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Conditions under which a natural iterative
method for calculating the orientation
distribution of rodlike particles decreases
the free energy at each step†

Alan E. Berger

It is shown that under certain conditions the iterative method suggested by the calculus of variations for

calculating a cylindrically symmetric orientation distribution function (ODF) for rodlike particles strictly

decreases the free energy at each full step. This monotonic behavior has strong implications for

convergence of the sequence, or a subsequence, of the calculated ODFs. The result is valid not only for

the reference system of hard core particles with indistinguishable ends, but also for free energy

functions of similar type. The effect of an applied field is also permitted. Since the behavior of the

iteration is intrinsic to the general form of the free energy function it applies to rod mixtures and may

extend to a wider class of free energy functions. Outside the conditions that guarantee a monotonically

decreasing free energy, we find that the iteration can fail to converge.

1 Introduction

This paper concerns the spontaneous alignment of rodlike
particles. Mean field studies in terms of excluded volume date
back to Onsager,1 and have been extended to include long-
range interparticle interactions (as reviewed by Franco-Melgar,
Haslam and Jackson2). In calculating the orientation distribu-
tion functions (ODFs), an iterative procedure proposed in 19843

has proven widely effective on a case-by-case basis, e.g., ref. 4–
11. The purpose of this paper is to identify the remarkably
broad range of conditions under which this iteration is guar-
anteed to decrease the free energy at each step, which is a
substantial indication for convergence. The presentation is
divided into three major sections.

The Background section develops necessary concepts and
notation, beginning with a review of the origins of the iterative
procedure for finding the free energy minima and concluding
with a review of the expansion of the particle interactions and
orientation distributions in terms of Legendre polynomials.
Whereas the discussion in ref. 3 and 12 focused on excluded
volume effects, while also noting possible application to long
range interactions, the present analysis takes a general point of

view, including long-range interactions and applied field
effects, in addition to volume exclusion.

The subsequent Results and discussion section shows that for
physically reasonable potentials, the iteration for cylindrically
symmetric ODFs strictly decreases the free energy at each full step
(unless one is already at a converged solution, i.e., a fixed point of
the iteration). While Herzfeld et al.3 proved that each iterative step
gives a descent direction (meaning that the free energy will
decrease for a sufficiently small move in that direction), they
provided only empirical evidence of the convergence of full steps
in particular instances, as have others who have since used the
method, e.g., ref. 4–11. The main benefit of the present analysis is
in specifying when overshoot of the full step can be excluded. It
also identifies conditions under which the iteration will converge
to a ‘‘nearby’’ local minimum of the free energy function.

2 Background
2.1 The model

We consider a model for the orientation distribution function
f (O) of identical rodlike particles, where the orientations are
given in terms of spherical coordinates O = (y,f) with 0 r yr p
and 0 r f r 2p, and f is required to be a continuous function
of (y,f) and 2p-periodic in f.

An orientation distribution function (ODF) is, by definition,
a continuous probability density function for the orientation of
any given particle. Thus

f (O) Z 0 (1)
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and

ð
O
f ðOÞdO defined as

1

2p

ð2p
f¼0

1

2

ðp
y¼0

f ðy;fÞ sinðyÞdydf ¼ 1;

(2)

Following the approaches of Cotter,13–15 Gelbart and Barron16

and Gelbart and Gelbart,17 and allowing for the possibility of an
applied field, the mean field free energy (per rod, in units of kT)
depends on the orientation distribution according to

Fð f ðOÞÞ ¼ Aþ
ð
O
f ðOÞ ln f ðOÞdOþ

ð
O
f ðOÞVðOÞdO

þ B

2

ð
O1

ð
O2

f O1ð ÞW g12ð Þf O2ð ÞdO2dO1

(3)

where A is a constant, V and W are continuous functions, the
entropy contribution appears in the second term, the contribu-
tion from interaction with an applied field appears in the third
term, and the contribution due to interparticle interactions
appears in the last term (with the positive constant B dependent
on the particle geometry and proportional to the particle
volume fraction). The corresponding Euler–Lagrange equation
that local minima of F will satisfy is

ln f O1ð Þð Þ þ V O1ð Þ þ B

ð
O2

W g12ð Þf O2ð ÞdO2 ¼ l (4)

where l is the constant such that f (O) satisfies eqn (2).
Notice that the mean field interactions between rodlike

particles depend only on the angle g12 in [0,p] between their
two orientation vectors (i.e., between the vector from the origin
to the point P1 on the unit sphere given by O1 = (y1,f1) and the
vector from the origin to the point P2 on the unit sphere given
by O2 = (y2,f2)). For future reference, we note that, according to
the law of cosines on the triangle whose vertices are P1, the
origin, and P2,

g12 = Arc cos[sin(y1)sin(y2)cos(f1 � f2) + cos(y1)cos(y2)]
(5)

For the reference system of hard core particles with no distinc-
tions between the two ends, V = 0 and W is given by:

W(g12) = sin(g12) (6)

Elsewhere, this W is sometimes referred to as the Onsager
kernel. In this case, the isotropic ODF (f (O) � 1) is always a
solution to eqn (4). Note that sin(g12) is positive within (0,p)
with a maximum at g12 = p/2 which corresponds to orthogonal
particles. As the coefficient B in the interparticle interaction
term gets larger, this term increasingly favors particle alignment
where g12 occurs less frequently near p/2.

2.2 Properties of the solutions of the Euler–Lagrange
equation

Other workers have shown that, even in the absence of an
applied field (i.e., V = 0), eqn (4) has a wide variety of solutions.
It is worthwhile to review those results in order to focus the rest

of this paper on the solutions that are of primary physical
interest, i.e., those that represent minima in the free energy.

For the hard core reference system, Kayser and Raveché12

considered ODFs having cylindrical symmetry and found that
there is a branch of anisotropic solutions of the Euler–Lagrange
eqn (4) at B = 32/p (r = 4 in their normalization and notation)
off of the isotropic solution (f (O) � 1), and beyond that value
of B the isotropic solution is no longer a local minimum of
the free energy. Furthermore, ODFs from bifurcations off of
the isotropic solution at larger values of B are also not local
minima. Vollmer18 has done an extensive analysis of the
general case where the kernel W(g12) in the particle interaction
term is a function of cos(g12), while V = 0, and allowed for
solutions of the Euler–Lagrange equation that are not necessa-
rily cylindrically symmetric. In ref. 18 it is proven, in particular,
that for W(g12) equal the Onsager kernel sin(g12), the solu-
tions branching off the isotropic solution at B = 32/p are
axisymmetric.

For W(g12) equal to the Maier–Saupe kernel
1

3
� cos2 g12ð Þ

� �
,

Liu, Zhang, and Zhang,19 and Fatkullin and Slastikov20 proved
that there is only one bifurcation from the isotropic solution,
showed that the solutions of the Euler–Lagrange equation are
all axisymmetric, and provided explicit formulas for the solu-
tions. Fatkullin and Slastikov20 also proved the same holds for
the dipolar kernel W(g12) = �cos(g12).

For the coupled dipolar/Maier–Saupe kernel W(g12) = �s
cos(g12) � k cos2(g12) (with positive constants s and k), Zhou,
Wang, Wang and Forest21 proved that solutions of the Euler–
Lagrange equation that are local minima of F are axisymmetric.
They also showed there are solutions that are not axisymmetric
(but these are not local minima).

