20

25
 6

:2
6:

31
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4cp02454k


22756 |  Phys. Chem. Chem. Phys., 2024, 26, 22752–22761 This journal is © the Owner Societies 2024

of the decomposition rank k, seen in Fig. 3 for SOAP and CM.
This phenomenon is unpredictable and potentially related to
the initial guess of the ECA component vector. Apart from the
obvious complexity of the problem, the detailed origin and cure
for this behaviour remain unknown to us.

Next, we analyse the ECA results using the LMBTR descrip-
tor, which contains simple physical information as part of it,

namely element-wise interatomic distances from the emission site
Sem. Instead of presenting the numeric values of these distances,
the descriptor encodes the information on a predefined grid as a
sum of Gaussian functions, centered at the respective positions.
The according features of the first ECA component vector, z-score
inverse transformed into the descriptor space, are shown in
Fig. 4a. In the sense of the aforementioned representation, these
curves reflect the change in the interatomic distances most
relevant in terms of the target spectrum shape. The figure shows
that the S Kb XES is affected by notably distant molecules. As the
typical protonating H distance from the S atom of the acid
molecule is 2.2 Å, the part corresponding to the Sem–H distribution
shows notable relevance in the region above 3 Å. This can be
attributed to the different hydrogen number density in the system
reflecting the concentration, with possibly minor effects coming
from hydrogen bonding of the system. The concentration depen-
dency is further indicated by the opposite effect of Sem–S curve at
4–6 Å. Additionally, the Sem–H distribution shows a weaker effect
in the region between 1 Å and 3 Å, which likely arises from the tails
of the descriptor Gaussians corresponding to the hydrogen atoms
protonating the acid molecule.

The first two ECA components correspond to structural
features which define the majority of the spectral variance

Fig. 2 Absolute intensity scale spectrum prediction performance of the best NN-LMBTR model measured using the test set. (a) Distribution of R2 scores
for each data point. Examples of known and predicted spectra with R2 score closest to (b) the 1st decile, (c) the median, and (d) the 9th decile. For each of
the three cases, the location along the R2 distribution is shown in panel a as a correspondingly colored circle. The scores of this figure differ from the rest
of the study as ML was applied to z-score standardized spectra. For a similar plot using the standardized spectra, see ESI.†

Fig. 3 Typical behaviour of the (a) train and (b) test R2 score as a function
of the ECA rank k for each descriptor after joint model selection of the
representation and neural network architecture. Standardized output
features are used. At high ranks the results closely follow those of the
emulation performance. Increasing the rank shows diminishing R2-score
gains. At low ranks LMBTR outperforms the rest. The jump observed SOAP
and CM may occur for any descriptor and is due to the complexity of the
problem and stochasticity of the iterative solution.

Fig. 4 Results of the ECA using the LMBTR descriptor. (a) Interatomic distance part of the first ECA vector (with spectral Rk=1
2 = 0.682) z-score inverse

transformed into the descriptor space. A separate sub-panel shows the region between 1 Å and 2 Å. The non-zero values of the vector show that even distant
atoms have a significant effect on the spectra. The arrow at %dprot = 2.20 Å shows the mean distance to the hydrogen atoms protonating the acid molecule. (b)
and (c) Two-dimensional ECA projection (with spectral Rk=2

2 = 0.788) of each data point in the test set: both of the components are necessary to distinguish the
protonation state of the acid molecule, whereas the first component follows intermolecular interactions given by concentration. See text for details.
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(Rk=1
2 = 0.682, Rk=2

2 = 0.788). Recent results indicate orders of
magnitude better R2 score for covered spectral variance by ECA
in comparison to that obtained by PCA for the structural
descriptor.17 In the case of S Kb XES of aqueous H2SO4 such
a drastic difference is not observed: here a 2-component
structural decomposition by PCA resulted in R2 = 0.453 for
spectral variance, which is still notably less than the Rk=2

2 =
0.788 obtained by ECA. This indicates a more direct structural
characteristics – spectral response relation in the current case.