For more general W, Ball22 proved existence of non-
axisymmetric solutions under certain conditions, and noted
that it is an open question whether there exist non-axisym-
metric solutions of eqn (4) (for general W, and particularly for
the Onsager kernel) that are local minima of F.

Yin, Zhang and Zhang23 have conducted a wide ranging, and
beautifully illustrated, numerical investigation of the solution
landscape for the W kernels noted above, and found a rich
variety of non-axisymmetric solutions of (4), but none were
local minima of the free energy F. They point out that, as far as
currently known, it is possible there could be a secondary
bifurcation branch from an axisymmetric primary bifurcation that
could lead to non-axisymmetric minima, however, all secondary
bifurcation solutions that they observed were not minima.

2.3 Assumption of cylindrical symmetry

The upshot of the studies summarized in Section 2.2 is that,
in the absence of an applied field, all known minima of F
correspond to cylindrically symmetric ODFs. The same should
be true in the presence of an applied field, as long as that field
does not break cylindrical symmetry, i.e., as long as V(O) is
independent of f. Therefore, since the focus of this study is the
behavior of the iterative method3 for finding solutions of the
Euler–Lagrange eqn (4) that are minima of the free energy F, it
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will henceforth be assumed that V depends only on y, and the
orientation distribution functions f are cylindrically symmetric, i.e.,

f is independent of f. (7)

In this case, the set S of orientation distribution functions will
be all continuous functions on [0,p] satisfying

f (y) Z 0 (8)

1

2

ðp
y¼0

f ðyÞ sinðyÞdy ¼ 1 (9)

and the free energy function in eqn (3) will have the form

Fð f ðyÞÞ ¼ Aþ 1

2

ðp
y¼0

f ðyÞ ln f ðyÞ sinðyÞdy

þ 1

2

ðp
y¼0

f ðyÞVðyÞ sinðyÞdy

þ B

2

ðp
y1¼0

ðp
y2¼0

1

4
f y1ð Þ sin y1ð ÞK y1; y2ð Þ

� f y2ð Þ sin y2ð Þdy2dy1

(10)

where

K y1;y2ð Þ ¼ 1

2p

ð2p
f2¼0

1

2p

ð2p
f1¼0

W Arc cos sin y1ð Þsin y2ð Þcos f1�f2ð Þ½ð

þcos y1ð Þcos y2ð Þ�Þdf1df2

Since cos(f1) is 2p periodic, the inner integral over f1 in [0,2p]
is independent of f2, and K simplifies to

K y1;y2ð Þ ¼ 1

2p

ð2p
f¼0

W Arc cos sin y1ð Þsin y2ð ÞcosðfÞ½ð

þcos y1ð Þcos y2ð Þ�Þdf

(11)

Note that, by inspection, K is symmetric, i.e.,

K(y2,y1) = K(y1,y2) (12)

The assumption of cylindrical symmetry should be accompa-
nied by recognition that there can be ODFs that are local
minima of the free energy F relative to the set of axisymmetric
ODFs, but are saddle points, i.e., have directions of decrease in
F, when non-axisymmetric ODFs are included. Such cases will
be discussed below.

It will be useful in certain instances to express an orientation
distribution function f (y) as a linear combination of Legendre
polynomials Pm(cos y), which is natural in the setting of
spherical coordinates:

f ðyÞ ¼
X1
m¼0
ð2mþ 1ÞZmPmðcos yÞ (13)

Since

1

2

ðp
y¼0

Pmðcos yÞPnðcos yÞ sinðyÞdy

¼ 1

2

ð1
�1
PmðxÞPnðxÞdx ¼ dmn

1

ð2nþ 1Þ

(14)

(see, for example, Chapter 11 of Weber and Arfken24), it
follows that

Zn ¼
1

2

ðp
y¼0

f ðyÞPnðcos yÞ sinðyÞdy (15)

Similarly, it will be useful to express the interparticle potential
W(g) as

WðgÞ ¼
X1
m¼0

wmPmðcos gÞ (16)

where

wn ¼
2nþ 1

2

ðp
g¼0

WðgÞPnðcos gÞ sinðgÞdg (17)

A noteworthy feature of the Onsager kernel W(g) = sin(g) is that
wm r 0 for all m 4 0, and the sum of the wm is absolutely
convergent, i.e.,

P
m

wmj j is finite (see Appendix 1 in ESI†). This is

also the case for the dipolar kernel W(g) = �P1(cos g), the Maier–
Saupe kernel W(g) = �(2/3)P2(cos g), as well as the coupled
dipolar/Maier–Saupe kernel. Generally, it will be seen below
that wm r 0 for m 4 0 plays an essential role in the proof that
each iterative step strictly decreases the value of the free energy
function (10) and (11) (unless one is already at a converged
solution). The physical significance of this condition is illu-
strated in Fig. 1, which shows that each term wmPm(cos g) for
m 4 0 with a negative coefficient wm contributes to a minimum
of W(g) at g = 0. This minimum favoring alignment counteracts
the effect of entropy.

In view of these features of the �Pm(cos g) functions, it will
henceforth be assumed that W(g) has an expansion in terms of
Legendre polynomials that satisfies these specific conditions
on the coefficients:

wm � 0 for m4 0; and
X1
m¼1

wmj j is finite: (18)

In the case of particles with no distinctions between the two
ends, so that W(p � g) = W(g), we also have

K(p � y1,y2) = K(y1,p � y2) = K(y1,y2) (19)

because if Z is in [�1,1], then Arc cos(�Z) = p � Arc cos(Z),
whence replacing f by f + p in the integrand of eqn (11) gives
the result.

2.4 The iteration suggested by the calculus of variations

To set the stage for the proof in Results and discussion, and
have a key equation in hand, we now formally derive the
iterative method given in ref. 3 and 12, extended to include a
term for the possibility of an applied field. For the rest of this
section, assume the ODF f (y) is a local minimum of the free
energy function and positive on [0,p] (to avoid problems with
ln f). Then for any continuous function g(y) on [0,p] for which
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max |g(y)| is sufficiently small and

1

2

ðp
0

gðyÞ sinðyÞdy ¼ 0; (20)

it will be the case that the function f (y) + tg(y) will be an ODF
(i.e., satisfy eqn (8) and (9)) and a positive function on [0,p]
for �1 r t r 1. Since it is being assumed that f is a local
minimum of F, the derivative of F(f (y) + tg(y)) with respect to t
must be 0 at t = 0. Since f (y) + tg(y) 4 0, we can ‘‘differentiate
under the integrals’’ in F, evaluate at t = 0, use (20), recall that
K is symmetric, and find that, for all such functions g, f must
satisfy:

1

2

ðp
y1¼0

g y1ð Þ ln f y1ð Þ þ V y1ð Þ þ
B

2

ðp
y2¼0

K y1; y2ð Þf y2ð Þ sin y2ð Þdy2
� �

� sin y1ð Þdy1 ¼ 0

(21)

which suffices to show that the quantity in the square brackets
must be a constant, i.e.,

ln f y1ð Þ ¼ �
B

2

ðp
y2¼0

K y1; y2ð Þf y2ð Þ sin y2ð Þdy2 � V y1ð Þ � l (22)

where the constant l corresponds to the Lagrange multiplier for

the normalization constraint
1

2

Ð p

y1¼0
f y1ð Þ sin y1ð Þdy1 ¼ 1.

From eqn (22) we have

f y1ð Þ¼
Nð f Þ y1ð Þ
Dðf Þ

whereNð f Þ y1ð Þ¼exp �V y1ð Þ�
B

2

ðp
y2¼0

K y1;y2ð Þf y2ð Þsin y2ð Þdy2
� �

;

andDð f Þ¼expðlÞ¼1

2

ðp
y1¼0

Nð f Þ y1ð Þsin y1ð Þdy1

(23)

This suggests (ref. 3 and 12) trying the well known successive
substitution method: if fn(y) is a starting value satisfying eqn (8)
and (9), or is the ‘‘current approximation’’ to a local minimum f
of the free energy function, then the next iterate f n+1(y) (the
approximation succeeding f n(y)) is given by I( f n)(y) defined to
be

f n+1(y) = I( f n)(y) = N( f n )(y)/D( f n) (24)

This is shorthand for eqn (16) in Herzfeld et al.3 for cylindrically
symmetric ODFs.

Note that f n+1 and any function f that satisfies eqn (23) will
be positive on [0,p].

Several special cases deserve particular attention: if V(p � y) =
V(y) and the ODF f (y) is a solution of eqn (23), then g(y) defined
to be f (p � y) will also be a solution of eqn (23). This
follows from the rotational invariance of g12 and can be verified

Fig. 1 Legendre polynomial plots. (a) �1 times the first three odd index Legendre polynomials. Each has a minimum at g = 0 and a maximum at g = p.
Terms of this form in the energy potential W contribute to it being energetically favorable for particles to point in the same direction and unfavorable to
point in opposite directions. (b) �1 times several even index Legendre polynomials. Each has a minimum at g = 0 and also at g = p. Terms of this form in
the energy potential W contribute to it being energetically favorable for particles to point in the same direction or in opposite directions.
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directly by employing eqn (22):

lng y1ð Þ ¼ lnf p�y1ð Þ

¼ �B

2

ðp
y2¼0

K p�y1;y2ð Þf y2ð Þsin y2ð Þdy2�V p�y1ð Þ�l

(25)

and then using the change of variable Z2 = p � y2 in the integral
over y2 in (25), and the definition of K(y1,y2) in eqn (11).

The same steps verify that if V(p � y) = V(y) and fn(p � y) =
f n(y), then f n+1(p � y) will equal f n+1(y). Therefore, in cases
where there may be a local minimum f of F that is not
symmetric about y = p/2, one should be sure to use initial
ODFs f 0 that are not symmetric about y = p/2.

Similarly, if W(p � g) = �W(g) and there is no applied field
(V(y) = 0), when f n(p � y) = f n(y),

Ð
y2
K y1; y2ð Þf n y2ð Þ sin y2ð Þdy2

will be 0, and f n+1 will be the isotropic solution. Therefore, in
this case one should thus also use initial ODFs that are not
symmetric about p/2.

In addition, when W(p � g) = W(g) and V(p � y) = V(y), by
eqn (19), f n+1 and any function satisfying eqn (23) will satisfy
f (p � y) = f (y).

2.5 The expansion of K(h1,h2) in terms of Legendre
polynomials

This expansion was developed in Kayser and Raveché;12 we
summarize it here in terms of our notation and normalizations
since it is a key part of the proof that the iteration decreases the
free energy. As shown in Appendix 2 in ESI,† for

WðgÞ ¼
X1
m¼0

wmPmðcos gÞ (26)

and K as in eqn (11)

K y1; y2ð Þ ¼
X1
m¼0

wmPm cos y1ð ÞPm cos y2ð Þ (27)

Moreover, if B(f) is defined to be the last term (the particle
interaction term) in eqn (10), and

f ðyÞ ¼
X1
n¼0
ð2nþ 1ÞZnPnðcos yÞ

with Zn ¼
1

2

ðp
y¼0

f ðyÞPnðcos yÞ sinðyÞdy

(28)

then it is shown in Appendix 2 in ESI† that

Bð f Þ ¼ B

2

X1
m¼0

wmZm
2 (29)

and in Appendix 3 in ESI† it is shown that
P
m

Zm
2 is finite. Note

that for f to satisfy eqn (9), Z0 must be 1. Furthermore, if g is the
difference between two ODFs, then Z0 for g is 0. Notice also that,
if all the wm are r0 for m 4 0, then B(g) r 0. This plays a key
role in the proof that the iteration decreases the free energy.

The result (27) together with the fact that the Legendre
polynomials are orthogonal (14) shows that, when V = 0, the
isotropic ODF f = 1 is always a solution of eqn (22) and (23).

When V = 0, the values of B that are potential locations of
bifurcations of anisotropic solutions of the Euler–Lagrange
equation off of the isotropic solution are Bm = (2m + 1)/(�wm)
(see Appendix 5 in ESI†). The smallest of these Bm, denoted by
B*, is the location at which one would generally expect to have a
branch of anisotropic local minima of the free energy. If there is
an odd number of the Bm equal to B*, then there will be such a
branch at B* (Vollmer,18 Rabinowitz25).

3 Results and discussion
3.1 Critical relationships

To make the presentation of new results somewhat self-
contained, this section repeats a few primary equations.

Let S denote the set of orientation distribution functions
(ODFs), i.e., functions f (y) that are continuous on [0,p] and
satisfy

f (y) Z 0 (30)

1

2

ðp
y¼0

f ðyÞ sinðyÞdy ¼ 1 (31)

Assume that the conditions in eqn (18) on W are satisfied and
the free energy function F defined on functions f in S is given by
eqn (10) and (11), where A is a constant and B is a positive
constant.

As noted after eqn (11), K(y2,y1) = K(y1,y2). By eqn (19), when
W(p � g) = W(g), K(p � y1,y2) = K(y1,p � y2) = K(y1,y2).

The iterative method (as in Kayser and Raveché12 and
Herzfeld et al.3) takes a function f n(y) in S and produces the
next iterate f n+1(y) = I( f n)(y) defined in terms of our normal-
ization and notation by:

f n+1(y) = I( f n)(y) = N( f n)(y)/D( f n) (32)

where the operators N and D are given by

Nð f Þ y1ð Þ ¼ exp �V y1ð Þ �
B

2

ðp
y2¼0

K y1; y2ð Þ f y2ð Þ sin y2ð Þdy2
� �

(33)

Dð f Þ ¼ 1

2

ðp
y1¼0

Nð f Þ y1ð Þ sin y1ð Þdy1 (34)

The alternative formulation of eqn (32)

ln f nþ1 y1ð Þ ¼ �
B

2

ðp
y2¼0

K y1; y2ð Þ f n y2ð Þ sin y2ð Þdy2

� V y1ð Þ � l; (35)

where the constant l equals ln(D( f n)), will be useful in the proof
that the iteration decreases the free energy when the condition
(18) holds.