To study the separability of spectrally dominant structural
features, we performed projection of each data point in the test
set on two-dimensional ECA space. We focus on two most
obvious characteristics: the protonation state of an acid mole-
cule and the concentration of the system, which are indicated
by coloring of each point in the resulting scatter plot, shown in
Fig. 4b and c, respectively. The protonation state is not the
ruling structural characteristic behind variation of the S Kb XES
as it can be only partially identified by the first ECA score t1

(Fig. 4b). However, the interplay of t1 and t2 disentangles these
classes almost completely. This result is supported by the fact
that the first component vector shows only a weak effect in
Fig. 4a along the part of the curve which corresponds to the
protonating hydrogen atoms. In contrast, the score t1 describes
the concentration of the system, seen as the spectral change in
Fig. 1c and d and in our analysis of the respective Sem–H curve
in Fig. 4a. Ultimately, the need for the second degree of free-
dom to identify the protonation state is congruent with the
overlap between the spectral-region intensity histograms of the
protonation states, reported in a previous work on aqueous
H2SO4.5

IV. Discussion

The role of the descriptor is to present the structural data in the
most utilizable form for emulation, for which numerous stu-
dies have been published in the context of atomistic
systems.15,54–56 These comparisons indicate that the optimal
choice of the descriptor family depends on the application, and
probably on the system. For example, in prediction of the X-ray
absorption near edge structure (XANES) of amorphous carbon
Kwon et al.15 found LMBTR to perform best (ACSF, LMBTR and
SOAP studied). However, spectral neighbor analysis potential
(SNAP)25,26 outperformed for XANES of amorphous silicon glass
in the work of Hirai et al.54 (ACSF, LMBTR, SNAP and SOAP
studied). In an other context, SOAP was deemed most favorable
by Onat et al.55 for potential energy prediction of silicon
(atomic cluster expansion,27 ACSF, introduced Chebyshev poly-
nomials in symmetry functions, MBTR, and SOAP studied).
Interestingly, the same conclusion was drawn by Jäger et al.56 in
prediction of hydrogen adsorption energies on nanoclusters
(MBTR, SOAP and ACSF studied). We note that systematic, wide
and blind hyperparameter searches appear rare in the litera-
ture. Moreover, the joint descriptor–NN hyperparameter search
used in this work has further potential of improving perfor-
mance of any descriptor family in such a comparison.

Our results suggest that, in X-ray spectroscopy of liquids
(with E2 � 104 data points) an equal ML performance can be
obtained with LMBTR, SOAP and ACSF with joint model selec-
tion of the descriptor hyperparameters together with the NN
architecture. Among the studied descriptor families, we
obtained intermediate performance with MBDF, whereas we
could not achieve competitive accuracy when using CM and GT.
The result thus highlights the need of suitable encoding of
information by the descriptor. Although the CM can be even
converted back to the original structure with the loss of only
handedness of the system, and although the descriptor family
performed quite well for Ge Kb XES of amorphous GeO2,16 it
does not excel with the current liquid system.

Picking a descriptor family poses a serious model selection
problem because there are inherent tunable hyperparameters
characteristic to each one of them (see ESI†). Due to expected
interplay between the optimal NN architecture, this optimization is
ideally done jointly with the hyperparameters of the NN, which
multiplies the required computational effort. Without prior knowl-
edge, descriptors with more free hyperparameters are more flexible
than those with fewer. Therefore, their parameter-optimized forms
have a higher prior potential for accuracy as well. Because this
tuning is ultimately left for the user, we accounted for the
discrepancy in descriptor design by applying equal computation
time for refining each descriptor, regardless how many free
hyperparameters the implementation had. We propose this prac-
tice for fair assessment of structural descriptors of ever-increasing
multitude. Furthermore, we find that the top-level performance
among the descriptor family is typically achieved with several
drastically different parametrizations. Therefore we conclude that
diminishing CV score gains provides a reasonable stopping con-
dition for the joint randomized hyperparameter search, if the
allowed hyperparameter space is sufficiently large.

In this work we chose to measure the performance using the
R2 score, which is a widely applied metric for information captured
by a model, and utilized in e.g. PCA. The score is well-suited for
spectrum interpretation because it is independent of the units and
of the absolute scale. The sulfur atom has a Kb baseline spectrum
in the SO4 moiety, and therefore respective variation evaluated by
the R2 score yields an informative measure for interpretation of
spectra. When using z-score standardized output, the R2 gives each
output feature an equal importance in the spectral interpretation,
whereas raw spectral intensity favors features of large variation,
observed typically for features with large overall intensity. We
motivate the choice of standardization by the nonlinearity of the
structure–spectrum relationship. Namely, a weak spectral feature
may be indicative of a more interesting or a more widely present
structural characteristics than its absolute intensity might indicate.
We note however, that the analysis methods applied in this work
do not necessitate the use of either output standardization or the
R2 score.