Note that if f0(y) is any function in S (actually any continuous
(or L1([0,p])) function), then, directly from its definition and the
properties of K noted above, f 1(y) = I( f 0)(y) will be in S and in
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fact will be positive on [0,p]. In addition, if W(p � g) = W(g) and
V(p � y) = V(y), then f1(p � y) = f1(y).

Now assume f0(y) is in S, and for each non-negative integer
n, define fn+1(y) to be I(fn)(y). For a given n, define

g(y) = fn+1(y) � fn(y) and fn(t)(y) = fn(y) + tg(y) for t A [0,1]
(36)

Note for each positive integer n, fn(t)(y) will be in S and will be
positive for each t in [0,1].

3.2 The main result

3.2.1 Statement of the main result. When the conditions in
eqn (18) on W are satisfied, for each non-negative integer
n either

fn+1(y) = fn(y) (37)

or

F(fn(t)) is a strictly decreasing function of t for t A [0,1]; in
particular, F(fn+1) o F(fn). (38)

An immediate consequence of this result is that, if f (y) in S is a
local minimum (over functions in S) of F, then I(f) = f, and
hence f (y) 4 0 on [0,p].

Furthermore, from the result that F(fn(t)) is a strictly decreas-
ing function of t for n = 0, 1, 2, 3,. . . (unless fn+1 = fn for some n)
we will prove below that a subsequence of {fn(y)} converges
uniformly to a function f (y) in S for which I(f) = f, and, with
some further assumptions, that the entire sequence converges
to f.

3.2.2 Proof of the main result. Let n be a non-negative
integer. Then fn and fn+1 are orientation distribution functions,
i.e., in S, and fn+1 is positive for y in [0,p]. Suppose fn+1 a fn

(otherwise there is nothing left to prove). We will show that (see
the definitions in eqn (36)) the derivative with respect to t of
F(fn(t)(y)) is o0 for 0 o t o 1. Then the mean value theorem of
calculus (if y(x) is a continuous function on the finite closed
interval [a,b] and y has a finite derivative y0(x) for each x in the
open interval (a,b), then there is an x̂ in (a,b) for which y(b) �
y(a) = (b � a) � y0(x̂)) shows F(fn(t)) is strictly decreasing for
0 r t r 1 completing the proof.

In what follows, we write down the derivative; use the fact

that
Ð p
0gðyÞ sinðyÞdy ¼ 0 (since fn and fn+1 both satisfy eqn (31));

utilize eqn (35) as was done in eqn (17) of ref. 3 where it was
shown that the derivative of F(fn(t)) is o0 at t = 0 (as long as fn(y) 4
0 on [0,p]); and employ eqn (29) (with f replaced by g), and the
sentence below it to show that the contribution to the derivative of
F(fn(t)) from the term involving B(g) is r0 so it needs no further
consideration. This is the place where the signs of the {wm} in the
expansion of Wm come into play.

The first step is to write out explicitly what F(fn(t)) is, and
then take its derivative with respect to t. For this we can take the
derivative under the integral signs, since fn(t)(y) is bounded
away from 0 for any given t in (0,1] so x ln(x) not being
differentiable at x = 0 does not cause any problems.

Recalling that g(y) = fn+1(y) � fn(y) and fn(t) = fn + tg, for t in
[0,1] we have

F f nðtÞð Þ ¼ Aþ 1

2

ðp
y¼0

f n þ tgð Þ ln f n þ tgð Þ sinðyÞdy

þ 1

2

ðp
y¼0

f n þ tgð ÞVðyÞ sinðyÞdy

þ B

2

ðp
y1¼0

ðp
y2¼0

f n y1ð Þ þ tg y1ð Þð ÞK y1; y2ð Þ f n y2ð Þð

þ tg y2ð ÞÞ
sin y2ð Þ

2

sin y1ð Þ
2

dy2dy1

(39)

Then for t in (0,1] the derivative is:

dF f nðtÞð Þ
dt

¼ 1

2

ðp
y¼0

ln f n þ tgð Þ þ 1½ �gðyÞ sinðyÞdy

þ 1

2

ðp
y¼0

VðyÞgðyÞ sinðyÞdy

þ B

2

ðp
y1¼0

ðp
y2¼0

g y1ð ÞK y1; y2ð Þf n y2ð Þ

� sin y2ð Þ
2

sin y1ð Þ
2

dy2dy1

þ B

2

ðp
y1¼0

ðp
y2¼0

f n y1ð ÞK y1; y2ð Þg y2ð Þ

� sin y2ð Þ
2

sin y1ð Þ
2

dy2dy1

þ B

2

ðp
y1¼0

ðp
y2¼0

2tg y1ð ÞK y1; y2ð Þg y2ð Þ

� sin y2ð Þ
2

sin y1ð Þ
2

dy2dy1

(40)

Now recall that
Ð p
0gðyÞ sinðyÞdy ¼ 0. Since K is symmetric

(K(y2,y1) = K(y1,y2)) the third and fourth terms on the right side
of eqn (40) are equal. The last term on the right side of eqn (40)
equals 2tB(g), which from eqn (29) and the sentence below it, is
r0, so it needs no further treatment. We thus have

dF f nðtÞð Þ
dt

� 1

2

ðp
y1¼0

ln f n y1ð Þ þ tg y1ð Þð Þg y1ð Þ sin y1ð Þdy1

þ 1

2

ðp
y1¼0

V y1ð Þg y1ð Þ sin y1ð Þdy1

þ B

ðp
y1¼0

ðp
y2¼0

g y1ð ÞK y1; y2ð Þ f n y2ð Þ
sin y2ð Þ

2

sin y1ð Þ
2

dy2dy1

(41)

Now from the key eqn (35), we have

� ln f nþ1 y1ð Þ � V y1ð Þ � l ¼ B

ðp
y2¼0

K y1; y2ð Þf n y2ð Þ
sin y2ð Þ

2
dy2

(42)
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Using this in the last term in eqn (41) we see that

dF f nðtÞð Þ
dt

�1
2

ðp
y1¼0

ln f n y1ð Þ þ tg y1ð Þð Þg y1ð Þ sin y1ð Þdy1

þ 1

2

ðp
y1¼0

g y1ð Þ � ln f nþ1 y1ð Þ � l
� �

sin y1ð Þdy1

(43)

Since l is a constant, the integral of lg sin(y) is 0. Denote the
right hand side of (43) by R(t). Recalling that g = fn+1 � fn, we
then have

RðtÞ ¼ 1

2

ðp
y¼0

ln f nðyÞ þ t f nþ1ðyÞ � f nðyÞ
� �� ��

� ln f nþ1ðyÞ
� ��

f nþ1ðyÞ � f nðyÞ
� �

sinðyÞdy
(44)

Since fn+1(y) 4 0 on [0,p], R(t) is well defined for t in (0,1] (and
also for t = 0 if fn 4 0 (which is always the case for n 4 0),
though we don’t need R defined at t = 0 for our proof).

Since ln x is a strictly increasing function, and here fn+1 a fn;
as was seen in eqn (17) of Herzfeld et al.,3 R(0) o 0 (as long as
fn 4 0). What really matters for our proof is that, by inspection,
we have the striking result that R(1) = 0. Hence if we could show
that R(t) was a strictly increasing function for t in (0,1], we
would have shown that R(t) o 0 for t in (0,1), and thereby
dF(fn(t))/dt is o0 for t in (0,1) and (by the mean value theorem)
the proof of the main result would be done. So let’s look at the
derivative of R for t in (0,1):

dRðtÞ
dt
¼ 1

2

ðp
y¼0

f nþ1ðyÞ � f nðyÞ
� �2

f nðyÞ þ t f nþ1ðyÞ � f nðyÞð Þ sinðyÞdy which is 4 0

(45)

since here fn+1 a fn and fn+1 4 0 and fn
Z 0 and t is in (0,1) and

hence the denominator which equals tfn+1 + (1� t) fn is positive,
and so indeed R(t) o 0 for t in (0,1), and the proof is complete.

This result, and the proof, seem to be intrinsic to the form of
the free energy function, and the corresponding form of the
iterative method suggested by the calculus of variations. As will
be seen in the next subsection, F(fn(t)) being strictly decreasing
for t in [0,1] has significant implications for convergence of the
iteration. Note that the convergence results below depend on
the form of the iteration (22)–(24), not just that F(fn(t)) is strictly
decreasing (unless the iteration has converged). It may be the
case that the approach used here to show that the iteration
decreases the free energy is applicable in other settings.

3.2.3 A note on polydisperse systems. If one is considering
a polydisperse system as in eqn (18) in ref. 3, and one carries
out the iteration updating the ODF for one particle type at a
time, then under the same conditions on each ‘‘diagonal’’ Wss

as used here for W, the iteration at each step will decrease the
free energy (unless the iteration left the ODF for that particle
type fixed); the proof is essentially the same, but with more
algebra.

3.3 Convergence consequences of F(fn(t)) being strictly
decreasing (unless fn+1 = fn)

3.3.1 An infinite subsequence of the iterates {fn} will have a
uniformly convergent subsequence. If fn+1 = fn for some n, then
trivially, {fn} converges to some f in the set S of ODFs, and I(f) =
f, so we don’t need to further address that case. We next show
that any infinite subsequence of {fn} is conditionally compact
meaning it will have a subsequence that converges uniformly to
some function f that by continuity will be in S. This follows in
general for the type of integration involving K(y1,y2) in
the definition of the iteration. Specifically, since K(y1,y2) and
V(y) are continuous (and hence uniformly continuous and
bounded) for y1 and y2 and y in [0,p], and fn is non-negative
on [0,p] and

Ð p
0 f nðyÞ sinðyÞdy ¼ 1 for each n, the magnitude of

the argument of the exponential in eqn (33) is uniformly
bounded by (B max(|K(y1,y2)|) + max(|V(y)|)), so N(fn)(y) is uni-
formly bounded (i.e., by the same constant for all n), and,
importantly, D(fn) is uniformly bounded away from 0, so {fn} is
uniformly bounded. Since K and V are uniformly continuous,
{fn} is equicontinuous, meaning given e 4 0 there is a d 4 0
such that |fn(y1) � fn(y2)| o e whenever |y1 � y2| o d and this
holds for every n and every y1, y2 in [0,p] for which |y1� y2| o d.
The Arzelà–Ascoli theorem (e.g., page 158 in Rudin26) then
applies and every infinite subsequence of {fn} is conditionally
compact (i.e., has a subsequence that converges uniformly to a
continuous function on [0,p] which will be in S since each fn is).

The same reasoning shows that the set of functions {I(s)} for
s ranging over the set of ODFs S is conditionally compact.

3.3.2 The first convergence result. Statement: let {fni} be a
uniformly convergent subsequence of {fn} (at least 1 exists from
the discussion above), converging to the function f (y) as i -N.
Then I(f) = f.

Proof: if not, then from eqn (38) in the main result, we have
F(I(f)) o F(f) which will lead to a contradiction. Define f (t)(y) as
follows. Let t = n + r where n is a non-negative integer and 0 r
r r 1. Then f (t)(y) is defined as fn(r)(y), as in eqn (36). This
continuously ‘‘patches together’’ the fn(y) functions, and by the
main result, F(f (t)) is strictly decreasing for t in [0,N) (unless
for some n, fn+1 = fn, but then there would be nothing left to
prove). From the discussion in the first paragraph of Section
3.3.1, {fn} is uniformly bounded, and so we have F(f (t)) is
uniformly bounded over t, and so has a finite lower bound.
Hence F(f (t)) converges monotonically ‘‘down to’’ a finite limit
which we denote by b (which is the greatest lower bound for the
values F(f (t))).

Now F is a continuous function on S (with 8f1 � f28 =
max(|f1(y) � f2(y)|)), so F(fni) must converge to F(f), which from
the previous paragraph equals b. Since D(fn) is uniformly
bounded away from 0, I(fni) must converge to I(f) and then
F(I(fni)) must converge to F(I(f)). But by definition, I(fni) = fni+1 so
F(I(fni)) must be Zb. Hence F(I(f)) Z b, contradicting F(I(f)) o F(f).

Discussion: note in general, a subsequence {fni} from an
iteration fn+1 = I(fn) might possibly converge to a solution of the
calculus of variations eqn (22), or equivalently, (23) at which F
has one or more directions of decrease, rather than a local
minimum. However, in practice, that would be ‘‘unlikely’’ since
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the iteration strictly decreases F (unless fn+1 = fn for some n).
Similarly, unless f0 is a local maximum, a subsequence {fni} can
not converge to a local maximum, since f (t) is strictly decreas-
ing (unless fn+1 = fn for some n).

We will see that with strong but natural assumptions, the
full sequence {fn} will converge to a solution of I(f) = f.

The result below suggests (but does not prove) that if one
starts with f0 ‘‘close enough’’ to an isolated local minimum f of
F, then the full sequence {fn} will converge to f. Note Kayser and
Raveché12 and Scheurle27 (which is ref. 6 in ref. 12) examine
convergence using the spectral radius of the Fréchet derivative
of the mapping under consideration which here is I(f), and
bifurcation theory. Herzfeld, Berger and Wingate3 observed
that computational results indicated that the mapping f -

I(f) was Lipschitz continuous with a Lipschitz constant L below
1 near solutions of I(f) = f for the cases for which computations
were carried out, with L (perforce) approaching 1 near bifurca-
tion points.

What one would ‘‘like’’ (and might expect) to be the case (but is
not proven here) is that one would often have the situation of an
isolated local minimum f of F contained in an open set U on
whose boundary qS, F is Z some constant k which is greater than
F(f), and f is the only solution of I(f) = f in U. Note I have not yet
specified what norm is to be used to define ‘‘open’’ and ‘‘bound-
ary’’ and ‘‘local minimum’’. Then if f0 is in U and F(f0) o k, one
would have the full sequence {fn} converging to f, because these
assumptions and the main result would show that f (t) can’t
‘‘escape’’ U (since F(f (t)) is decreasing but would have to increase
to ‘‘cross’’ the boundary of U), and the entire sequence fn would
have to converge to f by the assumption that f was the only fixed
point of I in U.