Analogous to PCA, ECA works as a dimensionality reduction
tool. Instead of maximizing the covered structural variance, the
method focuses on maximizing the spectral one for a decom-
position in the structural space. As a result, the basis vectors of
ECA can be used to identify descriptor features, which affect (or
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do not affect) the shape of the target spectra, or even for
approximate structural reconstruction from spectra.16 The method
is capable of a remarkable reduction of dimensionality,14,16,17

improving on similar methods such as the partial least squares
fitting with singular value decomposition57 as demonstrated in ref.
14. The first ECA component vector, shown in Fig. 4a, represents
the dominant structural effect behind the variation of the spec-
trum. Although higher-rank ECA components may have cancelling
contributions to those of lower ranks, these refinements are not
equally relevant for spectrum interpretation as manifested by the
associated diminishing spectral effect. We also note that the
overall sign of an ECA vector can be chosen arbitrarily (adjusting
the sign of the according score), but the relative signs of its
components (e.g. the curves in Fig. 4a) are always fixed.

Structural interpretation of spectra sets several requirements
for a descriptor. The representation needs to allow for accurate
emulation, effective decomposition, and back-conversion to sim-
ple physical information. Although all of the studied descriptors
are calculated from local atomistic structures, several factors
complicate recovering such information from them. These
include smearing the exact values on a grid and summation of
information from many atoms into one feature, possibly with
distance-dependent weights. In addition, some of the descriptors
rely on basis functions and may potentially have an abstract
mathematical form. In this line of thought, interpretation of
descriptors calls for future efforts.

Machine learning by NNs requires large data sets, that have
only recently become feasible owing to the increase in compu-
tational resources and the developments in simulation tools.
Advances of ML in potentials for molecular dynamics,49,58,59

and in electron structure calculations,60 could help generate
more extensive and more accurate training data, leading to
improved performance of spectrum emulation and subsequent
analyses.

V. Conclusions

We benchmarked six structural descriptor families in machine
learning of simulated X-ray emission spectra (XES) of aqueous
sulfuric acid. For unbiased assessment of these descriptor types
with varying number of hyperparameters, we allocated equal
computation time for the joint descriptor–neural network model
selection in each of the six cases. We found local many-body tensor
representation (LMBTR), smooth overlap of atomic positions
(SOAP) and atom-centered symmetry functions (ACSF) to perform
best (equally accurately) with the data set of B2 � 104 points.

We observed a similar hierarchy in the comparison of the
descriptor families for structural dimensionality reduction
guided by covered spectral variance. The LMBTR stood out
especially in the low-rank decompositions of the applied
emulator-based component analysis. Although the system man-
ifests significant complexity, the analysis method managed to
condense spectral dependence into two dimensions with R2 =
0.788 for an independent test set. The results indicated that
even distant atoms have a significant effect on the XES, that

probes local bound orbitals around the emission site. The
dominant underlying coordinate t1 followed the concentration
of the system, whereas inclusion of the second most relevant
degree of freedom t2 allowed for clear distinction of the proto-
nation state of the acid molecule. Altogether, our results high-
light loss of structural information upon formation of a
spectrum, which will have implications for justified interpreta-
tion of spectra using simulations.

Structural descriptors facilitate accurate prediction of X-ray
spectra by a neural network. Advances in simulation methods
can be anticipated to extend and improve the data sets to allow
for studies of even more complex systems and analyses with
higher accuracy. Conversion of the descriptor back to simple
atomistic information needs specific research efforts, as results
presented in terms of these mathematically sophisticated
representations can be difficult to interpret by a human.
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R. Garnett, Curran Associates, Inc., 2019, pp. 8024–8035,
DOI: 10.5555/3454287.3455008.

51 D.-A. Clevert, T. Unterthiner and S. Hochreiter, Fast and
Accurate Deep Network Learning by Exponential Linear
Units (ELUs), arXiv, 2016, preprint, arXiv:1511.07289v5
[cs.LG], DOI: 10.48550/arXiv.1511.07289.

52 D. P. Kingma and J. Ba. Adam: A Method for Stochastic
Optimization, arXiv, 2017, preprint, arXiv:1412.6980v9
[cs.LG], DOI: 10.48550/arXiv.1412.6980.

53 A. Vladyka, E. A. Eronen and J. Niskanen, Implementation
of the Emulator-based Component Analysis, arXiv, 2023,
preprint, arXiv:2312.12967v1 [math.NA], DOI: 10.48550/
arXiv.2312.12967.

54 H. Hirai, T. Iizawa, T. Tamura, M. Karasuyama, R. Kobayashi and
T. Hirose, Machine-learning-based prediction of first-principles
XANES spectra for amorphous materials, Phys. Rev. Mater., 2022,
6, 115601, DOI: 10.1103/PhysRevMaterials.6.115601.

55 B. Onat, C. Ortner and J. R. Kermode, Sensitivity and
dimensionality of atomic environment representations used
for machine learning interatomic potentials, J. Chem. Phys.,
2020, 1530(14), 144106, DOI: 10.1063/5.0016005.
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