For this purpose, the appropriate (and natural) function
space and norm to use is L2([0,p],dm = sin ydy), i.e., functions

z for which the norm 8z82 defined to be
Ð p
0z

2ðyÞ sin ydy
� �1=2

is
finite. The maximum norm (8z8 = maximum over y in [0,p] of
|z(y)|) on the set C[0,p] of continuous functions on [0,p] is too
strong in that one can use the same type of construction as in
Appendix 4 in ESI† with hat functions to show that if f was a
local minimum of F then for any e 4 0 and n 4 0 there is a
function fn in S with |F(fn) � F(f)| o e and max |fn(y) � f (y)| = n.
The idea is that with narrow hat functions, one can construct a
‘‘perturbation’’ of f satisfying these conditions that is still in S.
Note that while max |fn(y) � f (y)| = n; 8fn � f82 would be small if
the ‘‘hat’’ functions were sufficiently narrow (had small sup-
port). This shows that the desired situation in the previous
paragraph can not take place using the maximum norm to
define ‘‘open’’ and ‘‘boundary’’. Also note that if z is in C[0,p],
then it will also be in L2([0,p],dm = sin ydy), and

k z k2 �
ffiffiffi
2
p
k z k (46)

3.3.3 The second convergence result. Definitions: U is an
open set in S, if U is a subset of S and for each u in U, there is an
e 4 0 (depending on u) such that if s is in S and 8s � u82

as defined in the previous paragraph is oe then s is in U.

The boundary of U, denoted by qU is the set of all functions b in
S such that for any e 4 0 there are members u1 and u2 of S
with 8u1 � b82 o e and 8u2 � b82 o e and u1 is in U and u2 is
not in U (u1 or u2 can equal b) (this is the relative topology of
L2([0,p],dm = sin ydy) on S).

A comment: let U be an open set in S and let b be the greatest
lower bound for F(qU). Note since closed bounded sets in
L2([0,p],dm = sin ydy) are not necessarily compact, there might
not be a function b in qU for which F(b) = b (e.g., the set
of orthonormal Legendre polynomials Pn(cosy) defined
in eqn (S.21) in Appendix 3 in ESI† has no convergent subsequence).

Statement: under the conditions and definitions given in the
previous 2 paragraphs; if f0 is in U and F(f0) o b it will be the
case that the limit f of any uniformly convergent subsequence
{fni} of fn (starting with f0) is in U (from the results above, there
is at least one subsequence converging uniformly to some
function %f in S, i.e., 8fni � %f8 converges to 0).

Proof: using the notation from above, let fni be a convergent
subsequence of fn converging to some function %f (which from
the first convergence result satisfies I(%f) = %f). We need to show %f
is in U. Consider f (t), and F(f (t)) which is decreasing (actually
strictly decreasing unless some fn+1 = fn). The idea is that the
assumptions imply that U is ‘‘an energy well’’ from which f (t)
can’t ‘‘escape’’, since to do so, f (t) would have to ‘‘cross’’ the
boundary of U, where F Z b.

Suppose %f is not in U. Now since F(f (t)) is continuous and
decreasing and we assumed F(f (0)) o b it can not be the case
that %f is in qU where F Z b. Let T be the least upper bound of the
t values for which f (t) is in U for t in [0,t]. Since U is open, by
continuity and eqn (46) T 4 0. We next need to show T is finite.
Since we are working with the assumption that %f is not in U, and
we just noted that %f can’t be in qU, there must be an e 4 0 such
that if u satisfies 8u � %f82 o e then u is not in U (otherwise we
would have %f in the boundary of U). However, we have f (ni) = fni

converging uniformly to %f, so (by eqn (46)) T must be finite. By
the definition of T, and the same type of reasoning used above,
f (T) must be in the boundary of U, which is a contradiction to
F(f (t)) o b (if f (T) is not in U and not in qU then T would not be
the least upper bound; if f (T) is in U then T would not be an
upper bound). Thus we have shown %f is in U.

3.3.4 Corollary of the second convergence result. State-
ment: under the assumptions of the second convergence result,
if f0 is in U and F(f0) o b, and there is at most 1 solution of I(f) =
f in U, then the full sequence fn converges uniformly to a
function f in U for which F(f) o F(u) for all u a f in U.

Proof: from the second convergence result there is at least 1
subsequence converging uniformly to some function f and the
limit of any uniformly convergent subsequence is in U (and
from the first convergence result the limit satisfies I(f) = f). If the
full sequence doesn’t converge to f, then one could extract a
second subsequence converging to another function f2 in U
satisfying I(f2) = f2, contradicting the assumption that there was
only one solution of I(f) = f in U. Suppose there was some
function u a f in U for which F(u) r F(f). Then we could set
f0 = u, and by the main result, either I(u) = u; or F(I(u)) o F(u)
and there would be a convergent subsequence of the iterates
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starting with u converging to some function in U at which the
free energy was oF(f), and so either way we would get the
contradiction of a second solution of I(f) = f in U.

3.4 The behavior of the iteration

3.4.1 Numerical implementation. In Herzfeld et al.,3 W and
ODFs were represented by their values on evenly spaced grids of
y and f values, and integrals were approximated by trapezoidal
numerical integration, which is well suited for use with peri-
odic functions. This allowed for readily estimating the accuracy
of the results by successively doubling the number of intervals
and comparing resulting calculated values of interest. R code
for calculating ODFs this way, extended to more general W and
an applied field, is available in the GitHub repository,28 which
also contains code for sample runs, with corresponding results.

This approach has been found to be useful in various settings,
e.g., ref. 4–11.

Representative results are illustrated in the next section.
Unless otherwise noted, the iterative method was applied
using trapezoidal numerical integration with 512 evenly
spaced y intervals on [0,p] and 2048 evenly spaced f intervals
on [0,2p]. Initial ODFs used in calculations for the hard core
reference system were either ‘‘axial’’ (peaks at y = 0 and y = p and a
trough at y = p/2), or ‘‘planar’’ (peak at y = p/2 and troughs at y = 0
and y = p). (Further details are available in ref. 28.) As noted below
eqn (25), when there may be local minima of F that are not
symmetric about p/2, one should include initial ODFs for the
iteration that are not symmetric about p/2.

Our computational procedure avoids the approximations
made in previous work. Earlier approaches for obtaining

Fig. 3 Free energy F vs. iteration number for axial and planar initial ODFs in the hard core reference system with B = 14. Iterations were done until the
convergence criterion was satisfied. The free energy strictly decreased at each iteration. The ODF at iteration 0 is the one chosen to start the iteration.

Fig. 2 Axial and planar orientation distribution functions that are local minima in the hard core reference system with B = 14. The particle interaction
W(g) = sin(g) favors particle alignment (g = 0 or p). The planar local minimum ODF balances unfavorable particle interactions (at y around p/2) with higher
entropy from a more dispersed equatorial orientation distribution. Note that relative particle populations at each value of y are obtained by multiplying
the ODF by sin(y) to account for the axially symmetric distribution in f.
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minima of the free energy (in the hard particle system where
W(g) = sin(g) and V = 0) have included replacing the ODF f (y)
either by a finite expansion in terms of Legendre polynomials
Pm(cos y) with even index m, and determining the coefficients
that minimize the free energy (Lasher29), or by a function with
just one optimizable parameter (Onsager,1 Baron and Gelbart30).
Another approach replaced the particle interaction term in the
free energy with the expansion (29) and used the resulting form
of the Euler–Lagrange eqn (22) in terms of the unknown {Zm}
(note Z0 must be 1 for f to be an ODF):

ln f ðyÞ ¼ �B
XM
m¼0

wmZmPmðcos yÞ � l (47)

where l is the Lagrange multiplier determined by the constraint

1

2

Ð p
y¼0f ðyÞ sinðyÞdy ¼ 1, together with the consistency requirement

Zn ¼
1

2

ðp
y¼0

f ðyÞPnðcos yÞ sinðyÞdy (48)

Alben31 and Cotter13 used these conditions with M = 2 to solve for
the one unknown Z2 (Z0 = 1, and here Z1 = 0 by symmetry when
W(g) = sin(g)). Kayser and Raveché12 used (47) and (48) to iteratively
determine the {Zm} in a fashion analogous to (24), with M taken
large enough to obtain good accuracy (for W = sin(g), all the odd
index Zm are 0). Equivalent forms of (47) and (48) were used by
Lekkerkerker et al.32 to obtain minima.

The iteration method studied here is complementary to the
uniform sampling method of Yin, Zhang, Zhang.23 Both proce-
dures will accurately determine ODFs that minimize the free

Fig. 4 Ordering in the hard core reference system. (a) The entropy h�ln f (y)i vs. B for converged ODFs resulting from starting the iteration with axial (purple)

and planar (green) ODFs. � ln f ðyÞh i ¼ �1
2

Ð p

0
f ðyÞ ln f ðyÞ sin ydy. The jump in this plot for the axial ODFs around B = 8.883 (delineated by dots) corresponds to

the location rb of Kayser and Ravaché.12 (Their r* = 4 corresponds to B = 32/p = 10.18592 (marked here with a short vertical black bar) where planar local
minima bifurcate from the isotropic ODF.) (b) The order parameter hP2(cosy)i vs. B for converged ODFs, resulting from initial axial (purple) and planar (green)

ODFs. P2ðcos yÞh i ¼ 1

2

Ð p

0
f ðyÞP2ðcos yÞ sin ydy. Note the discontinuity around B = 8.883 (delineated by dots) and change in slope around B = 32/p = 10.18592.
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energy. By its nature, the iterative method will in general not
find ODFs that are solutions of the Euler–Lagrange eqn (22) but
are not local minima of the free energy (such as were obtained
by Kayser and Raveché12 using a different method). On the
other hand, Yin, Zhang and Zhang23 give an extensive discus-
sion of methods for exploring the landscape as B is varied of
solutions of (22) that are not necessarily local minima of the
free energy. In particular, their own uniform sampling method,
while necessarily more complex than the iterative method, has
the advantages that it searches over all ODFs (not just axisym-
metric ODFs), and by design enables construction of the land-
scape and bifurcation branches of solutions of (22).

The iterative method studied here naturally converges to
minima of the free energy as considered over the subset of
axisymmetric ODFs. Since, as far as is known at present,
minima of the free energy for models having the form of eqn (3)

where W is a function of cos(g12) are axisymmetric,18–23 the iterative
method provides a robust straightforward way of determining
minima of the free energy, i.e., the physically observed ODFs, only
requiring the user to run the algorithm with a variety of starting
values for the iteration to best determine the global minimum.
As previously noted below eqn (12), if f is a saddle point but all
directions of decrease in the free energy around f are non-
axisymmetric ODFs, then f will be a local minimum over the set
of axisymmetric ODFs and the iterative method will converge to it
when started with a suitable ODF.

3.4.2 Illustrative examples. The figures illustrate the beha-
vior of the iteration and display examples of ODFs that are local
minima for a variety of particle interaction kernels W. These
include cases where W(g) is not symmetric about p/2 (Fig. 7c
and 8c), and three cases in which there is an applied field
(Fig. 8). An example is also given of failure of the iteration when

Fig. 5 Free energy vs. B for the hard core reference system. (a) The free energy per particle, F, for the isotropic ODF is compared with F for local minima
found using the iterative method, eqn (24). Note that the isotropic ODF is no longer a local minimum of F for B larger than the bifurcation value 32/p. The
‘‘unstable’’ bifurcation branch of ODFs that are not local minima, but lead to the axial ODFs that are local minima,12 will not be found using the present
iteration procedure. (b) The common tangent construction in which the free energy per particle, F, is multiplied by B to give an energy per unit volume,
with the zero of energy per particle adjusted to give a horizontal common tangent by choosing C = 6.4387.
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the conditions on the {wn} being r0 for n 4 0 are not satisfied
(Fig. 9). Although convergence is still possible in the presence
of a positive wn with n 4 0, other procedures should be used for
finding minima or solutions of the Euler–Lagrange equation in
such circumstances.23

Fig. 2 displays the ODFs that are local minima of the free
energy for the hard core reference system (W(g) = sin(g) and the
applied field V = 0) with B = 14. Graphs of the axial and the
planar minima for other values of B are given in ref. 3. The axial
ODF is the global minimum of the free energy. The planar ODF
is a local minimum with respect to the set of axisymmetric
ODFs, but is a saddle point having a two dimensional set of
directions of decrease over all ODFs (see Fig. 7 in Yin, Zhang
and Zhang23 where they use the terminology oblate for planar
ODFs and prolate for axial ODFs).

Fig. 3 illustrates that when all the coefficients wn for n 4 0 in
the expansion of the interparticle potential in terms of
Legendre polynomials are r0, each iterative step decreases
the free energy. This has been the case for all calculations that
we have carried out (by trapezoidal numerical integration), up
to computer finite precision.

Fig. 4 displays the dependence of particle order on the value
of B in the hard core reference system (W(g) = sin(g) and
V(y) = 0) as obtained with initial axial (peaks at y = 0 and y =
p) and planar (peak at y = p/2) ODFs. The jump at approximately
B = 8.883 is indicative of the known first order phase transition
at this value of B, e.g., ref. 12 and 33–35.

Fig. 5 plots the free energy as a function of B for the axial,
planar and isotropic solutions of the Euler–Lagrange equation
for the hard core reference system. Fig. 5a shows the free energy
per particle for all the local minima. Fig. 5b shows the free
energy per unit volume for the global minimum, as required
to identify the boundaries for coexistence of the isotropic
and planar phases by the common tangent construction. The
number of y intervals used here was increased to 1024, as the

determination of the coexistence region is quite sensitive to
the accuracy of the numerical approximation.34 The coexistence
region depicted in Fig. 5b is consistent with results obtained by
appropriate thermodynamic calculations in ref. 12, 32, 34 and
36. (Note the scale factor 8/p to go from endpoints of the
coexistence region determined in these references to those
depicted in Fig. 5b.)

Fig. 6 plots results for the Maier–Saupe kernel W(g) = 1/3 �
cos2(g) = �(2/3)P2(cos g) = sin2(g) � 2/3 with B = 9. The bifurca-
tion point from the isotropic solution is at B = 7.5,19,20 Appendix
5 in ESI.† Note that some texts omit constants in the kernel
because they have no effect on which ODFs are minima of the
free energy or solutions of the Euler Lagrange equation. Yin,
Zhang and Zhang23 report (see their Fig. 2) that for the Maier–
Saupe kernel, the planar ODF when viewed in the set of all
ODFs (not just the axisymmetric ODFs) is a 2-saddle, meaning
there is a two dimensional set of descent directions at this ODF.
With B = 9, the order parameter r in Fatkullin and Slastikov’s
eqn (27), where t = 1/B, is �2.2412853 for the axial ODF and
0.5231352 for the planar ODF. The exact solutions are then
given in their eqn (5) with Z the normalizing constant such that
eqn (9) is satisfied.

The shape of ODFs minimizing the free energy will obviously
depend on the form of the particle interaction W(g). In parti-
cular, subject to the effect of entropy, ODFs will tend to have
orientations around y values that give rise to angles between
orientations where W has minima. Several examples for V = 0
are shown in Fig. 7. Fig. 7a displays a free energy minimizing
ODF obtained when W(g) = sin(g) � 8P6(cos g). Fig. 7b exhibits a
case where W is such that the first B at which there might be a
branch of anisotropic solutions of the Euler–Lagrange equation
off of the isotropic ODF is attained from 2 of the coefficients in
the expansion of W in terms of Legendre polynomials (see
Appendix 5 in ESI†). This results in a more complex group of
local minima. Fig. 7c shows the pair of minima resulting from

Fig. 6 Planar and axial ODFs from the iterative method for the Maier–Saupe kernel with B = 9, compared with exact values from the analytical
solutions20 plotted as black dots. The Maier–Saupe kernel gives results qualitatively similar to the Onsager kernel (W(g) = sin(g)) while being more
amenable to analysis, and this is reflected in the similarity between Fig. 2 and 6.
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Fig. 7 Distributions resulting from variations in W. (a) ODF for W(g) = sin(g) � 8P6(cos g), V = 0, and B = 12, beginning the iteration with a planar ODF. (b)
Two of the three ODF’s obtained for W(g) = �(5p/32)P2(cos g) � (9p/32)P4(cos g), V = 0, and B = 11. For this W, there may be a branch of anisotropic
solutions at B = 32/p = 10.186, coming from both its P2 and its P4 coefficients. At B = 11, i.e., just beyond this bifurcation point, distinct local minima of the
free energy are obtained with an initial planar ODF (green), and an initial ODF having peaks near p/4 and 3p/4 (magenta). Not shown is the strongly axial
global minimum (with value 54.8 at y = 0 and p). (c) The mirror distributions resulting from W(g) = �(7p/32)P3(cos g), V = 0 and B = 12. Recall that if f (y) is a
local minimum of F then g(y) defined to be f (p � y) will also be a minimum.
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Fig. 8 ODF modulation by an external field. (a) Results for W(g) = sin(g) with B = 12, and an applied field V(y) = 2 sin(y) which favors orientations around both y = 0
and p. The peak value of this ODF is even larger than that for the hard core reference system with B = 14 (cf. Fig. 2). (b) Results for W(g) = sin(g) with B = 12, and an
applied field V(y) =�cos(y) which favors orientations around y = 0 and disfavors orientations around y = p. (c) The pair of minima of the free energy for the dipolar
kernel with V = 0 and B = 6 (purple and cyan) were obtained from initial values for the iteration having either a peak at y = 0 or a peak at y = p. The dots are exact
values.20 These ODFs are mirror images of each other about p/2 and are physically equivalent, since each can be obtained from the other by a rotation of spherical
coordinates. In the presence of an applied field V(y) = �cos(y) which favors orientation toward y = 0, for starting values with a peak close to y = p the iteration
converges to an ODF (green) that has attenuated orientation toward y = p. For other starting values, the iteration converges to an ODF (magenta) that has
accentuated orientation toward y = 0. The ODF with the accentuated peak at y = 0 has the lower free energy in the presence of the applied field.
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W(g) = �(7p/32)P3(cos g) which favors parallel particle align-
ment and disfavors antiparallel particle alignment.

The foregoing behavior can be modulated by an applied
field V(y) superimposed on the particle interaction, as illustrated
in Fig. 8a and b where W(g) = sin(g). In Fig. 8a, the applied field
V(y) = 2 sin(y) favors particles having orientations toward
y = 0 or y = p, relative to other orientations. In Fig. 8b, the applied
field V(y) = �cos(y) favors particles having orientations around
y = 0, and disfavors those around y = p. In both cases, the iteration
obtains the same converged ODF from initial ODFs that are axial,
planar or have one peak at either y = 0 or y = p.

As expected, the Maier–Saupe kernel continues to give
results qualitatively similar to those of the hard core reference
system, under the influence of an applied field. When the fields
V(y) = 2 sin(y) and V(y) = �cos(y) were applied with W(g) equal
the Maier–Saupe kernel and B = 9 (data not shown), the
iteration obtained the same converged ODF from initial ODFs
that were axial, planar or had one peak at either y = 0 or y = p.

Fig. 8c shows results for the dipolar potential with B = 6. The
pair of minima when V = 0 determined by the iterative method
are displayed along with exact values from the analytical
solution.20 (B = 6 corresponds to the order parameter r =
�4.73332.) When the field V(y) = �cos(y) is applied, one obtains
a minimum with an attenuated peak at y = p when the iteration
is started with an ODF with a peak near y = p. For other starting
values, including an ODF with a peak just to the right of p/2,
one obtains the global minimum ODF with an enhanced peak
at y = 0.

When there are wn 4 0 for one or more n 4 0, the iteration
may not reduce the free energy F at some steps, and may not
converge. This is illustrated in Fig. 9 for W(g) = sin(g) + P4(cosg).

When WðgÞ ¼ sinðgÞ þ 1

2
P4ðcos gÞ, the iteration does converge

(albeit non-monotonically in free energy) from both axial and planar
initial ODFs. Nevertheless, whenever there is a positive wn (n 4 0), it
is best to use an alternate method for finding local minima.

4 Conclusions

The natural iterative method that the calculus of variations
suggests for obtaining orientation distribution functions
(ODFs) strictly decreases the free energy at each step (unless
already at a fixed point of the iteration) under specific and
physically appropriate conditions on the particle interaction
term. This has significant implications for convergence. In
numerical practice, when these conditions are satisfied, con-
vergence is generally quite rapid. It is important to select a
variety of initial ODFs in order for the computations to have a
good chance to reach all the physically relevant minima of the
free energy. The extent to which the behavior of the iteration
considered as a dynamical system will represent all stable
branches of bifurcations is an open question.

When there are one or more positive coefficients in the
expansion of the interparticle potential in terms of Legendre
polynomials, the iterative method can fail to converge, and it is
advisable to use alternative computational procedures for
obtaining minima of the free energy function and/or solutions
of the Euler–Lagrange equation, such as described in, for
example.23

Data availability

There is no experimental data for this paper. Relevant code
including examples of running the code and corresponding
output is available as indicated in ref. 28 in the paper: A. Berger,
R-code-for-calculating-orientation-distribution-functions-for-
rodlike-particles, 7 Jan 2024. https://github.com/AlanBerger/
R-code-for-calculating-orientation-distribution-functions-for-
rodlike-particles.
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Fig. 9 The free energy vs. iteration number for W(g) = sin(g) + P4(cos g), V = 0 and B = 10.8 starting from an axial ODF. This W does not satisfy the
conditions in eqn (18) since w4 = 1 � 9p/256 4 0, and the iteration (24) fails to converge. The oscillation in the free energy that is established by iteration
30 was seen to continue through 3000 iterations.
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